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Abstract

Embryo implantation is a complex process in which multiple molecules acting together 
under strict regulation. Studies showed the production of various adipokines and 
their receptors in the embryo and uterus, where they can influence the maternal-fetal 
transmission of metabolites and embryo implantation. Therefore, these cytokines have 
opened a novel area of study in the field of embryo–maternal crosstalk during early 
pregnancy. In this respect, the involvement of adipokines has been widely reported in the 
regulation of both physiological and pathological aspects of the implantation process. 
However, the information about the role of some recently identified adipokines is 
limited. This review aims to highlight the role of various adipokines in embryo–maternal 
interactions, endometrial receptivity, and embryo implantation, as well as the underlying 
molecular mechanisms.

Introduction

Nowadays, many advances have been achieved in the 
field of assisted reproductive technology (ART) and this 
technique could help many infertile couples to have their 
children. However, the main problem with this technology 
is the low rate of implantation after the embryo transfer 
(1). Statistics showed that more than 50% of embryos 
could not be implanted after transferring into the uterus 
and even in some patients the implantation failure can be 
seen after several transfers of good quality embryos which 
are described as repeated implantation failure (2).

Implantation is one of the most important 
steps toward pregnancy initiation, through which 
blastocyst invades the epithelium of the endometrium 
(3). To successful implantation, both embryo and 
endometrium should be met in a precise time and place, 
which is recognized as the ‘implantation window’ (3).  

During this window, the endometrium is completely ready 
for receiving the blastocyst. In a normal menstrual cycle, this 
period is from days 16 to 22; this would be approximately 
5–10 days after the luteinizing hormone (LH) surge (4). 
The embryo implantation contains three steps, at the first 
stage, the blastocyst attaches with a loose connection to 
the implantation site in the uterine (opposition), and then 
trophoblasts attach to the epithelium of the endometrium 
(adhesion), and finally, at the last stage, the cells invade 
to the stromal site of the endometrium (invasion). All the 
steps should be precisely regulated to make the successful 
implantation possible (5).

Various factors are involved in the implantation process 
such as cytokines (e.g. IL1, IL6, and leukemia inhibitory 
factor), prostaglandins (e.g. PGE2), growth factors (e.g. 
epidermal growth factor (EGF), vascular endothelial 
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growth factor (VEGF), and heparin-binding EGF), matrix-
degrading enzymes (e.g. matrix metalloproteinases 
(MMPs)), matrix-degrading enzymes inhibitors (e.g. tissue 
inhibitor of metalloproteinase (TIMPs)) and molecules that 
have a role in cellular adhesion (e.g. integrins, selectins, 
and cadherins) (2, 3). It has been documented that adipose 
tissue-derived factors can also affect implantation (6, 7). 
Adipose tissue acts as an endocrine tissue and secretes 
hormone-like factors called adipokines. Adipokines are a 
kind of cytokine that contributes to energy metabolism, 
inflammation, immunity, and angiogenesis, as well as, 
reproductive maturity and fertility (6, 7, 8, 9). Regarding 
the latter effect, it has been well documented that obesity 
or excess fat can negatively influence female fertility and 
ovarian function such as what we see in obese women with 
polycystic ovary syndrome (PCOS) (10, 11). The role of 
adipokines has also been shown in embryo implantation 
(6, 7). Owing to the importance of adipokines in fertility 
and implantation and the lack of comprehensive study on 
the involvement of adipokines in embryo implantation, in 
this review, we aimed to address the roles of adipokines in 
embryo implantation and the underlying mechanisms.

Adipokines in embryo implantation

Many studies have shown the presence of adipokines 
and their receptors in the woman’s reproductive systems 
emphasizing their role in female fertility. Adipokines 
are also present in the uterus and placenta where they 
can influence implantation and pregnancy as well as 
maternal–fetal transmission of metabolites (6, 7). It has 
been demonstrated that various stages of implantation are 
profoundly regulated by steroids, including progesterone, 
estradiol, and androgens. On the other hand, the role 
of adipokines in the regulation of the secretion of 
gonadotropin-releasing hormone (GnRH), gonadotropins, 
and steroids suggesting their involvement in the 
implantation process (12). However, there is no consensus 
regarding the effects of adipokines on hormones which can 
be due to different reasons such as species differences, the 
dose of adipokines (13, 14), size and stage of ovarian follicles 
(15), and phase of the menstrual cycle (16). The association 
of adipokines with steroidogenesis and hormones has 
previously been reviewed in depth by our group (17). 
Interestingly, adipokines can be under the regulation of 
hormones. For example, the stimulatory effects of estrogen, 
testosterone, LH, and follicle-stimulating hormone (FSH) 
on resistin expression have been demonstrated in ovarian 
follicles (18). Moreover, it has been reported that estradiol 

could induce adiponectin expression (19). However, the 
inhibitory effects of steroids have also been reported on 
adipokines in ovarian follicles (19).

It has been documented that alteration of adipokine 
levels may result in different female reproductive issues. 
For example, both abnormal decreased and increased 
levels of adipokines have been reported in gestational 
diabetes mellitus, PCOS, preeclampsia, endometriosis, and 
intrauterine growth retardation; however, some studies 
did not find an association between adipokine levels 
and gynecological issues (12). In addition, it has been 
demonstrated that increased levels of adipokines can alter 
their functions and may cause adipokine resistance (20). 
Adipokines can link energy metabolism and reproduction. 
Implantation and pregnancy are intensely reliant on 
the balance of energy (21, 22), and therefore metabolic 
abnormalities can cause implantation failure (23). The roles 
of different adipokines in implantation and pregnancy 
have been mentioned by previous studies. In this regard, 
various adipokines such as leptin, adiponectin, apelin, 
chemerin, progranulin, retinol-binding protein 4 (RBP4), 
and visfatin have been investigated (7, 24, 25, 26, 27). In 
the following sections, we explain the adipokines and their 
possible role in embryo implantation. Moreover, the role 
of adipokines in implantation and possible underlying 
mechanisms are summarized in Table 1.

Leptin

Leptin is a 16 kDa polypeptide hormone encoded by the 
obese (OB) gene and mostly produced by white adipose 
tissue. It acts through the leptin receptor that mainly 
transmits signals through the Janus kinase/signal transducer 
and activator of transcription signaling pathway. The main 
role of leptin in the body is regulation of energy balance 
by affecting cellular metabolism and appetite (28, 29). 
Interestingly, leptin can act as a pro-inflammatory cytokine 
due to its structural similarity with IL6. In this regard, 
leptin increases the expression of inflammatory cytokines 
such as tumor necrosis factor α (TNFα) and IL6 (30, 31). 
Leptin is also associated with the adaptive immune system 
and can enhance the proliferation and survival of T cells 
(30). Studies have well documented that leptin is involved 
in the reproductive system. For instance, this adipokine is 
essential for the onset of puberty, and also can affect the 
hypothalamus–pituitary–gonadal axis (32).

In the female reproductive system, it has been 
demonstrated that leptin receptor is present on the surface 
of granulosa and theca cells, and stimulates the production 
of the steroids in these cells (33). In supporting the role of 
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Table 1 Role of adipokines in embryo implantation-related functions and their mechanism of action.

Adipokine Function Mechanism of action Ref

Leptin Remodeling of the endometrial epithelium (human) Stimulating proliferation and enhancing Fas 
ligand-induced apoptosis in EECs

(39)

Repairing endometrial epithelium after embryo 
implantation (human)

ND (39)

Inducing blastocysts adhesion (mice) Induction of αv and β3 integrin in EECs (40)
Stimulating trophoblast invasion (human, mouse) Upregulating MMP expression in  

trophoblast cells
(123, 124)

Induction of implantation-related inflammation 
(human)

Stimulating the production of IL6 and 
chemokines in EECs and ESCs

(42)

Inhibition of decidualization (human) ND (41)
Adiponectin Playing a role in maternal recognition of pregnancy 

and implantation (porcine)
Upregulation of basal and insulin-stimulated 

steroidogenic enzymes, including HSD3B, 
StAR, and CYP11A1 and secretion of A4 and P4 
by the endometrium and myometrium

(51)

Involving in the development of the preimplantation 
embryo and uterine receptivity (mouse)

Involving in decidualization

Activation of autocrine and paracrine 
mechanisms

(56)

Increasing uterine receptivity
Inducing proliferation and attenuating apoptosis of 

uterine luminal epithelial cells (porcine)

Stimulation of AKT/PI3K and MAPK  
signaling pathways

(52)

Involving in implantation and regulating endometrial 
inflammation (human)

Increasing phosphorylation of AMP-activated 
protein kinase in ESCs and EECs

Decreasing IL1β-induced secretion of IL6, IL8, 
and MCP1 from ESCs

(50)

Apelin Regulating luteal phase of the estrous cycle (pig) Stimulating P4 secretion and HSD3B activity in 
the middle of the luteal phase

(64)

Regulating early placental development (human) Enhancing proliferation of trophoblast cells via 
APJ and ERK1/2, Stat3 and AMPKα signaling

(67)

Decreasing the uterine contractions and facilitating 
embryo implantation (human)

Exerting hypotensive effects on blood vessels (rats)
Inducing the uterus myometrium contraction (rats)

ND
Stimulating the phosphorylation of eNOS, 

activation of guanyl cyclase, and cGMP 
production in endothelial cells

Partially via protein kinase C pathway

(69, 70)

Chemerin Maintaining early pregnancy and preventing embryo 
abortion (human)

Phosphorylation of ERK1/2 (81)

Regulating endometrial receptivity and trophoblast 
invasiveness (porcine)

ND (25)

Involving in maternal recognition of pregnancy 
(porcine)

Possibly via the conceptus-secreted 
substances, including uPA and E2

(25)

Decidualization and vascular remodeling during early 
pregnancy (human)

Accumulating NK cells at the implantation site (83)

Promoting uterine receptivity and implantation 
(human, mice)

Augmenting AMPKα activity (68, 82)

Increasing trophoblast invasion (human) Production of IL8 and IP10 by NK cells (83, 84)
Visfatin Involving in implantation (mice) Increasing PCNA expression and maintaining 

the balance between apoptotic and anti-
apoptotic elements in the uterus

(99)

Affecting uterine immune responses and 
morphological structure (rat)

Modulating inflammatory responses by 
regulating the expression of eosinophil, 
myeloperoxidase, and inflammatory cytokines 
(IL1β, IL6, and TNFα)

(97)

Involving in the regulation of the placental 
angiogenesis (human)

ND (100)

RBP4 Increasing trophoblast proliferation and invasion 
(human)

Suppressing PI3K/AKT signaling pathway and 
upregulating MMP2 and MMP9

(105) 

(Continued)
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leptin in embryo implantation, expression of its receptor 
(OBR) has been observed on the endometrial cells and it has 
been reported that decreased expression of the receptor is 
associated with subfertility (34). Leptin is locally produced 
by endometrium and blastocysts showing its importance 
in embryo-endometrium crosstalk during implantation 
(35). Findings from subsequent studies further reinforced 
the potential roles of leptin in the pregnancy process. In 
this regard, it has been shown that injecting recombinant 
leptin for 8 days resulted in pregnancy in leptin-deficient 
female mice suffering from infertility. More interestingly, 
pregnancy did not occur when leptin administration was 
stopped 0.5 or 3.5 days after mating, but it occurred when 
the treatment stopped 6.5 or 14.5 days after mating (36). 
Given that the implantation initiates 5 days after mating 
in mice, it seems that the most important role of leptin in 
pregnancy is related to the implantation stage. Another 
study showed that the expression of leptin receptors in the 
endometrium was significantly increased during the luteal 
phase, the phase of receptivity (37). A study also reported 
that the blocking of leptin receptors on the third day of 
pregnancy could impair embryo implantation in mice (38). 
Also, studies have demonstrated that leptin is involved 
in the proliferation and apoptosis of uterine epithelial 
cells, uterine receptivity, uterine immune system, and 
decidualization, which are necessary for implantation 
(39, 40, 41). On the other hand, the expression of leptin 
could only be detected at the blastocyst stage during 
the preimplantation period, the stage that can be  
implanted (37).

Regarding the underlying mechanisms of leptin action 
in implantation, it has been documented that leptin could 
significantly increase the adhesion rate of mice blastocysts 

via inducing the expression of adhesion molecules such 
as beta 3 integrin in endometrial epithelial cells (40) (Fig. 
1). Leptin has also an association with the endometrial 
immune system and can induce the expression of several 
implantation-related inflammatory cytokines in the 
endometrium. In this regard, it has been indicated that 
leptin treatment could increase the expression of IL6, 
IL8, GROα, monocyte chemoattractant protein-1, and 
macrophage inflammatory protein-3α (MIP3α) in the 
endometrial epithelial and stromal cells (42). On the other 
hand, the essential role of inflammation in the embryo 
implantation process has been well-documented (43). 
Leptin is also involved in decidualization, a necessary step 
for pregnancy initiation (41). However, the effect of leptin 
on the decidualization is inhibitory, and therefore, extra 
levels of leptin as seen in the endometriosis patients can 
also be involved in implantation failure (41).

Adiponectin

Adiponectin is produced by the adipose tissue, liver, 
bone, and placenta (44). Adiponectin acts through two 
receptors, AdipoR1 and AdipoR2. AdipoR1 transduces 
adiponectin signal through AMP-activated kinase (AMPK), 
whereas AdipoR1 activates peroxisome proliferator-
activated receptor alpha (PPARα) (45). Adiponectin plays 
an important role in the regulation of energy metabolism 
via increasing insulin sensitivity, glucose uptake, and fatty 
acid oxidation, and also attenuating gluconeogenesis 
(46). Adiponectin is also involved in the immune system 
and appears to have anti-inflammatory properties via 
attenuating the nuclear factor-kB signaling pathway 
and subsequently the production of IL6 and TNFα in 

Adipokine Function Mechanism of action Ref

Progranulin 
 
 
 
 
 
 
 

Stimulating blastocyst growth and adhesion (mouse) ND (118)
Involving in decidualization (murine) ND (119)
Establishing placenta by involvement in hypertrophy 

and proliferation of the endometrial epithelium, 
growth and migration of cytotrophoblast, and 
maternal angiogenesis (mink)

ND (26)

Playing role in uterine angiogenesis and facilitating the 
implantation (human)

ND (121)

Involving in blastocysts hatching (mouse) ND (118)

A4, androstenedione; AMP, adenosine monophosphate; AMPK, AMP-activated protein kinase; APJ, apelin receptor; HSD3B, 3beta-hydroxysteroid 
dehydrogenase; cGMP, cyclic guanosine monophosphate; CYP11A1, cytochrome P450 11A1; E2, estradiol; EEC, endometrial epithelial cells; ERK1/2, 
extracellular signal-regulated kinases 1 and 2; eNOS, endothelial nitric oxide synthase; ESC, endometrial stromal cells; MAPK, mitogen-activated protein 
kinase; MCP-1, monocyte chemoattractant protein 1; MMP, matrix metalloproteinases; ND, not defined; NK, natural killer; P4, progesterone; PCNA, 
proliferating cell nuclear antigen; PI3K/AKT, phosphatidyl inositol-3-kinase/ protein kinase B; StAR, steroidogenic acute regulatory protein;  STAT3, signal 
transducer and activator of transcription 3; TNF, tumor necrosis factor; uPA, urokinase plasminogen activator .

Table 1 Continued.
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macrophages. Roles of adiponectin in the reproductive 
system have also been indicated. Adiponectin attenuates 
LH secretion from the pituitary gland and regulates GnRH 
receptor expression (47). A study reported that mice lacking 
adiponectin showed folliculogenesis issues and impaired 
fertility potential (48). It has also been demonstrated that 
the serum levels of adiponectin were directly correlated 
with the number of retrieved oocytes in women who 
underwent in vitro fertilization (49).

The expression of adiponectin receptors in the 
endometrium and the involvement of adiponectin in 
the embryo implantation-related processes encouraged 
scientists to investigate the potential roles of this 
adipokine in embryo implantation. In this respect, it has 
been found that ADIPOR1 and ADIPOR2 were expressed 
in epithelial and stromal cells of the endometrium and 
their expression was markedly increased during the mid-
luteal phase, the time of embryo implantation (50). Low 
expression of adiponectin receptors has also been reported 
in the endometrium of women with unexplained recurrent 
implantation failure (7). The production of steroids is 
important for appropriate embryo implantation and it has 
been shown that adiponectin enhances the expression 
of steroidogenic enzymes such as 3β-hydroxysteroid 
dehydrogenase and steroidogenic acute regulatory protein 
(51). Furthermore, adiponectin induces proliferation 
and attenuates apoptosis of uterine luminal epithelial 
cells, and subsequently increases uterine receptivity. 
These effects are mediated by the stimulatory effect of 

adiponectin on phosphatidylinositol-3-kinase/protein 
kinase B (AKT/PI3K) and MAPK signaling pathways (52). 
Adiponectin can also induce endometrium receptivity 
via reducing IL6 secretion by endometrial epithelial cells 
(50, 53). Adiponectin can decrease nitric oxide (NO) levels 
in the endometrium. Given that in the pre- and peri-
implantation stages the expression of inducible nitric 
oxide synthase (iNOS) is increased in the endometrium, 
it can be postulated that adiponectin plays a regulatory 
role in NO-related processes during the implantation (54, 
55). However, further studies are needed to clarify how 
adiponectin acts in favor of implantation by reducing 
NO synthesis, a factor that is required for implantation. 
Interestingly, the expression of adiponectin receptors is 
increased during decidualization, suggesting the potential 
role of this adipokine in decidualization (56). To sum 
up, adiponectin is involved in embryo implantation via 
affecting steroidogenesis, the proliferation of uterine 
epithelial cells, regulating endometrial inflammation, 
NO synthesis, and endometrium receptivity, and 
decidualization; however, future studies are likely to reveal 
further insight into the role of adiponectin in embryo 
implantation.

Apelin

Apelin is encoded by the APLN gene as a preproprotein 
and following the post-translational modifications, several 
active forms of apelin are produced, including apelin 36, 

Figure 1
Schematic diagram demonstrating the 
involvement of adipokines during different stages 
of the blastocyst implantation in the 
endometrium. ZP, zona pellucida; BL, blastocyst; 
CT, cytotrophoblast; ST, syncytiotrophoblast; ES, 
endometrial stroma; EE, endometrial epithelium.
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apelin 17, and apelin13, among which apelin13 has the 
highest biological activity. It acts through a G protein 
receptor named APJ (57, 58, 59). Apelin is involved in 
many biological functions, including angiogenesis, blood 
pressure regulation, heart contraction, water intake, and 
anti-inflammatory processes (57, 60). Apelin also has 
direct and indirect roles in the reproductive system. In this 
regard, it has been reported that apelin 13 could attenuate 
the secretion of LH, FSH, and prolactin from the pituitary 
gland (61). Apelin and its receptor are expressed in oocytes 
and follicles and their expression has a positive correlation 
with ovarian follicle growth (62, 63). These findings 
support the important role of apelin in female fertility.

Apelin can be involved in the embryo implantation 
process via enhancing the basal steroid secretion in 
ovarian cells and inhibiting FSH-induced steroid secretion. 
Moreover, apelin stimulates progesterone secretion 
in the middle of the luteal phase and also stimulates 
hydroxysteroid dehydrogenase (HSD) activity (64). 
There is emerging evidence that the expression level of 
apelin increases during the estrous cycle and decreases 
following corpus luteum degeneration (65). Apelin is also 
expressed by endometrial tissue and its expression is more 
pronounced during the secretory phase of the menstrual 
cycle, confirming the possible role of apelin in endometrial 
receptivity and implantation (66). In this respect, it has 
been seen that apelin induces some of the important 
implantation-related signaling pathways, especially 
MAPK signaling (67). It seems that the association of 
apelin with different signaling pathways and their effect 
on implantation is an interesting issue that deserves 
further study. For example, apelin has recently been 
shown to enhance the proliferation of trophoblast cells by 
phosphorylation of extracellular signal-regulated kinase 
(ERK1/2), Stat3, and AMPKα (67). On the other hand, it 
has been shown that the ablation of the Prkaa1 and Prkaa2 
genes which are involved in encoding the catalytic domains 
α1 and α2 of AMPKα, could impair embryo implantation in 
mice (68). Therefore, apelin may play an important role 
in implantation by affecting AMPKα signaling. Moreover, 
apelin can weaken uterine contractions and consequently 
facilitate embryo implantation in the human myometrium 
(69). In contrast, in a study on rats, it has been reported that 
apelin induced uterus contraction partially via the protein 
kinase C pathway (70). Additionally, apelin has antioxidant 
properties and could increase catalase activity and 
attenuate reactive oxygen species production (71, 72). Since 
oxidative stress could have detrimental effects on embryo 
implantation (73, 74, 75), the apelin-induced antioxidant 
defenses could support successful implantation.  

Given the role of apelin in modulating the immune 
system and inflammation, and on the other hand, the 
importance of these events in embryo implantation, it 
is likely that apelin has further roles in the implantation 
process. However, few studies have been performed 
on the association of apelin with implantation and 
further investigations are required to clarify the  
underlying mechanisms.

Chemerin

Chemerin is highly expressed in white adipose tissue, 
liver, and lung. Moreover, its receptor, chemokine-like 
receptor 1 (CMKLR1), is abundantly found in immune 
cells (76). This adipokine is involved in the differentiation 
of adipose cells, chemotaxis of immune cells, angiogenesis, 
and production of cytokines such as IL6 (76, 77). 
Chemerin exerts an inhibitory effect on ovarian follicular 
development and can induce arresting of follicle growth 
and apoptosis of granulosa cells (78). In addition, studies 
have shown that chemerin attenuated FSH-induced 
follicular steroidogenesis which raised the possibility of 
involvement in PCOS (79).

The endometrium, placenta, trophoblasts, and 
conceptuses express members of the chemerin system 
which may reflect the role of this adipokine in embryo–
maternal interactions (80). Furthermore, it has been shown 
that local factors in the uterus could affect the protein 
expression of the chemerin system during early gestation 
(25). It has been indicated that this adipokine can prevent 
embryo abortion via regulating ERK1/2 phosphorylation, 
an important signaling pathway in embryo implantation 
(25, 81). In this respect, an upregulation of CMKLR1 
in the decidua and a reduction of chemerin in plasma 
have been reported in women who had spontaneous 
abortions (81). In a study on pigs, it has been seen that 
the protein expression of chemerin and CCRL2 (C-C 
motif chemokine receptor-like 2; a chemerin receptor) 
in the endometrium was in the highest levels during 
implantation (25). Moreover, this group demonstrated 
that the levels of GPR1 (protein-coupled receptor 1c; a 
chemerin receptor) were significantly increased in the 
endometrium during embryo migration. An enhanced 
expression of chemerin and its receptors (CMKLR1, 
CCRL2, and GPR1) was also observed in the myometrium 
of pigs during embryo implantation (25). An elevated 
expression of chemerin has been found in the stromal 
cells during decidualization (81). Chemerin can augment 
AMPKα activity which is involved in uterine receptivity 
and implantation (68, 82). This adipokine also plays a key 
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role in the accumulation of natural killer (NK) cells at the 
implantation site (83); the NK cells induce trophoblast 
invasion by producing different cytokines such as IL8 and 
IFNγ-inducible protein 10 (84). Moreover, chemerin takes 
part in vascular remodeling and angiogenesis across early 
pregnancy (83).

The clinical evidence has shown that elevated 
proinflammatory factors such as MIP1β, TNFα, and 
dendritic cells (DCs) following endometrial biopsy could 
increase the rate of successful implantation (85). Chemerin 
is involved in the regulation of inflammatory processes 
(86). Chemerin is also able to enhance the accumulation 
of DCs at the site of inflammation (87). Moreover, a 
correlation has been reported between serum levels of 
chemerin and TNFα (88). Interestingly, Gnainsky  et al. (89) 
found a positive association between levels of TNFα in the 
endometrium and successful implantation. Nevertheless, 
chemerin also has anti-inflammatory and pro-oxidating 
effects (82, 90) that may influence embryo implantation; 
so further studies are needed to clarify the exact role of 
chemerin in implantation.

Visfatin

Visfatin or nicotinamide phosphoribosyltransferase 
(NAMPT) functionally acts as an enzyme restricting 
the conversion of nicotinamide to nicotinamide 
mononucleotide (NMN) which subsequently activates the 
synthesis of nicotinamide adenine dinucleotide (NAD+) 
and thus plays a regulatory role in the energy metabolism 
(91, 92). Visfatin is also involved in inflammatory 
responses (secretion of IL1β, IL6, and TNFα), prevention of 
neutrophils apoptosis, and maturation of B cells (93, 94). 
Moreover, recent studies have shown that visfatin could 
bind and activate the Toll-like receptor 4 (95) and also 
due to its insulin-mimetic activity, can bind the insulin 
receptor and cause insulin resistance and consequently 
regulate glucose levels (96).

Based on the immunohistochemical findings, 
visfatin is expressed in the myometrium, perimetrium, 
and especially the endometrium, showing the potential 
role of this adipokine in functions of the uterus (97). 
Interestingly, the expression of this adipokine is under the 
control of steroids as estrogen increases visfatin levels and 
progesterone has an inhibitory effect on its expression (98). 
Annie  et al. (99) have reported that visfatin can be involved 
in implantation through increasing proliferating cell nuclear 
antigen expression and maintaining the balance between 
apoptotic and anti-apoptotic elements in the mice uterus. 

As another mechanism, Yang   et  al. (97) have shown that 
visfatin modulates inflammatory responses by regulating 
the expression of eosinophil, myeloperoxidase, and 
inflammatory cytokines and therefore plays a vital role in the 
uterine immune responses. In line with this study, Kim et al.  
(100) have also demonstrated that visfatin is involved in 
the regulation of the placental inflammatory response and 
angiogenesis. Although the information regarding the 
role and the molecular mechanism of visfatin in embryo 
implantation is not adequate, the findings of several studies 
elucidate its involvement in early pregnancy (101).

RBP4

Vitamin A is indispensable for the function of the immune 
system, epithelial tissue maintenance, and differentiation. 
Besides, it plays an undeniable role in the reproductive 
system including ovarian follicle development and 
endometrial receptivity (102, 103). RBP4, a component of 
adipokines (104), acts as a specific carrier of vitamin A from 
the liver to the peripheral tissues and is involved in the 
regulation of cell differentiation and invasion (105, 106). 
There are different types of RBP (1 to 4) that have diverse 
functions in the various tissues; RBP4 is the most abundant 
type in the serum. Interestingly, in addition to the liver, 
this protein is produced by the endometrium (107). It 
has been demonstrated that the plasma concentration 
of RBP4 is regulated by progesterone and it reaches the 
maximum level at the mid to late phases of a menstrual 
cycle to provide vitamin A for the uterus (108, 109). Given 
the importance of vitamin A in uterine functions, the 
availability of this vitamin in the uterus is contingent on 
the concentration of RBP4. The immunocytochemistry 
analysis has verified the secretion of RBP4 by the uterus 
(107), which infers the importance of RBP4 in uterine 
functions. More interestingly, studies have indicated 
that the expression of RBP4 is increased on days 7 and 
13 of a cycle, which are two important checkpoints for 
preimplantation (110). The HSD17B is involved in the 
regulation of estrogen and androgen levels and also plays 
an important role in decidualization. Studies on human 
endometrial stromal cells have shown that RBP4 could 
induce 17β-HSD expression in the epithelial cells (111, 
112). Elevated levels of RBP4 during the decidualization 
can confirm that RBP4 is involved in decidualization via 
inducing HSD17B expression. Also, RBP4 can induce the 
secretion of VEGF, an essential factor for angiogenesis 
and implantation (113). A study by Li et  al. (105) showed 
that overexpression of RBP4 could increase trophoblastic 
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proliferation and invasion via suppressing the PI3K/AKT 
signaling pathway and upregulating the matrix-degrading 
enzymes (MMP2 and MMP9), which are important in the 
implantation and decidualization processes.

Progranulin

Progranulin (PGRN) structurally acts as a precursor of 
granulin, epithelin, and PC cell-derived growth factor (26, 
114). In the intact form, PGRN has anti-inflammatory effects 
but it acts as a proinflammatory factor when it is cleaved 
into granulin (115). PGRN is expressed in almost all tissues 
but it can abundantly be found in rapidly dividing tissues 
such as keratinocyte, enterocyte, gastrointestinal tract, and 
uterine epithelium. PGRN is highly expressed in the uterine 
epithelium during implantation (116). Furthermore, the 
expression of PGRN has been reported in preimplantation 
embryos with the highest levels in the blastocyst stage 
(117). In addition to blastocyst outgrowth, PGRN can 
promote the adhesion of blastocyst (118). The maternal 
and embryonic expression of PGRN suggests its role in 
the implantation and placentation process. Moreover, 
the involvement of PGRN in endometrial decidualization 
has been demonstrated (119). In mink, the association of 
PGRN expression with hypertrophy and proliferation of 
endometrial epithelium as well as growth and migration of 
cytotrophoblast suggests its role in embryo implantation 
and placentation (26). Given the anti-inflammatory 
properties of PGRN and its role in the growth of epithelial 
cells and also the presence of this adipokine in all stages 
before the implantation, it can be postulated that PGRN 
is involved in embryo implantation. It has been shown 
that the expression of PGRN dramatically drops following 
implantation (120). Perez et  al. (121) showed that PGRN 
could play an effective role in uterine angiogenesis and 
facilitating implantation in humans. It has also been 
documented that the expression of PGRN is increased 
during human embryo implantation, and dysregulated 
PGRN expression is associated with pregnancy-related 
diseases such as abnormal placental angiogenesis (122). 
Qin et al. (118) have indicated that PGRN is secreted from 
the mammalian blastocysts into the surrounding medium 
and it is involved in the preparation of the blastocyst for 
hatching and implantation. In this regard, they reported 
that adding exogenous PGRN to the culture medium could 
considerably increase blastocyst hatching, an essential 
process for implantation (118). Overall, according to the 
results of studies, PGRN might be an effective factor for 

embryo implantation, however, to clarify the exact role of 
this adipokine in implantation further studies are required.

Conclusion

Adipokines and their receptors are present in embryonic 
and uterine components suggesting their significant roles 
in fetal–maternal crosstalk during implantation. The 
involvement of adipokines has been demonstrated in the 
regulation of peri-implantation embryo development, 
trophoblast activity, endometrial receptivity, 
decidualization, and implantation. Moreover, abnormal 
alterations in the levels of adipokines may result in 
pregnancy complications, including implantation 
failure and recurrent spontaneous abortions (7, 41). 
These alterations might be either as a consequence of 
disturbances in the upstream factors, such as hormones or 
as a causative factor in affecting downstream implantation-
related pathways, for example, steroidogenesis. However, 
the exact underlying mechanisms by which adipokines are 
involved in implantation are not thoroughly understood 
and merits further investigation. Furthermore, additional 
comprehensive studies are required to determine whether 
the measurement of adipokine system components in 
uterine fluid during early pregnancy can provide valuable 
data regarding the prediction of successful implantation.
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