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Abstract

High-precision source localization depends on many factors, including a suitable location

method. Beamforming-based methods, such as the steered response power (SRP), are a

common type of acoustic localization methods. However, these methods have low spatial

resolution. The SRP method with phase transform (SRP-PHAT) improves the spatial resolu-

tion of SRP and is one of the most effective and robust methods for source localization.

However, the introduction of a phase transform to SRP might amplify the power of the noise

and result in many local extrema in the SRP space, which has a negative impact on source

localization. In this paper, a steered sample algorithm (SSA) based on the reciprocity of

wave propagation for acoustic source localization is proposed. The SSA localization pro-

cess is similar to the hyperbolic Radon transform, which is theoretically analyzed and is the

most essential difference form the SRP/SRP-PHAT. Compared with the SRP-PHAT, the

experimental results demonstrate that the SSA perform better when it comes to array signal

positioning with limited array elements and narrow azimuth signal, where SSA can achieve

high precision positioning with lower SNR.

I Introduction

Acoustic localization is widely used in many fields, such as remote sensing, radar, seismic

detection, and sonar. Source localization has always been a very active research field, especially

for high-precision source localization. At present, the commonly used localization methods

can be summarized into two categories: two-step methods based on the time difference of

arrival (TDOA) and one-step methods, such as those based on beamforming.

TDOA location methods consist of two steps. The first step is to calculate the TDOA of dif-

ferent sensor pairs, which can be estimated with many methods, such as generalized cross-cor-

relation [1], adaptive delay estimation [2, 3], blind channel identification delay estimation [4],

high-order spectral delay estimation [5, 6] and the minimum entropy method [7]. The second

step is to estimate the source position by using the estimated delay and prior knowledge. The

acoustic source position is determined by the intersections of a series of hyperbolas and is a

nonlinear problem. There are two methods for solving this nonlinear problem, namely, maxi-

mum likelihood estimation and closed-form estimation. The maximum likelihood estimation
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is solved using linear approximation and iterative numerical techniques [8]. Most closed-form

estimation methods use the least squares principle, which defines an error function through

the TDOA and minimizes the error function to determine the source location. Different error

functions are defined to achieve source localization with different complexity and perfor-

mance, such as the spherical cross method [9], spherical interpolation [10], Chan’s method

[11], etc. The location precision of the two-step method strongly depends on the accuracy of

the TDOA estimation, and the positioning error is composed of the TDOA estimation error

and the source position estimation error. Any increase of in the two parts of the error can lead

to a failure in determining the location. Moreover, the two-step localization method only uti-

lizes the TDOA information and does not make full use of all the information in the obtained

signal. The most prominent advantage of the two-step method is effective computation, but

the location error might be very large under low signal-to-noise ratio (SNR) conditions

[12, 13].

The one-step methods include not only beamforming-based methods, but also subspace

algorithms and maximum likelihood estimators [14]. The one-step methods can make full use

of all the signal information [15]. In one-step approaches, the most critical issue is the defini-

tion or selection of a cost function, which can produce a maximum value at the grid coordi-

nates corresponding to the source position [16]. Many efforts have been devoted to this issue.

The most popular one is the steered response power (SRP) method, which is essentially a

delay-and-sum beamformer. However, the location performance of the traditional SRP

method is poor. Many modified SRP methods have been proposed to improve localization per-

formance by applying filters to array signals. When the phase transform (PHAT) filter is incor-

porated with the SRP method, the resulting SRP is called the SRP-PHAT [17]. Under noise

and reverberation conditions, it is one of the most efficient and robust positioning methods

[16, 18]. Moreover, it is suitable for broadband and narrowband array signals and multisource

locations [18, 19]. However, the SRP-PHAT has expensive computational cost because the

SRP space has many local extrema [17–20]. To reduce the computational cost, many modified

methods have been proposed, such as stochastic region contraction [20], coarse-to-fine region

contraction [21], stochastic particle filtering [22] and other methods [18, 23–25].

In addition to the aforementioned methods, there are many other new localization

approaches, such as time-frequency based method [26], learning based method [27, 28], etc.

For SRP-PHAT, the purpose of introducing PHAT is to broaden the signal spectrum to

improve the spatial resolution of SRP. Meanwhile, the PHAT amplifies the noise power and

results in many local extrema in SRP the space. In addition, the cross-power/cross-correlation

calculations attenuate the energy of sources far away from the array due to the limited sam-

pling time in the SRP-PHAT. To mitigate these issues, a new analogous algorithm, the steered

sample algorithm (SSA) based on the reciprocity of wave propagation, is proposed. The basic

concept is to regard the sensors as virtual sources. The vibrations generated by the different

virtual sources can stack in-phase in the actual source position to form the energy focus. The

source can be located by searching for the energy peak. As the SSA makes full use of all the sig-

nal information, its localization accuracy and robustness are higher than those of the conven-

tional SRP-PHAT.

The major contributions of our work are as follows:

• A steered sample algorithm based on the reciprocity of wave propagation is proposed for

source localization.

• Gaussian kernel is introduced in the SSA to avoid interpolation and reduce the local extre-

mum in the space domain.
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• The main difference between the SSA and the better-known SRP-PHAT is proved theoretically;

that is, the SSA is similar to the hyperbolic Radon transform, while the SRP-PHAT is not.

• Compared with the SRP-PHAT, the experimental results demonstrate that the SSA can

achieve higher localization performance on noisy and reverberation databases and is more

robustness under fewer sensors and narrower azimuth acquisition modes.

The remainder of this paper is organized as follows. In Section II, related work is reviewed.

In Section III, the proposed steered sample algorithm is introduced in detail. Numerical exper-

iments are carried out on the noisy, reverberation and real speech databases in Sections IV and

V. The conclusions are drawn in Section VI.

II Related work

SRP-PHAT is currently one of the most robust localization methods. In this section, we intro-

duced the SRP-PHAT. The purpose of introducing the SRT-PHAR is to compare it with the

proposed algorithm in localization performance.

Steered response power (SRP)

The SRP method is the output power of the delay-and-sum / filter-and-sum beamformer. SRP

localization is used to search for the acoustic source position by steering a sensor array beam

to many locations and is based on maximizing the SRP. Hence, SRP localization maximizes

the following objective function:

WðxÞ ¼
X

n2Z

Z þ1

� 1

fnðt þ tnðxÞÞdt ð1Þ

where x = [x,y,z]T denotes a candidate for the acoustic source position; fn(t) is the signal

acquired by the nth sensor, for n2{0,1,. . .,N−1}, where N denotes the number of sensors in the

array; and tn(x) is the time of arrival (TOA) propagation from the source position to the nth

sensor. In addition, symbol Z denotes the set of integers.

In (1), the item
P

n2Zfnðt þ tnðxÞÞ achieves delay-and-sum beamforming, which can be

rewritten by the δ-function as follows:

X

n2Z

fnðt þ tnðxÞÞ ¼
X

n2Z

fnðtÞ � dðt þ tnðxÞÞ ¼
X

n2Z

Z þ1

� 1

fnðtÞdðt þ tnðxÞ � tÞdt: ð2Þ

where the symbol � denotes the linear convolution operator. Substituting (2) into (1), we derive

the following:

WðxÞ ¼
X

n2Z

Z þ1

tnðxÞ
fnðtÞdt ð3Þ

It is apparent from (3) that the SRP algorithm is achieved by adjusting the TOA to maximize

the objective function W(x). The integration interval from tn(x) to the end time of the signal

acquisition is too large, which leads to an oversmoothed SRP and results in low spatial resolu-

tion. Especially for multisource situations, the SRP method can only effectively locate the

source closest to the sensor array. Other sources far from the sensor array cannot be located

due to the oversmoothed SRP. Even for a single-source situation, the TOA calculated from the

candidate position near the source is very close to the TOA generated by the actual source,

which results in a large energy distribution range in the SRP space. This is also the reason for

the low spatial resolution of SRP.
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SRP-PHAT

To improve the spatial resolution of SRP, SRP-PHAT [17] was proposed with narrower SRP

peaks. It improves the spatial resolution.

We define

Y1ðoÞ≜
Z þ1

� 1

X

n2Z

fnðt � tnðxÞÞe
� iotdt ¼

X

n2Z

FnðoÞe
� iotnðxÞ ð4Þ

where Fn(ω) is the Fourier transform of signal fn(t). According to Pasval’s theorem, the fre-

quency domain form of (1) is as follows:

WðxÞ ¼
Z þ1

� 1

Y1ðoÞ
�Y1ðoÞdo ð5Þ

where �Y1ðoÞ is the complex conjugate of Y1(ω). If the sampling time is infinite, W (x) is con-

stant and cannot be applied to localization regardless of how the TOA is steered. We thus

define

Y2ðoÞ≜
X

m2Z

FmðoÞe
� iotmðxÞ ð6Þ

When �Y1ðoÞ is replaced by �Y2ðoÞ, Eq (5) can be rewritten as follows:

WðxÞ ¼
Z þ1

� 1

Y1ðoÞ
�Y2ðoÞdo

¼
X

m2Z

X

n2Z

Z þ1

� 1

FnðoÞ
�FmðoÞe

� ioðtnðxÞ� tmðxÞÞdo ð7Þ

Let τn,m(x) = tn(x)−tm(x), which is the TDOA of a signal emitted at position x to sensor n and

m. Then, (7) can be rewritten as follows:

WðxÞ ¼
X

m2Z

X

n2Z

Z þ1

� 1

FnðoÞ
�FmðoÞe

� iotn;mðxÞdo ð8Þ

Eq (8) is essentially a cross-SRP. It is well known that the cross-spectrum does not change the

frequency content of the signal. Therefore, the spatial resolution of the SRP cannot be

improved by (8). To improve the spatial resolution of SRP, a filter should be introduced to

broaden the signal spectrum so that the signal becomes a pulse signal. Phase transform [1] is

one such filter and is defined as follows:

Cn;m oð Þ≜
1

jFnðoÞ
�FmðoÞj

ð9Þ

The SRP-PHAT is produced by combining (8) with (9) as follows:

W xð Þ ¼
X

m2Z

X

n2Z

Z þ1

� 1

FnðoÞ
�FmðoÞ

jFnðoÞ
�FmðoÞj

e� iotn;mðxÞdo ð10Þ

The purpose of introducing a phase transform is to broaden the signal spectrum so that the

SRP-PHAT can obtain sharper cross-spectrum/cross-correlation peaks and thus improve the

spatial resolution of the SRP method. However, the noise is also amplified at the same time,

resulting in more local extrema in the SRP space, which makes it difficult to locate the source.
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The cross-spectral/cross-correlation peak of the sources far from the sensor array is attenuated

due to the limited sampling time. The farther away from the array, the more serious the attenu-

ation is, which makes it impossible to locate multiple sources effectively.

III Proposed method

In this section, we give the signal model of the sound source location from the point of view of

the signal and system. On this basis, the localization idea of the proposed algorithm is pro-

posed with the help of the reciprocity of wave propagation. Next, we introduced the basic prin-

ciples of the proposed algorithm. To avoid errors caused by numerical calculations, we

propose an implementation method for the proposed algorithm.

Signal model

In general, the source localization can be understood as a linear system model, where the input

is source signal s(t) and the output is signal f(t) collected by the sensor. Therefore, the signals

collected by the n-th sensor are given by

fnðtÞ ¼ sðtÞ � hnðtÞ þ WnðtÞ ð11Þ

where hn(t) is the nth channel impulse response and ϑn(t) is the uncorrelated additive back-

ground noise. Eq (11) indicates that source signal s(t) propagates through static medium (lin-

ear system) hn(t) to produce acquired signal fn(t) (system output). According to the reciprocity

theorem, the acquired signal fn(t), which is the excitation source, propagates to the actual

source position in the same propagation mode as the real source to the sensor since the propa-

gation medium is static. If the acquired signals are used as the acoustic source, the in-phase

stack occurs at the acoustic source position to form the energy focus. Thus, localization can be

achieved by searching for the peak energy.

The concept of the SSA is illustrated in Fig 1. When the searched candidate position is the

actual source position, the samples of three different collected signals at times ta, tb and tc can

Fig 1. Illustration of the localization concept.

https://doi.org/10.1371/journal.pone.0241129.g001
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simultaneously reach source position S, and thus, the output energy is the largest. If the

searched candidate position is not the source position, the samples at times ta, tb and tc are dis-

tributed at different positions, and the output energy is relatively small. This process can be

seen as transforming the time domain signal into the spatial domain by varying the samples,

which is called steered sampling.

Steered sampling algorithm (SSA)

The well-known time domain sampling process can be described as follows:

f ðtsÞ ¼
Z þ1

� 1

f ðtÞdðt � tsÞdt ð12Þ

where ts is the sampling time and f(ts) is the sampled signal of f(t). Usually, the sampling time

of the time domain sampling is equally spaced, that is, ts = kT, (k = 1,2,. . .,K), where K is the

number of samples and T is the sampling interval. To correlate the time domain sampling

with spatial location, let ts = ts(x); then, formula (12) becomes

gðxÞ ¼ f ðtsðxÞÞ ¼
Z þ1

� 1

f ðtÞdðt � tsðxÞÞdt ð13Þ

The sampling time ts is changed and is controlled by the spatial position. Therefore, (13) is

called steered sampling. We sum the steered samples of all collected signals to form a spatial

energy map, as follows:

PðxÞ ¼
X

n2Z

gnðxÞ ¼
X

n2Z

Z þ1

� 1

fnðtÞdðt � tnðxÞÞdt ð14Þ

where tn(x) and gn(x) are steered sampling times and steered samples, respectively. The posi-

tion corresponding to the maximum of P(x) is derived from the acoustic source as follows:

~x ¼ arg max
x2R3

PðxÞ ð15Þ

where ~x is the estimated source position and the symbol R denotes the set of real numbers.

Compared with (14) and (3), the objective function of the SSA is the superposition of the

steered samples, and the objective function of SRP is the superposition of the signals in the

rectangular window. The window size is time-varying and determined by tn(x). Therefore, the

SSA is different from SRP (delay-and-sum beamforming).

A key step in this process is determining tn(x) for the source location using the steered sam-

ples. One of the simplest and most effective ways is to define tn(x) as follows:

tn xð Þ ¼
jx � xnj

v
ð16Þ

where xn = [xn,yn,zn]T is the nth sensor position, |x−xn| is the distance from the source to the

nth sensor, and v is the velocity.

At a certain sampling time t1, we can easily see that sample fn(t1) of the acquired signal is

distributed on the spatial circumference with the nth sensor position as the center and t1v as

the radius. The samples of the entire acquired signal are distributed on a concentric circle with

the nth sensor position as the center and tv as the radius, as shown in Fig 2. Adding the spatial

response of all acquired signals together results in a spatial energy map and maximum energy

in the real source position. Additionally, the spatial response of the acquired noise also has the

same characteristics as the acquired signal, which is also distributed on the concentric circle
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with a random radius. Therefore, the noise distribution is more dispersed and can be better

suppressed when stacking all spatial responses. When the frequency of the collected signals is

low, the spatial resolution of the steered sample is reduced, as inferred in Fig 2. The spatial res-

olution can be improved by whitening the collected signal.

Substitute (16) into (14) to obtain

P xð Þ ¼
X

n2Z

Z þ1

� 1

fnðtÞd t �
jx � xnj

v

� �

dt ð17Þ

In the case of a special geometric relationship between the acoustic source and sensor array

(see Fig 3), (17) can be expressed as

P xð Þ ¼
Z þ1

� 1

Z þ1

� 1

f ðt; xÞd t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

v

� �

dtdx ð18Þ

where f(t,x) is the signal collected by the sensor at position x. Simplify (18) to obtain:

P t; vð Þ ¼

Z þ1

� 1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ
x2

v2

r

; x

 !

dx ð19Þ

where t ¼ z=v. This is the hyperbolic Radon transform formula [29]. The only difference is

that v is variable in the hyperbolic Radon transform, and it is a known constant in SSA. The

SSA is similar to the high-dimensional Radon transform for the general geometric relationship

between the acoustic source and sensor array. Therefore, the localization idea of the SSA is

Fig 2. Spatial response of the steered sample. (a) is the acquired signal and (b) is its spatial response.

https://doi.org/10.1371/journal.pone.0241129.g002

PLOS ONE Steered sample algorithm for acoustic source localization

PLOS ONE | https://doi.org/10.1371/journal.pone.0241129 October 26, 2020 7 / 23

https://doi.org/10.1371/journal.pone.0241129.g002
https://doi.org/10.1371/journal.pone.0241129


similar to that of reconstruction. This is the most essential difference between the SSA and the

SRP/SRP-PHAT.

Implementation of the SSA

Eq (17) can be discretized as follows:

P xð Þ ¼
X

n2Z

X

m2Z

fnðtmÞd tm �
jx � xnj

v

� �

ð20Þ

where tm is the discrete sampling time. Spatial gridding is necessary for the numerical calcula-

tion of (20). Assuming that the size of the designated space grid is nx×my×lz, (20) can be

expressed as follows

PðkDxÞ ¼
X

n2Z

X

m2Z

fnðtmÞdðtm � tnðkDxÞÞ ð21Þ

where k = (nx,my,lz), and Δx = (Δx,Δy,Δz) is the step size of the grid. Steered sampling time

tn(kΔx) does not always exactly coincide with the time sampled by the sensor. Therefore, inter-

polation is necessary for computing the steered sample in numerical terms. In this paper,

neighborhood interpolation and linear interpolation are analyzed. The steered samples

obtained by different interpolation methods are shown in Fig 4A and 4B, which shows that the

energy map of linear interpolation is smoother and more continuous than neighborhood

interpolation. As a result, the location accuracy is higher, which indicates that linear interpola-

tion can meet the requirements.

Formula (18) only accounts for the current time tm sample and neglects the relationship

among the current time tm, previous time tm−1 and latter time tm+1 samples. Under noisy condi-

tions, this reduces the location accuracy. This problem can be solved by weighting. The purpose

of weighting is to achieve better energy focus by not only considering the current moment sam-

ple but also the samples of the previous and later moments. A rectangular window is a natural

choice, but a rectangular window can make the energy map smooth, causing an energy focus

blur and reducing the location accuracy. The ideal weighting function places the largest weight

value at the current moment and decreases the weight values at the previous and later moments.

The Gaussian function is such a weighted function and satisfies these requirements.

Gaussian functions are widely used in mathematics, engineering and other fields [30]. A

Gaussian function is formed as follows:

g xð Þ ¼ ae�
ðx� bÞ2

2s2 ð22Þ

Fig 3. Special geometric relationship between the acoustic source and sensor array.

https://doi.org/10.1371/journal.pone.0241129.g003
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where a,b,σ are arbitrary real constants. Parameter a is the height of the Gaussian function

peak, b is the center of the peak and σ controls the width of the Gaussian function. When

parameter a equals 1 and σ tends to 0, the Gaussian function tends to the δ-function, as follows

lim
s!0

e�
ðx� bÞ2

2s2 ¼ d x � bð Þ ð23Þ

Fig 4. Location energy map using the (a) nearest interpolation, (b) linear interpolation and (c~i) Gaussian function with

different widths σ.

https://doi.org/10.1371/journal.pone.0241129.g004
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According to (20), formula (18) can be rewritten as follows

P kð Þ ¼ lim
s!0

X

n2Z

Z þ1

� 1

fnðtÞe
�
ðt� tnðkDxÞÞ2

2s2 dt ð24Þ

When σ tends to zero, (21) can exactly match (18). The integral term can be seen as a convolu-

tion of fn(t) and the Gaussian function in (16). Thus, it has a low-pass filtering function that

suppresses high-frequency random noise.

The introduction of the Gaussian function avoids interpolation in the steered sample process.

The location energy map of the noisy modeling data under the different width parameter σ condi-

tion is shown in Fig 4C–4I. It shows that when width σ is smal (σ = 0.0001), the energy is scattered,

and it is difficult to determine the maximum, resulting in inaccurate localization. With an increase

in width σ, the energy is gradually concentrated, and the energy is the most concentrated when σ
= 0.00025. The noise interference decreases, and the energy map is smoother as width σ increases

further. The difference in the energy is not obvious around the energy peak. It is difficult to accu-

rately determine the position of the energy peak, which leads to reduced localization accuracy.

When width σ = 0.003, the energy map is almost the same as that of linear interpolation.

IV Numerical experiments

Because of the nonrepeatability and nonverifiability of real events in some cases (such as an

opaque medium or complex environment), it is difficult to measure the error between the cal-

culated and real source positions. Thus, synthetic data are employed to verify the performance

of the SSA. The synthetic tests, with controllable errors in the input data, are flexible when

comparing the performance of localization methods under different conditions. Meanwhile, a

2D situation is analyzed to conveniently represent the positioning results and the correlation

analysis, that is, the sensors and the source are located on the same plane. Without loss of gen-

erality, the sensors are randomly laid in a 3×3 m range plain. The sensors and source locations

are shown in Fig 5. The localization performance of single-source and multisource scenarios

are analyzed. For the single source scenarios, in which the acoustic sources are located inside

Fig 5. The layout of the sensors and source. “�” represents the sensors, “ ” represents the acoustic source.

https://doi.org/10.1371/journal.pone.0241129.g005
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and outside the sensor range are discussed. The source localization results are compared with

those of the SRP-PHAT [17] for full space scanning.

Synthetic data

The synthetic data are obtained through the signal model established by (11). In the signal

model, the signal generated by the acoustic source is a broadband signal, as follows:

sðtÞ ¼ ½1 � 2a2t2�e� a2t2 ð25Þ

where a = πf0 and f0 is the dominant frequency. The f0 = 200 Hz when generating synthetic

data. The impulse response function is as follows:

hn tð Þ ¼ d t �
jx � xnj

v

� �

ð26Þ

where v = 340 m/s. Therefore, the synthetic data for the single source are as follows:

fn tð Þ ¼ s tð Þ � hn tð Þ ¼ 1 � 2a2t2½ �e� a2t2 � d t �
jx � xnj

v

� �

ð27Þ

The synthetic data of multiple sources are as follows:

fn tð Þ ¼ 1 � 2a2t2½ �e� a2t2 �
XN

i¼1

d t �
jxi � xnj

v

� �

ð28Þ

where N is the number of acoustic sources and xi is the position of the i-th acoustic source.

Single source experiment

Five sensors are randomly laid in a range of 3×3 m. The source is located within the sensor

range, and its coordinates are (1.5 m, 1.1 m). White Gaussian noise is added to the synthetic

data to make the signal-to-noise ratio (SNR) equal to -5 dB.

Two cases are analyzed in this subsection. In the first case, the acoustic source is inside the

range of the sensor distribution, which is used to locate the narrow azimuth signals. In the second

case, the acoustic source is outside the range of sensor distribution, which is used to locate the

wide azimuth signals. The sensors can receive a full azimuth signal from the acoustic source in the

first case. Only limited azimuth signals can be received in the second case. The purpose of study-

ing these cases is to analyze the robustness of the SSA and SRP-PHAT to limited azimuth signals.

For the first case, the energy maps of the SSA and the SRP-PHAT are shown in Fig 6A–6D.

Fig 6A and 6C and Fig 6B and 6D are the 2D and 3D energy maps for the SSA and the

SRP-PHAT, respectively. The positioning result is (1.5 m, 1.1 m) for the SSA and (1.5 m, 1.08

m) for the SRP-PHAT. The positioning result of the SSA is exactly the same as the given source

coordinate. The positioning result of the SRP-PHAT has only a small error in the y-coordinate,

and the overall error is very small. Fig 6C and 6D shows that the energy map of the SSA is rela-

tively smooth and the local extremum is less than that of the SRP-PHAT. Although the energy

peak of the SRP-PHAT is sharper than that of the SSA and the energy is more concentrated,

the apparent sharp peak is not the true source position. In general, the positioning results of

the two methods both have high accuracy. Therefore, the SSA and SRP-PHAT have similar

positioning performances for wide azimuth array signals, but the signal-to-noise ratio of the

spatial spectrum of the SSA is higher.

For the second case, the coordinates of the source are (3.5 m, 2.2 m). The other simulation

parameters are the same as in the previous experiment. The energy maps of the SSA and the
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SRP-PHAT are shown in Fig 7A and 7B, respectively. The localization result of the SSA is

(3.52 m, 2.18 m) and that of the SRP-PHAT is (4.2 m, 2.4 m). The localization results of the

two methods are marked in Fig 7 with a red triangle. The localization results show that the

localization accuracy of the SSA is much higher than that of the SRP-PHAT. Combined with

the analysis in Fig 6, the SSA is more suitable for narrow azimuth array signals than the

SRP-PHAT. To improve the positioning results of the SRP-PHAT for narrow azimuth array

signals, it is necessary to increase the number of sensors. Fig 7C and 7D shows the energy map

of the SSA and the SRP-PHAT when the number of sensors is increased from 5 to 15. The cor-

responding localization result is (3.51 m, 2.18 m) for the SSA and (3.56 m, 2.24 m) for the

SRP-PHAT. It can be seen from Fig 7C and 7D that the energy aggregation of the SRP-PHAT

is enhanced significantly with the increase in the number of sensors, and the location result is

improved significantly (see Table 1). The energy aggregation of the SSA has been improved,

but not as obviously as that of the SRP-PHAT, and the localization result is almost unchanged

(see Table 1). The SSA is not sensitive to the number of sensors, while the SRP-PHAT is sensi-

tive to the number of sensors. This result shows that the SSA is more suitable for narrow azi-

muth array signals than the SRP-PHAT.

Fig 6. The energy map of the source inside the sensor distribution range. (a) the SSA, (b) the SRP-PHAT, and (c) and (d)

are the 3D displays of (a) and (b), respectively.

https://doi.org/10.1371/journal.pone.0241129.g006
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Compared with the SRP-PHAT, the SSA can achieve high-precision positioning under the

limited azimuth information and fewer sensors. However, the positioning performance of the

two methods is similar when it comes to wide azimuth array signal.

Multisource experiment

For the multisource case, the sensor layout method and other parameters are the same as those

of the single source, except for the number of sources. There are three sources in space, two of

which are distributed within the sensor range and the other outside the sensor range. The

coordinates are (1.5 m, 2.2 m), (2.5 m, 1.2 m) and (3.3 m, 1.8 m). In the case of the three

Fig 7. The location energy map for the source located outside the sensor distribution area: (a) and (b) are the energy maps of the SSA and the

SRP-PHAT for 5 sensors, respectively; (c) and (d) are the energy maps of the SSA and the SRP-PHAT for 15 sensors, respectively.

https://doi.org/10.1371/journal.pone.0241129.g007

Table 1. The localization result of the SSA and the SRP-PHAT for two cases.

Inside Outside

5 sensors 15 sensors

x(m) y(m) x(m) y(m) x(m) y(m)

Preset coordinate 1.5 1.1 3.5 2.2 3.5 2.2

SRP-PHAT 1.5 1.08 4.2 2.4 3.56 2.24

SSA 1.5 1.1 3.52 2.18 3.51 2.18

https://doi.org/10.1371/journal.pone.0241129.t001
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sources, the localization energy maps of the SSA and the SRP-PHAT using 15 sensors are

shown in Fig 8A and 8B. As shown in Fig 8A, the positioning energy of the SRP-PHAT is

more dispersed and has many extrema. Therefore, it is difficult for SRP-PHAT to locate the

source. However, the energy concenration of the SSA is better, and the energy accumulation

region is essentially coincident with the position of the source in Fig 8B. Fig 8C is the normal-

ized average energy in the y-direction, from which it can be seen that the positioning energy of

the SSA is almost the same for the three sources. The positioning energy of the SRP-PHAT is

weakened for the source (3.3 m, 1.8 m) away from the sensors. Moreover, this energy is close

to the surrounding energy, which may lead to the localization effect of this source (3.3 m, 1.8

m). The positioning errors of the three sources are 0.01, 0.0183, and 0.01 m for the SSA and

0.05, 0.01, and 0.0539 m for the SRP-PHAR, respectively. Therefore, in the multisource case,

the SSA is superior to the SRP-PHAT.

Error analysis

Error analysis is performed through Monte Carlo simulations. The location errors under dif-

ferent SNRs and different sensor numbers are discussed. The location error is defined as the

distance from the actual source to the estimated source.

Fig 8. The energy maps for 3 sources: (a) the SSA, (b) the SRP-PHAT and (c) the y-direction normalized average energy.

https://doi.org/10.1371/journal.pone.0241129.g008
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Under the different SNRs and the same number of sensor (5 sensors) conditions, the locali-

zation errors of the SSA and the SRP-PHAT are shown in Fig 9A and 9B for the two cases

where the source is inside and outside the sensor distribution range. Fig 9A and 9B indicates

that the localization errors of the SSA are small both inside and outside the sensor distribution

range, and the error changes slowly when the SNR changes from -15 dB to 15 dB. However,

the localization error of the SRP-PHAT varies greatly when the SNR changes from -15 dB to

15 dB. In comparison, when the source is located outside the sensor distribution range, the

localization error changes more dramatically with the change in SNR. Under the same condi-

tions, the localization error of the SRP-PHAT for the source inside the sensor distribution

range is less than the source outside the sensor distribution range. When the SNR is less than

-10 dB, the location error of the SRP-PHAT is large, while the location error of the SSA is obvi-

ously smaller than that of the SRP-PHAT, whether the source is located inside or outside the

sensor distribution range. It is shown that the SSA can be applied to high-precision positioning

with lower SNRs compared to the SRP-PHAT.

Under different numbers of sensors and the same SNR conditions, the localization errors of

the SSA and the SRP-PHAT are shown in Fig 10A and 10B in the two cases where the source is

inside and outside the sensor distribution range. When the source is located inside the sensor

distribution range, the localization error changes as the number of sensors increases from 3 to

48, as shown in Fig 10A. It shows that the localization error of the SSA and the SRP-PHAT is

small and not more than 10 cm. The difference is that the SRP-PHAT has a large localization

error when there are few sensors, and the localization error gradually decreases as the number

of sensors increases; however, the localization error of the SSA remains very small with an

increase in the number of sensors. When the acoustic source is outside the sensor distribution

range, the increase in the number of sensors greatly improves the localization error of the

SRP-PHAT, but the error variation of the SSA is still very small, as shown in Fig 10B. The

error analysis shows that the SSA can achieve highly precise localization in the presence of a

few sensors, whether or not the source is inside the sensor distribution range or not.

A defined error is noted when the distance from the estimated source to the actual source is

an absolute amount. It does not take into account the relativity between the defined error and

Fig 9. Location error under different SNRs: (a) the source position is inside the sensor range and (b) the source position is outside the sensor range.

https://doi.org/10.1371/journal.pone.0241129.g009
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the distance from the actual source to the reference point, which causes the localization error

to appear to be small, even if the localization accuracy is not high. For example, assuming that

the localization error is 0.01 m and the distance from the actual source to the reference point is

0.05 m, the localization error is small under this assumption, but the actual localization accu-

racy is not high. Therefore, we introduce the error rate as defined below:

Er ¼
jx � ~xj
jxj

� 100% ð29Þ

The average error and the error rate with different signal-to-noise ratios of the experimental

results for different SNRs and different numbers of sensors are shown in Table 2. The average

error and the error rate of the SSA are obviously smaller than those of the SRP-PHAT, regard-

less of the change in the SNR or the number of sensors. This indicates that the SSA is not sensi-

tive to white noise and provides strong robustness. Furthermore, the SSA can achieve high-

precision location with fewer sensors.

V Location performance in reverberation and real environments

In the previous section, the positioning performance of the SSA for the simulation data con-

structed by the time-distance relationship is analyzed and did not consider the reverberation

Table 2. Average error and error rate.

SNR variation Sensor quantity variation

AveEr (m) Er (%) AveEr (m) Er (%)

Inside SSA 0.009 0.48 0.001 0.054

SRP-PHAT 0.258 13.87 0.013 0.7

Outside SSA 0.010 0.24 0.005 0.12

SRP-PHAT 0.489 11.98 0.119 2.92

AveEr represents the average error. Er represents the error rate.

https://doi.org/10.1371/journal.pone.0241129.t002

Fig 10. Location error under different numbers of sensors, (a) the source position is inside the sensor distribution range and (b) the source position is

outside the sensor distribution range.

https://doi.org/10.1371/journal.pone.0241129.g010
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effect. However, reverberation is one of the main factors affecting positioning in many cases.

In this section, the positioning performance of two acoustic sources in a reverberant environ-

ment is analyzed. Finally, the effectiveness of the SSA is verified by an actual speech signal.

The image source technique [31] is a common method for evaluating the performance of

acoustic source localization in reverberant environments. The mirror source technique is

employed to simulate the room impulse response. The room dimension is R = [3.2 m, 4 m, 2.7

m]T, and the reflection coefficients for each surface are 0.73, 0.55, 0.78, 0.73, 0.48, and 0.62.

The reverberation time is RT60 = 0.6 s, and the sampling frequency is 16 kHz.

Performance in reverberation environments

The 2D positioning in a reverberant environment is first analyzed; that is, both the acoustic

source and receiver are in the same plane of z = 1 m. The receivers are arranged in a 5-element

cross array, and the coordinates of the acoustic sources are ps1 = [2.3 m, 2.2 m, 1 m]T and ps2 =

[1 m, 1.25 m, 1 m]T. The acoustic source signals are a wideband signal and a narrowband sinu-

soidal signal, respectively, as shown in Eq (25). The spatial scanning resolution of the SSA and

SRP-PHAT is 0.01 m in all directions of X, Y and Z. By adding white Gaussian noise to the

composite signal, noisy signals with signal-to-noise ratios (SNRs) of -2 dB and -5 dB can be

obtained. Then, the noise-free data and noisy data with SNRs of -2 dB and -5 dB are used for

positioning with the SSA and SRP-PHAT. The energy maps are shown in Fig 11. The position-

ing results (source coordinates) are listed in Table 3, and the unit used is meters. The position-

ing results verify the conclusion of the above analysis. The average error (AveEr) illustrates

that the SSA is suitable for both wideband and narrowband signals, and the SRP-PHAT is

more suitable for wideband signals.

From the analysis of Fig 11 and Table 3, the following knowledge can be concluded. 1).

Under the reverberation condition, the SRP-PHAT has a better positioning performance for

wideband acoustic sources than for narrowband acoustic sources, and the energy concentra-

tion at the acoustic source position is high under high SNR conditions, as shown in Fig 11(d1).

2). The SRP-PHAT has poor positioning performance of multiple narrowband acoustic

sources because of the existence of many local extreme values, as shown in Fig 11(b1). 3).

Under the reverberation condition, the SRP-PHAT does not perform well in the positioning

of low SNR data, where it almost loses the ability of acoustic source positioning at the location

of (1 m, 1.25 m), as shown in Fig 11(b2), 11(d2), 11(b3) and 11(d3). This might be due to the

weak energy and the large distance between the acoustic source and sensor array. Moreover,

the existence of many local extreme values in the SRP space causes serious interference with

acoustic source energy and the loss of positioning ability. 4). Under the reverberation condi-

tion, the SSA has better positioning performance for both wideband acoustic sources and nar-

rowband acoustic sources. Relatively speaking, the SSA performs better for wideband acoustic

sources, and it can achieve good positioning for two acoustic sources, as shown in Fig 11(a1)

and 11(c1). 5). Under the reverberation condition, the anti-noise ability of the SSA is better,

and it achieves a good positioning result when the SNR is -5 dB, as shown in Fig 11(a3) and 11

(c3). 6). Local extreme values similar to those in the SRP-PHAT also exist in the SSA, but the

low number and weak energy of these local extreme values lead to a smaller influence on posi-

tioning, as shown in Fig 11(a1)~11(a3). 7). The energy aggregation at the acoustic source of

the SSA is not as good as that of the SRP-PHAT, which can be improved by whitening the col-

lected data.

Similar to 2D positioning, the same room size, reflection coefficient, reverberation time,

sampling frequency and spatial scanning resolution are used to simulate the room impulse

response. The acoustic source is a wideband source, and Gaussian white noise is added to the
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composite signal to obtain noisy data with an SNR of 2 dB. The receivers are arranged at the

eight corners and 50 cm from the corner. The four receivers on the floor are arranged 1 m

from the floor, and the four receivers on the roof are arranged 0.3 cm from the roof. The

positions of the two acoustic sources are ps1 = [2.0 m, 1.0 m, 1.7 m]T and ps2 = [1.5 m, 2.5 m,

Fig 11. 2D positioning results of the SSA and SRP-PHAT under reverberation conditions. a1~d1 are the localization results of noise-free data, a2~d2 are the

localization results of noisy data with a SNR of -2 dB, and a3~d3 are for a SNR of -5 dB. a1~a3 are the localization results of the SSA for the narrowband acoustic

source, and b1~b3 are for the SRP-PHAT; c1~c3 are the location results of the SSA for the wideband acoustic source, and d1~d3 are for the SRP-PHAT.

https://doi.org/10.1371/journal.pone.0241129.g011

Table 3. Location 2D results of the two sound sources in reverberation.

Source type algorithm Dataset AveEr

Noise free -2 dB -5 dB

narrowband SSA 1.0, 1.25 1.0, 1.24 0.99, 1.25 0.007

2.3, 2.2 2.3, 2.2 2.32, 2.19 0.02

SRP-PHAT 2.45, 2.41 2.28, 2.35 2.22, 2.18 1.59

2.3, 2.19 2.31, 2.21 2.29, 2.25 0.03

wideband SSA 1.0, 1.25 1.02, 1.24 1.01, 1.25 0.01

2.3, 2.2 2.29, 2.2 2.3, 2.16 0.02

SRP-PHAT 1.0, 1.25 1.01, 1.25 1.69, 1.72 0.28

2.3, 2.2 2.34, 2.24 2.35, 2.17 0.04

https://doi.org/10.1371/journal.pone.0241129.t003
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1.9 m]T. The spatial energy diagrams of the SSA and SRP-PHAT are shown in Fig 12, which

shows that the energy aggregation of the SSA is relatively better than that of SRP-PHAT. The

SSA only has a large energy distribution at the acoustic source position and has weaker energy

at other positions. However, the SRP-PHAT has not only a large energy at the acoustic source

position but also a close energy distribution at other positions, which results in difficulties in

positioning. Fig 12 shows only the energy distribution of the ps2 source, which is similar to the

energy distribution of ps1. However, the two methods are relatively more concentrated on the

energy distribution of the ps1 location. The final 3D positioning results of the two methods are

shown in Table 4, which shows that the positioning performance of the SSA at a high SNR is

equivalent to that of the SRP-PHAT under the reverberation environment.

Fig 12. The spatial energy maps are presented using the SSA and SRP-PHAT. (a) the SSA and (b) the SRP-PHAT. It only

shows the energy map of one of the two acoustic sources.

https://doi.org/10.1371/journal.pone.0241129.g012

Table 4. 3D positioning results of the SSA and SRP-PHAT under the reverberation environment.

Proposed method SRP-PHAT

ps1 (2.0, 1.0, 1.7) (2.02, 1.0, 1.7) (2.0, 1.02, 1.72)

ps2 (1.5, 2.5, 1.9) (1.50, 2.52, 1.90) (1.50, 2.46, 1.90)

https://doi.org/10.1371/journal.pone.0241129.t004
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The above analysis demonstrates that the SSA can achieve high-precision positioning not

only for a single source but also for multiple sources under the reverberation environment.

Compared with the SRP-PHAT, especially for low SNR data, the SSA has more advantages

and can obtain more accurate positioning results.

Performance in real environments

We used a regular office room of size 7.8 m × 6.2 m × 3.7 m with approximately T60 = 400 ms

for 2D localization. Its ambient noise was low with an SNR of approximately 25 dB. Fig 13

shows the room layout with the experimental setup. The one-second speech was played back

through the loudspeaker at each source point. The sampling frequency was 48 kHz.

Five different positioning configurations of the sources were tested. All microphone pairs

were used for localization in the SRP-PHAT. The search grid step was 1 cm for the SSA and

SRP-PHAT. The estimated positions of the five sources by the SSA and SRP-PHAT are shown

in Fig 14. It shows that the positioning accuracy of the SSA is almost the same as that of the

SRP-PHAT for a speech signal with a high SNR. The localization errors of the SSA for the five

sources are 0.01, 0.01, 0, 0, and 0. The localization errors of the SRP-PHAT for the five sources

are 0.01, 0.02, 0.01, 0, and 0.01. The location accuracy of the SSA is slightly better than that of

the SRP-PHAT.

VI Conclusion

SRP-PHAT is one of the most effective and robust methods for source localization. However,

the SRP-PHAT generates many local extrema in the SRP space. For the multi-source case, the

SRP-PHAT cannot effectively locate an acoustic source that is far from the array. For high pre-

cision source localization, we propose a new algorithm based on the reciprocity theorem. The

basic concept is to regard the sensor as a virtual source, which is equivalent to the back propa-

gation of the wavefield to the spatial domain, and use it to form the energy map. The position

of the energy peak corresponds to the source position. From a signal processing point of view,

this approach can be understood as steered sampling. To improve the accuracy and stability of

Fig 13. Room layout and experimental setup.

https://doi.org/10.1371/journal.pone.0241129.g013
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the SSA, the Gaussian function is introduced to weighted sampling. Moreover, the Gaussian func-

tion has an interpolation function to avoid interpolation calculations. Spatial energy maps with

different SNRs can be obtained by adjusting the width parameters of the Gaussian function.

The SSA does not need to calculate the cross-correlation between microphone pairs and the

number of adjustable sampling accumulations is less than that of the cross-correlation accu-

mulations in the SRP-PHAT. Therefore, the computational complexity of the SSA is slightly

lower than that of SRP-PHAT. However, these are not the primary factors that affect the

computational complexity. The primary factor is the spatial grid search. In this respect, the

computational complexity of the SSA is equivalent to that of the SRP-PHAT. Therefore, the

SSA also has computational efficiency problems, similar to the SRP-PHAT. The same

approaches used in the SRP-PHAT can be employed to reduce the computation cost, such as

stochastic region contraction, coarse-to-fine region contraction and stochastic particle filter-

ing. Because the SSA has only a few local extrema, the convergence rate of its optimization is

faster than that of the SRP-PHAT. In the other aspects, when the SSA locates low-frequency

signals, its spatial resolution is not as high as that of the SRP-PHAT. This is because the

SRP-PHAT uses the PHAT transform. Ideally, a phase transform can sharpen GCC into the δ
function. In that way, the peak of GCC is greatly sharpened. Therefore, the SRP-PHAT has a

higher spatial resolution for low-frequency signal localization. Notably, the sharpening of the

GCC peak also sharpens the noise and reduces the signal-to-noise ratio of the spatial energy

map.

Similar to the SRP-PHAT, the SSA is also a one-step localization method that takes full

advantage of all the information of the acquired signal. Compared with the SRP-PHAT, the

SSA can achieve high-precision localization with a lower SNR. And the SSA is more suitable

for narrow azimuth array signal localization than the SRP-PHAT. Furthermore, the SSA is

more suitable than the SRP-PHAT for high-precision localization with fewer sensors.
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