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Abstract: Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic neoplasms char-
acterized by ineffective hematopoiesis and myelodysplasia with a variable spectrum of clinical–
biological features that can be used to build a prognostic estimation. This review summarizes the
current most widely used prognostic scoring systems and gives a general view of the prognostic
impact of somatic mutations in MDS patients.
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1. Introduction

Since the publication of the International Prognosis Scoring System (IPSS) in 1997 [1],
the international community has focused on finding the best scheme to delineate patient
prognosis and cover all subcategories of this group of neoplasms. Nevertheless, with
the advent of new massive sequencing tools and their constant improvement, we have a
collection of genetic information in terms of the presence of mutations that may change
former prognostic scores. Prognostic tools, although designed for most medical conditions,
perform better in entities with a heterogeneous clinical course. Myelodysplastic syndromes
(MDS) are arguably the most heterogeneous entity among hematological neoplasms. Every
day in hematologist waiting rooms, we find patients with the same diagnostic label but
very different plans of treatment, from wait-and-watch visits every six months with just
an automatized blood count to patients going through the extremely complex road of an
allogenic hematopoietic transplantation.

This review summarizes the current most widely used prognostic scoring systems
and illustrates the importance of uniting information about different genetic aberrations
with clinical features to provide the best understanding of MDS prognostication.

1.1. Past and Present MDS Prognostic Models

In daily clinical practice, current prognostic scoring systems are built up from two
types of factors: patient (or host) and MDS-related [2]. Patient-related factors may include
inherent demographic characteristics as age, gender, ethnicity. Other variables, such as
performance status (PS), comorbidities or immune status, are also included here. However,
only age and PS are considered to date as correction factors for survival estimation in the
most widely used score, IPSS-R. With regard to MDS-related factors, peripheral blood and
bone marrow features constitute the main source of predictors. In this category, cytogenetics
stands as the most relevant factor in IPSS-R (Figure 1).

Each prognostic score developed in the MDS setting has its strengths and weaknesses.
We elaborating about it below, focusing on three still unresolved entities: therapy-related
MDS, hypoplastic, and MDS with myelofibrosis [3].
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Figure 1. Impact of main prognostic markers on overall survival (OS) and time to acute myeloid leukemia (AML). Diagonal 
red arrow indicates factors associated both with worse OS and shorter time to AML. Opposite blue arrow is pointing out 
main factors are associated with better survival. Abbreviations: AML, acute myeloid leukemia; OS, overall survival; Chr, 
chromosome; EPO, erythropoietin; ECOG, Eastern Cooperative Oncology Group; MDS-RS, myelodysplastic syndrome 
with ring sideroblasts; −Y, monosomy Y; del(11q), deletion of long arm of chromosome 11; ↓, inferior; ↑; superior. 

Each prognostic score developed in the MDS setting has its strengths and weak-
nesses. We elaborating about it below, focusing on three still unresolved entities: therapy-
related MDS, hypoplastic, and MDS with myelofibrosis [3]. 

1.2. The Classical System and Its Modifications 
The International Prognostic Scoring System (IPSS) was established from a combina-

tion of previous data on seven scoring systems involving 816 primary MDS patients [1]. 
Patients who had previously received intensive chemotherapy and those with secondary 
MDS were excluded. In the final scoring, bone marrow blast percentage, cytogenetic ab-
errations, and the number of cytopenias were considered. With these variables, authors 
categorized 4 subgroups: low, intermediate-1, intermediate-2, and high in consideration 
of the time to acute myeloid leukemia (AML) and overall survival (OS) (Table 1). 

Table 1. International Prognostic Scoring System. Adapted from Greenberg et al., Blood, 1997 [1]. 

Variable Parameter Score Final Score Risk Group LFS Median (Years) OS Median (Years) 

Blasts in bone marrow (%) 

<5 0 
0 Low 9.4 5.7 5–10 0.5 

11–20 1.5 
21–30 2 

0.5–1 Intermediate-1 3.3 3.5 

Cytogenetic aberrations 

Normal, del(5q), del(20q) 0 
Other alterations 0.5 

1.5–2 Intermediate-2 1.1 1.2 
3 or more alterations, Chrom 7 

aberrations 
1 

≥2.5 High 0.2 0.4 
Number of cytopenias * 

None or 1 0 
2 or 3 0.5 

Figure 1. Impact of main prognostic markers on overall survival (OS) and time to acute myeloid leukemia (AML). Diagonal
red arrow indicates factors associated both with worse OS and shorter time to AML. Opposite blue arrow is pointing out
main factors are associated with better survival. Abbreviations: AML, acute myeloid leukemia; OS, overall survival; Chr,
chromosome; EPO, erythropoietin; ECOG, Eastern Cooperative Oncology Group; MDS-RS, myelodysplastic syndrome with
ring sideroblasts; −Y, monosomy Y; del(11q), deletion of long arm of chromosome 11; ↓, inferior; ↑; superior.

1.2. The Classical System and Its Modifications

The International Prognostic Scoring System (IPSS) was established from a combina-
tion of previous data on seven scoring systems involving 816 primary MDS patients [1].
Patients who had previously received intensive chemotherapy and those with secondary
MDS were excluded. In the final scoring, bone marrow blast percentage, cytogenetic
aberrations, and the number of cytopenias were considered. With these variables, authors
categorized 4 subgroups: low, intermediate-1, intermediate-2, and high in consideration of
the time to acute myeloid leukemia (AML) and overall survival (OS) (Table 1).

The indisputable prognostic value and simplicity of its use made the IPSS to be
widely adopted. As it was the cornerstone of MDS outcome prediction for a decade and
a half, certain pitfalls were indicated by different groups and researchers. In the pivotal
IPSS study, patients were diagnosed according to French–American–British (FAB) criteria.
Hence, the final analysis included MDS with 21% to 30% bone-marrow myeloblasts and
non-proliferative chronic myelomonocytic leukemia (less than 12,000/µL white-blood-
cell (WBC) count), both entities no longer considered among MDS categories in later
WHO classifications. Age (60 years or more) did not make it to the final score, as its
prognostic significance was demonstrated for OS, but not for time to AML [1]. Other
exposed shortcomings included not considering cytopenia depth and not assessing the
score value when calculated throughout the course of the disease.

Several modified IPSS models were proposed to improve its applicability, and extend
its utility to other groups of patients and disease contexts [3,4]. The WHO scoring system
took advantage of the prognostic impact of the diagnostic categories and incorporated
the severity of anemia. This score showed us that the number of lineages mattered in the
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prognostic setting and it was validated not only at diagnosis but also throughout the course
of the disease, making it a dynamic score (Table 2).

Table 1. International Prognostic Scoring System. Adapted from Greenberg et al., Blood, 1997 [1].

Variable Parameter Score Final Score Risk Group LFS Median
(Years)

OS Median
(Years)

Blasts in bone marrow (%)

<5 0

0 Low 9.4 5.75–10 0.5

11–20 1.5

21–30 2
0.5–1 Intermediate-1 3.3 3.5

Cytogenetic aberrations

Normal, del(5q), del(20q) 0

Other alterations 0.5
1.5–2 Intermediate-2 1.1 1.2

3 or more alterations, Chrom 7 aberrations 1

≥2.5 High 0.2 0.4
Number of cytopenias *

None or 1 0

2 or 3 0.5

* Hemoglobin < 10 g/dL, absolute neutrophile count < 1800/µL, platelets < 100,000/µL. Abbreviations: LFS, leukemia free survival; OS,
overall survival.

Table 2. World Health Organization classification-based Prognostic Scoring System (WPSS). Adapted from Malcovati et al.,
Journal of Clinical Oncology, 2007 [5].

Variable Parameter Score Final Score Risk Group Cumulative Risk = 0.5 #

OS (Month) Time to AML
(Month)

WHO category

RA/RARS/5q– 0

0 Very low 90 NRRCMD/RCMD-RS 1

RAEB-1 2

1 Low 66 NRRAEB-2 3

Cytogenetic aberrations

Normal, del(5q), del(20q) 0
2 Intermediate 42 32

Other alterations 1

3 or more alterations, Chrom 7 aberrations 2
3–4 High 30 24

5–6 Very high 12 6
Transfusion dependency *

No 0

Regular 1

* Red-blood-cell (RBC) transfusion dependency defined as having at least one RBC transfusion every 8 weeks over a period of 4 months.
Hemoglobin concentration less than 90 g/L in males and 80 g/L in females was later considered an appropriate surrogate for transfusion
dependency. # Approximate values after interpretation of figures from the article of Malcovati et al. In the very low and low risk categories,
plateau was reached before 0.5 cumulative risk of AML. Abbreviations: RA, refractory anemia; RARS, refractory anemia with ringed
sideroblasts; RCMD, refractory cytopenia with multilineage dysplasia; RCMD-RS, refractory cytopenia with multilineage dysplasia and
ringed sideroblasts; RAEB-1, refractory anemia with excess of blasts-1; RAEB-2, refractory anemia with excess of blasts-2; MDS del(5q),
myelodysplastic syndrome with isolated del(5q) and marrow blasts less than 5%; NR, nonreached.

The MD Anderson’s cancer group designed a scoring system to refine the prognosis
of patients included in the low and intermediate 1 IPSS categories, making severe thrombo-
cytopenia a key prediction factor. In addition, they created a comprehensive score system
where they incorporated subsets not included (proliferative chronic myeloid monocytic
leukemia, therapy-related MDS and previously treated cases) and factors not considered
[Eastern Cooperative Oncology Group (ECOG), age, prior red-blood-cell transfusion] in
the original IPSS (Table 3) [3].
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Table 3. MD Anderson Prognostic Scoring System (MDASS). Adapted from Kantarjian et al., Cancer, 2008 [3].

Variable Parameter Score Final Score Risk Group OS Median
(Months)

Performance status >2 2

0–4 Low 54
Age, years

60–64 1

≥65 2

Platelets, ×109/L

50–199 1

5–6 Intermediate 1 25
30–49 2

<30 3

Hemoglobin, g/dL <12 2

Bone marrow blasts, %
5–10 1

7–8 Intermediate 2 1411–29 2

WBC, ×109/L >20 2

Karyotype Chr 7 abnormalities or complex abnormalities (≥3) 3
9–15 High 6

Prior transfusion Yes 1

Abbreviations: WBC, white blood cell; OS, overall survival; Chr, chromosome.

1.3. Revised System

The revised IPSS (IPSS-R) was generated from the evaluation of 7012 patients, and the
three classical IPSS building blocks remained: bone-marrow blast percentage, cytogenetics,
and cytopenias. Nevertheless, its accuracy was improved both because of a larger popula-
tion source and because it refined the three blocks. First, the depth of cytopenias was taken
into account, adding more points in the final score when anemia, neutropenia, and throm-
bocytopenia are more severe. Second, cytogenetic categories were further stratified in five
subgroups, with the highest stratum showing more weight than that in the bone-marrow
blast proportion. Third, the lower blast-percentage categories were divided into two. IPSS-
R classifies 5 well separated prognostic categories (very low, low, intermediate, high, and
very high) according to OS and time to AML risk (Table 4) [6]. Much like its predecessor,
the IPSS-R has become the mainstream score in the MDS field. It is slightly more difficult
to calculate than the classical method is, and some online calculators are availableforclini-
cians (https://www.mds-foundation.org/ipss-r-calculator/, https://www.mdcalc.com/
revised-international-prognostic-scoring-system-ipss-r-myelodysplastic-syndrome-mds
(accessed on 11 May 2021)).

It soon became apparent that the revised version significantly improved risk stratifi-
cation in MDS patients [7]. However, in daily clinical routine, therapeutic algorithms in
MDS separate patients into two groups, low- and high-risk. With the advent of the revised
version and its five categories, it was clear that a unique intermediate category was needed.
Pfeilstocker et al. proposed to split the score by a ≤3.5 point cut-off for therapeutical
purposes [8].

Some factors were proposed to add independent prognostic value to the IPSS-R:
ferritin, hypoalbuminemia, flow-cytometry profile, b2-microglobulin, LDH, or performance
status were shown by different groups to be of value [9,10]. Some of these factors showed
a low independent predictive weight for OS, but not for time to AML in the IPSS-R pivotal
study [6]. Other groups focused their interest on the intermediate category, aiming at its
division, allowing for global score stratification in two groups due to the aforementioned
routine therapeutic consideration. The use of bone-marrow CD34 positive percentage or
the enumeration of blasts exclusively from the myeloid compartment has proven to be
useful in some studies [11,12]. Bone-marrow fibrosis (BMF) was an independent factor
when confronted with the classical score [13]. In this study of 301 patients with MDS,
patients with grades≥2 BMF had shorter OS and leukemia-free survival (LFS) compared to
those with grades ≤1 BMF. The prognostic impact was independent of presence of excess
of blasts. Later, BMF was shown to correlate with worse survival within MDS patients who

https://www.mds-foundation.org/ipss-r-calculator/
https://www.mdcalc.com/revised-international-prognostic-scoring-system-ipss-r-myelodysplastic-syndrome-mds
https://www.mdcalc.com/revised-international-prognostic-scoring-system-ipss-r-myelodysplastic-syndrome-mds
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underwent an allogeneic hematopoietic stem cell transplantation [14]. In the IPSS-R era,
Ramos et al. reported that advanced myelofibrosis was associated with the presence of
mutations in cohesin complex genes and inferior survival [15]. The controversy about when
to perform a biopsy (some diagnostic schools avoid the systematic use of this invasive
procedure) has precluded this parameter to be assessed in the pivotal series.

Table 4. Revised IPSS. Adapted from Greenberg et al., Blood, 2012 [6].

Variable Score Final Score Risk
Group

Median Time
to AML
(Years)

OS, Median
(Years)

Blasts in bone
marrow (%)

<2 0

≤1.5 Very low NR 8.8

>2 to <5 1

5–10 2

>10 3

Cytogenetic
aberrations

−Y, del(11q) 0

2–3 Low 10.8 5.3Normal, del(5q), del(12p), del(20q), double
including del(5q) 1

del(7q), +8, +19, i(17q), any other single or double
independent clones 2

3.5–4.5 Intermediate 3.2 3−7, inv(3)/t(3q)/del(3q), double including
−7/del(7q), complex: 3 abnormalities 3

Complex: >3 abnormalities 4

5–6 High 1.4 1.6

Cytopenia

Hb (g/dL)
≥10 0

8–10 1

<8 1.5

Platelets (×109/L)
>100 0

≥6.5 Very High 0.7 0.8

50–<100 0.5

<50 1

ANC (×109/L)
>0.8 0

<0.8 0.5

Abbreviations: AML, acute myeloid leukemia; OS, overall survival; NR, non-reached, Hb, hemoglobin; ANC, absolute neutrophil count.

2. Incoming MDS Prognostic Models

Next-generation sequencing has allowed for large-scale analysis of the molecular
profile in MDS. Not surprisingly, its mutational landscape is quite heterogeneous, some-
thing that is considered critical to define MDS clinical and pathological features since its
first description. The collection of NGS data has granted significant knowledge about the
pathophysiological complexity of this blood cancer, involving a set of recurrently mutated
genes that play diverse roles in cellular processes, such as DNA methylation, chromatin
modification, signal transduction, transcriptional regulation, and RNA splicing [5,7,8,16,17].
Among patients diagnosed with MDS, more than 50% have normal cytogenetics, the only
genomic variable included in current prognostic scores, but about 90% harbor mutations.
The mutational burden is directly correlated with the number of karyotypic aberrations.
Still, a high percentage of low-risk and normal karyotype cases present with an average of
1–3 somatic mutations [18,19].

From a strict quantitative view, the more acquired variants, the more likely the MDS
to behave aggressively. Both Bejar and Papaemmanuil showed in a large series of MDS
cases that stratification by the number of tumor mutations was highly predictive of LFS.
Harboring three or more acquired mutations defined a subset of cases with approximately
two years to leukemia transformation [20,21]. Haferlach et al. showed differences in the
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number of mutations across MDS subtype, from 60% of cases with four or more mutations
in the MDS with excess of blasts-2 subgroup to approximately 15% in the MDS with ring
sideroblasts subgroup [5].

Another quantitative parameter, the variant allele frequency (VAF), has been studied
for prognostic purposes. VAF depicts the percentage of mutated cells within the sample,
and it is used as a surrogate marker to define clonal (predominant) or subclonal tumor
population. However, for the VAF to be considered as a prognostic factor, the gene affected
must be taken into account. TP53, TET2 and SF3B1 prognostic impact has been shown to
be modified by the VAF. On the other hand, there are other targets, i.e., NRAS and EZH2,
that seems to predict for more aggressive course regardless of the VAF [22–25].

Seven genes were previously reported to harbor independent prognostic significance
in MDS and impact on OS: TP53, EZH2, RUNX1, NRAS, ASXL1 and SF3B1. All of them,
regardless of SF3B1, have negative influence on survival and could actively participate as
triggers of disease progression to AML [20,26,27]. However, not a single or group of gene
mutations were included in the IPSS-R (Figure 1).

TP53 is a tumor-suppressor gene that plays an essential role in cell-cycle arrest, DNA
repair mechanisms, apoptosis induction, and cellular differentiation in response to genetic
damage [28]. The mutation of TP53 is observed in approximately 10–15% of patients
with MDS, and predicts for a dismal clinical outcome and poorer responses to treat-
ment [19,29,30]. It is frequently present in complex karyotype cases, where survival is the
shortest (less than six months) among MDS patients [28,31,32]. The isolated deletion of the
long arm of chromosome 5 is generally considered a favorable feature and key for a good
response to lenalidomide. However, it appears that the coexistence of this chromosomal
aberration with a TP53 mutation worsens prognosis and contributes to an earlier relapse
after treatment with lenalidomide [33–35].

Regarding the allele state of TP53, a recent study reported robust association between
TP53 biallelic/multihit mutations and an inferior clinical outcome in MDS, in contrast to
patients with a unique hit. Strikingly, the authors did not find any difference in OS between
patients who had a single hit and those with intact TP53 [25]. Moreover, Sallman et al.
found that MDS patients with the TP53 somatic mutation and VAF of >40% had inferior OS
(median 124 days) in comparison with those with VAF < 20% (median OS not reached) [22].

ASXL1 is mutated in 13–21% of MDS cases, and its presence was described as a predic-
tor of inferior survival in patients with low or intermediate-1 risk according to the IPSS [20].
SF3B1 is a RNA splicing machinery member, the only gene of which the acquired lesion
defines a WHO category (MDS with ring sideroblasts) [36], and its mutational status is asso-
ciated with improved OS [37], independent after adjustment by IPSS-R group [21]. RUNX1
is a crucial component of normal hematopoiesis, participating in hematopoietic stem-cell
genesis and differentiation. It is mutated in nearly 10% of MDS cases. Patients with a lesion
in RUNX1 have significantly inferior OS compared to those without it [16,20,21,38]. Before
NGS was available, it had already been proven that the presence of a RUNX1 mutation in
therapy-related MDS was related to shorter time to AML, but not to impact on OS [39].

As the frequency of cases mutated for a specific gene decreases, associations with a
predictive value become blurrier. That is the case, for example, for IDH1, IDH2, EZH2, CBL
and U2AF1, with contradictory results. A peculiar case involves TET2, one of the more
frequently mutated genes, directly responsible for the impairment of a critical pathway in
this disease, but without definitive data regarding its prognostic value and its competence
to predict for responses to hypomethylating agents (Table 5).
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Table 5. Somatic mutations and their association with clinical prognostic impact on outcome of myelodysplastic syndrome.

Pathway Gene Specific Group
Clinical Outcome

Reference
OS Statistical

Approach
Time to

AML
Statistical
Approach

Transcription factors

TP53 D Mv D Mv Nazhad et al. [29]; Haase et al. [31];
Bejar et al. [20]

RUNX1 D Mv C - Bejar et al. [20]

BCOR
All N Mv N Mv Damm et al. [40]; Abuhadra et al. [41]

Frameshift D Uv/Mv D Uv

RNA splicing

SF3B1
Non-MDS-RS C Uv/Mv C Uv/Mv Malcovati et al. [42,43]; Kang et al. [44]

MDS-RS I Mv C - Papaemmanuil et al. [45]

SRSF2 D Mv D Mv Thol et al. [46]

U2AF1 D Mv C - Kang et al. [44]

DNA methylation

TET2
All C Uv/Mv C Uv/Mv Kosmider et.al. [47], Smith et al. [48],

Guo et al. [49], Santamaría et al. [50]

High-risk N Mv D Mv Lin et al. [51]

IDH1 C Uv C Uv Thol et al. [52], Lin et al. [53]

IDH2 D Uv C - Lin et al. [53]

Chromatin modifiers
EZH2 D Mv N Mv Bejar et al. [20]

ASXL1 D Mv D Mv Bejar et al. [20], Thol et al. [54]

Cohesin complex STAG2 D Mv C - Thota et al. [55]

RAS signaling
NRAS C Uv/Mv D Uv Paquette et al. [56], Murphy et al. [57],

Bejar et al. [20]

CBL N Uv C - Kao et al. [58]

Others SETBP1 D Uv/Mv D Uv/Mv
Makishima et al. [59], Inoue et al. [60],
Fernández-Mercado et al. [61], Damm

et al. [62]

Abbreviations: OS, overall survival; AML, acute myeloid leukemia; D, decrease; I, increase; C, conflicting results; N, neutral; Mv,
multivariate; Uv, Univariate; MDS-RS, myelodysplastic syndrome with ring sideroblasts. “-“: not available.

Using more refined statistical approaches, a recent study addressed the likely under-
estimated importance of mutation co-occurrence patterns in MDS prognostic settings [63].
Though external validation is needed, the authors stated that specific comutation patterns
account for clinical heterogeneity within SF3B1, SRSF2, and del5q MDS. In addition, ac-
quired mutations may be useful for both anticipating the natural history of the disease at
diagnosis, and minimal residual disease assessment and prediction of progression during
the course of MDS [64–66]. Lastly, the success or failure of emerging targeted therapies (i.e.,
IDH1/2 or spliceosome inhibitors) may accelerate the implementation of new genes in the
workup on MDS patients. Huge effort is currently expended to reach a molecular IPSS-R.

New Approaches: Machine Learning, Big Data, and “Omics” Integration

Machine learning is a branch of computer science that generates predictive or descrip-
tive models by automatically learning through experience rather than being programmed
a priori. Machine learning’s competence to learn from data makes it especially suitable to
model complex or nonlinear data. Progress in this field is behind the spectacular advances
of recent speech translators and face-recognition applications. Among hematological ma-
lignancies, MDS could entail the most complex and heterogeneous clinical and laboratory
data. Using machine learning, Nazha and colleagues could improve the discrimination
ability of current prognostic scores in the uncharted context of a post-treatment setting [67].
Whether automated algorithms, able to objectively operate with thousands of variables for
a single individual, will substitute current scores mostly depends on the accuracy, size, and
strict follow-up updates of training databases. International platforms were developed
with the aim of gathering clinical–genetic information of patients with blood cancer into
one single database from individual cases included in clinical trials and registries. The
Harmony alliance, a pan-European public–private partnership, aims to reach statistical
power to reveal how molecular data and treatments are intertwined.
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To holistically understand the complex clinical and biological disease of MDS, a
combination of multiomic data that are able to shed light on the relationship between
biomolecules, their function, and their coding and modulating components is imperative.
As Winter et al. recently remarked, the integration of immunome (inflammatory cytokines,
genes linked to the inflammasome, cellular responses and bone marrow microenvironment
factors) with clinical variables is of particular interest in MDS patients, as more data add
relevance to the role of immune dysregulation in MDS pathophysiology [68].

3. Conclusions and Concerns

Some questions remain for the accurate use of acquired mutations in prognostic
systems: Does a specific variant feature (localization, activating or hypomorphic, mono- or
biallelic) alter the prognostic value within a very gene? Does the hierarchical place of the
mutation (clonal or subclonal) change the prognostic value of an altered gene? How is the
prognostic fate of the presence of a mutated gene affected by targeted therapy? Can the
co-occurrence of a determined set of mutations predict for a specific outcome? How can we
smoothly incorporate comorbidities and performance status into the incoming prognostic
models? The answers to these questions will guide us to the final goal of personalized
prognostication in a disease that urgently needs new and satisfactory treatments.
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