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ABSTRACT Burkholderia gladioli is known to cause respiratory tract infections in cystic
fibrosis patients. Here, we describe the annotation of the 38,038-bp genome sequence
of Mana, a P2-like phage of B. gladioli. Understanding the genomic characteristics of
phages infecting pathogens like B. gladioli can lead to advancements in phage therapy.

B urkholderia gladioli is a ubiquitous Gram-negative bacterium (1). Though initially
recognized as a plant pathogen, B. gladioli has been found to infect the human re-

spiratory tract, predominantly attacking cystic fibrosis patients and other immunocom-
promised individuals (2). Here, we discuss the genome of B. gladioli phage Mana,
in an effort to investigate the potential clinical applications of phages to bacterial
infections (3).

Bacteriophage Mana was isolated from a soil sample collected from Champaign
County, IL, using B. gladioli strain ATCC 19302 as the host with the soft agar overlay
method, and phage purification was carried out by picking and replating isolated plaques
for three rounds on soft agar overlay seeded with the host strain as described previously
(4). The host strain was grown at 37°C in tryptic nutrient broth or agar. After phage isola-
tion, phage genomic DNA was extracted from the polyethylene glycol (PEG)-precipitated
phage particles and purified using a Wizard DNA cleanup kit as previously described (5),
and libraries were prepared with 300-bp inserts using a Swift BioSciences 2S Turbo kit fol-
lowed by Illumina MiSeq sequencing using v2 300-cycle chemistry. FastQC was used for
quality control of the total 519,288 raw sequence reads (www.bioinformatics.babraham.ac
.uk/projects/fastqc). The genome sequence was then assembled using SPAdes v3.5.0 (6),
to 415.1-fold coverage, and closed using PCR and Sanger sequencing of the product
amplified by the primers 59-CCGACTCGTGGCCTAAA-39 and 59-TCTTCACGGATGGACACG-
39. Structural annotation was performed using Glimmer v3 and MetaGeneAnnotator v1.0
to identify the gene sequences, while ARAGORN v2.36 was used to detect tRNAs (7–9).
The function of genes was predicted using BLAST v2.9.0 against the NCBI nonredundant
(nr) and Swiss-Prot databases, with a maximum E value of 0.001 (10, 11). In addition,
InterProScan v5.33 and TMHMM v2.0 were used for functional predictions by conserved
domains and transmembrane domains, respectively (12, 13). progressiveMauve v2.4 was
used to calculate the genome-wide DNA sequence similarity between Mana and other
phages (14). These annotation tools were accessed on the CPT Galaxy and Web Apollo
interfaces (15–17), and all analyses were conducted with default settings.

Phage Mana has a genome length of 38,038bp, a coding density of 94%, and a G1C
content of 64%. Structural and functional annotation predicted 64 protein-coding sequen-
ces, with 42 of these sequences having an assigned putative function. The Mana genome
contains no predicted introns. There were no predicted tRNA-coding sequences. Phage
Mana has identifiable P2-like baseplate proteins, a tail tube, a tail sheath, and a tape mea-
sure protein, strongly indicating that Mana is a myophage. Mana shows similarity, on both
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the DNA and protein levels, to previously characterized P2-like Burkholderia phages.
Among these phages, Mana shares 39 similar proteins with phage vB_BceM_AP3
(GenBank accession no. KP966108) (18) and 34 and 36 similar proteins (BLASTP at an E
value of ,0.001) with KS5 (GU911303) and KL3 (GU911304), respectively (19). Most of the
functions of the Mana genes coincide with the functions of the genes of a P2 phage. Mana
was found to have a tape measure protein gene, with a translational frameshift near an
upstream chaperone protein gene. Mana was also discovered to contain two predicted
holin genes. These genes resemble those of Salmonella phage Epsilon15, a podophage
(20). The lysis cassette is completed with a downstream endolysin gene and an o-spanin
gene embedded within an i-spanin gene.

Data availability. The genome sequence of phage Mana was deposited under
GenBank accession no. MT701591.1 and BioSample accession no. SAMN14609638. The
BioProject accession number is PRJNA222858, and the SRA accession number is
SRR11558334.
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