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A B S T R A C T   

Objectives: The aims of this study were to screen for phagocytosis regulator-related genes in tissue 
samples from children with medulloblastoma (MB) and to construct a prognostic model based on 
those genes. 
Methods: Differentially expressed genes between the MB and control groups were identified using 
the GSE50161 dataset from the Gene Expression Omnibus database. Prognosis-related phagocy-
tosis regulator genes were selected from the GSE85217 dataset. Intersecting genes of the two 
datasets (differentially expressed prognosis-related phagocytosis regulator genes) were submitted 
to unsupervised cluster analysis to identify disease subtypes, after which the association between 
the subtypes and the immune microenvironment was analyzed. A prognostic risk score model was 
constructed, and functional, immune-related, and drug sensitivity analyses were performed. 
Results: In total, 23 differentially expressed prognosis-related phagocytosis regulator genes were 
identified, from which two disease subtypes (clusters 1 and 2) were classified. The prognoses of 
the patients in cluster 2 were significantly worse than those of the patients in cluster 1. The 
immune microenvironment differed significantly between the two subtypes. Finally, 10 genes 
(FAM81A, EZR, NDUFB9, RCOR1, FOXO4, NHLRC2, KIF23, PTPN6, SMAGP, and MED13) were 
selected to establish the prognostic risk score model. The prognosis in the low-risk group was 
better than that in the high-risk group. The model genes NDUFB9 and PTPN6 were positively 
correlated with M2 macrophages. 
Conclusion: Ten key phagocytosis regulator genes were screened to construct a prognostic model 
for MB. These genes may serve as key biomarkers for predicting the prognosis of patients with this 
type of brain cancer.   

1. Introduction 

Medulloblastoma (MB) is the most common type of malignant brain tumor in children, with an annual incidence of approximately 
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five cases per 1 million individuals. The median diagnostic age of the patients is six years [1]. MBs are heterogeneous tumors that 
include four major subtypes: wingless/integrated (WNT), sonic hedgehog (SHH), Group 3 (G3), and Group 4 (G4) [2]. According to 
2015 statistical data, the 10-year survival rate for MB has increased to 65 %, likely as a result of advances in treatment [3]. However, 
approximately 40 % of the patients develop metastatic and recurrent disease, which is the leading cause of death. Patients who survive 
suffer serious long-term side effects, such as neurocognitive deficits as well as auditory, visual, and other neurosensory disorders [4]. 
Thus, understanding the molecular mechanisms involved in the pathogenesis of MB and exploring possible biomarkers may help 
toward the development of more effective treatments for the disease. 

The cancer niche depends on the inflammatory cells [45], with macrophages playing an important role in tumor inflammation. 
Tumor-associated macrophages support the growth of malignant cells through protective immunity, promoting tumor stem cell 
growth, and paving the route for metastasis [5,46]. Meningeal macrophages have been shown to suppress the initiation of mouse MB 
by inhibiting chemokine signaling in pre-tumor cells [6]. Macrophage-centered therapies include techniques that trigger the phago-
cytosis or extracellular death of tumor cells [7–9]. As a key macrophage function, phagocytosis enhances the oxidative metabolic 
profile and fosters an immunosuppressive phenotype in tumor-associated macrophages [10]. The phagocytic function of 
tumor-associated macrophages is a crucial determinant of tumor progression [11]. Reportedly, targeting macrophage phagocytosis is 
an effective antitumor strategy [12,13]. Gholamin et al. [14] also reported that the use of anti-CD47 antibodies to suppress the CD47 
signaling pathway and allow for macrophage phagocytosis is effective against various adult cancers. However, reports on the role of 
macrophage-mediated phagocytosis in MB in children are limited. Furthermore, the regulatory mechanisms by which macrophage 
phagocytosis influences the progression and prognosis of MB remain largely unknown. 

In this study, we screened phagocytosis regulator-related genes in tissue samples from children with MB and constructed a 
prognostic model on the basis of those genes. To this end, we downloaded MB-related datasets from the Gene Expression Omnibus 
(GEO) database and searched for phagocytosis regulator-related genes reported in the literature. On the basis of the identified 
phagocytosis regulator-related genes, a prognostic risk score (RS) model was constructed, following which functional and immune- 
related analyses were performed. The aims of this study were to screen phagocytosis regulator-related genes in children with MB 
and to construct a prognostic model based on those genes in order to reveal the key molecular mechanisms of macrophage phago-
cytosis in MB progression and provide promising biomarkers for predicting the disease prognosis. 

2. Methods 

2.1. Acquisition and preprocessing of gene expression data 

Two datasets (GSE85217 and GSE50161) were downloaded from the GEO database. From GSE85217, MB samples from patients 
younger than 18 years of age were selected, whereupon 545 samples were retained as the training dataset. The GPL22286 [Hugene- 
1101-st] Affymetrix Human Gene 1.1 ST Array [HuGene11stv1_Hs_ENSG version 19.0.0] platform was used for the analysis. 
GSE50161, which provides data on 22 children with MB and 13 healthy (control) individuals, was used to identify differentially 
expressed genes (DEGs), with the GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 platform used for this analysis. 

2.2. Acquisition of phagocytosis regulator-related genes 

In total, 266 phagocytosis regulator-related genes were obtained from the literature search [15]. 

2.3. Screening of phagocytosis regulator genes related to prognosis 

The 530 MB samples selected from GSE85217 had an overall survival (OS) of more than 0. Univariate Cox regression analysis of the 
phagocytosis regulator genes was carried out using survival 2.41 [16], and the results were combined with the clinical survival and 
prognosis information of the 530 MB samples to select phagocytosis regulator genes that were significantly related to OS prognosis. 
Statistical significance was set at a P-value of less than 0.05. 

2.4. Differentially expressed gene selection 

The DEGs between the MB and control groups in GSE50161 were analyzed using linear regression and the empirical Bayes method 
provided in Limma 3.10.3. Corresponding P-values and log fold changes (FC) in gene expression levels were obtained. Additionally, the 
Benjamini–Hochberg method was applied for multiple testing correction, and the adjusted P-value was obtained. The thresholds of 
DEGs were set as an adjusted P-value of less than 0.05 and a |log2 FC| value greater than 0.585. 

2.5. Protein–protein interaction network construction 

The DEGs and prognosis-related phagocytosis regulator genes were compared, and the intersecting genes were considered as 
differentially expressed prognosis-related phagocytosis regulator genes. The interactions among these genes were analyzed using 
STRING version 11.5 [17]. The protein–protein interaction (PPI) score was set at 0.15. 
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2.6. Identification of disease subtypes 

On the basis of the expression levels of the differentially expressed prognosis-related phagocytosis regulator genes in the tumor 
samples, Pearson’s correlation coefficient-based hierarchical cluster analysis was performed on the patients in GSE85217 using 
ConsensusClusterPlus version 1.58.0 [18]. Then, survival prognostic correlations between the different disease subtypes were assayed 
using the Kaplan–Meier curve method in the survival package. Subsequently, the clinical information of the samples belonging to the 
different subtypes was compared. 

2.7. Association of the disease subtype with the immune microenvironment 

On the basis of the expression matrix of all genes, the relative infiltration abundance of the 22 types of immune cells in each sample 
was estimated using CIBERSORT software [19]. Differences in the proportions of immune cell types among the different subtypes were 
then compared. Additionally, the ESTIMATE algorithm [20] was used to estimate the stromal and immune scores of the tumor samples 
on the basis of the expression data. The two scores were added to produce a score that could be used to estimate the tumor purity. 
Differences in immune, stromal, and microenvironmental scores and tumor purity were compared between the two subtypes. 

Moreover, on the basis of their expression levels in the disease samples, the specific immune checkpoint genes were extracted, 
including PD1 (PDCD1), PD-L1 (CD274), CTLA-4 (CTLA4), CD278 (ICOS), LAG3, CD73, Tim3 (HAVCR2), CD47, TIGIT, myd1 (SIRPA), 
BTLA, 4-1BB (TNFRSF9), OX40 (TNFRSF4), and B7–H4 (VTCN1). Additionally, the expression of HLA family genes was determined. 
Differences in expression levels between the two disease subtypes were then compared. 

2.8. Construction and validation of the prognostic model 

On the basis of the expression levels of the differentially expressed prognosis-related phagocytosis regulator genes in each sample, 
the disease samples were randomly grouped into training and validation sets (1:1) together with their survival information. The 
optimal gene combination was further screened using the stepwise regression model of the glmnet package (version 2.0–18) in R3.6.1 
[21]. On the basis of the LASSO regression coefficient of the gene combination and expression levels of genes in the GSE85217 samples, 
the following RS model was constructed:  

RS =
∑

βgene × Expgene                                                                                                                                                                  

Where βgene represents the LASSO regression coefficient of the gene, and Expgene represents the gene expression level in the GSE85217 
sample. 

Next, the GSE85217 samples in the training and verification sets were divided into high- (RS ≥ RS median value) and low-risk (RS 
< RS median value) groups according to the RS median values. The Kaplan–Meier curve method in survival 2.41–1 was used to assess 
the association between risk grouping and actual survival information. 

2.9. Nomogram establishment 

Univariate Cox regression analysis was performed for RS, age, MetS status, and sex to evaluate whether the above RS model served 
as an independent prognostic factor. Variables with a P-value of less than 0.05 were included in the multivariate Cox regression 
analysis. The obtained variables were then used to construct a nomogram to predict one-, three-, and five-year survival. Simulta-
neously, a correction curve was drawn to verify the accuracy of the model. 

2.10. Gene set enrichment analysis among different risk groups 

Gene set enrichment analysis (GSEA) was performed with Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology 
(GO) datasets using the clusterProfiler package in the MSigDB v7.4 database [22]. The threshold was set at an adjusted P-value of less 
than 0.05. 

2.11. Correlation between model genes and immune cell infiltration 

The proportion of the 22 immune cells in each sample was determined using CIBERSORT software [19]. The relationship between 
the 22 immune cells and the prognostic model genes was analyzed using Spearman’s rank-order correlation analysis. Genes that 
correlated with macrophages were selected and displayed on a heatmap. 

2.12. Correlation between risk grouping and drug sensitivity 

Using the pRRophetic algorithm, a ridge regression model was constructed to predict the IC50 of 39 common drugs on the basis of 
the Genomics of Drug Sensitivity in Cancer cell line and gene expression profiles. The Wilcoxon test was used to determine whether 
there were significant differences in the IC50 values of each drug between the different disease subtypes. 
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3. Results 

3.1. Prognosis-related phagocytosis regulator gene screening 

In GSE50161, there were 3293 downregulated and 3461 upregulated DEGs between the MB and control groups. The volcano plot is 
shown in Fig. 1A. Based on the gene expression levels and survival information from the GSE85217 dataset, univariate Cox regression 
analysis of the 266 phagocytosis regulator-related genes identified 59 genes that were significantly associated with MB prognosis (P <
0.05; Fig. 1B). 

The intersection of the DEGs and prognosis-related phagocytosis regulator genes revealed 23 genes in common, which were 
considered the differentially expressed prognosis-related phagocytosis regulator genes (Fig. 1C). A PPI network was then constructed 
that included 14 proteins and 17 interaction pairs (Fig. 1D). 

3.2. Disease subtype analysis 

Based on the expression levels of the 23 differentially expressed prognosis-related phagocytosis regulator genes in the disease 
samples, two disease subtypes were obtained after consistent cluster analysis (Fig. 2A). A heatmap of the expression levels of the 23 
genes in the two subtypes is shown in Fig. 2C. Survival analysis revealed that the prognoses of the patients in cluster 2 were signif-
icantly worse than those of the patients in cluster 1 (Fig. 2B). Moreover, the phagocytosis regulator score of cluster 1 was significantly 
higher than that of cluster 2 (Fig. 2D). Additionally, the clinical factors of the two subtypes were compared, and a significance test was 
conducted, as shown in Table 1. Significant differences with regard to sex and MetS status were observed between the two subtypes. 

3.3. Association of the disease subtypes with immunity 

Of the 22 immune cell types, nine (viz., memory B cells, naïve CD4+ T cells, resting CD4+ memory T cells, regulatory T cells, 

Fig. 1. A, Volcano plot of differentially expressed genes (DEGs). Red represents upregulated genes, and blue represents downregulated genes. B, 
Univariate Cox regression analysis of phagocytosis regulator-related genes. C, Venn diagram of DEGs and phagocytosis regulator-related genes. D, 
Protein–protein interaction network of the phagocytosis regulator-related DEGs. 
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Fig. 2. A, Results of cluster analysis of the differentially expressed phagocytosis regulator-related genes. B, Kaplan–Meier survival curves of the two 
disease subtypes. C, Heatmap of prognosis-related phagocytosis regulator gene expression in the two subtypes. D, Phagocytosis regulator scores of 
the two subtypes. 

Table 1 
Statistical table of clinical information for two subtypes.   

cluster 1 (N = 198) cluster 2 (N = 347) P-value 

Gender 
F 83.0 (41.9 %) 106 (30.5 %) 0.00969 
M 114 (57.6 %) 239 (68.9 %)  
Missing 1.00 (0.5 %) 2.00 (0.6 %)  

Age (years) 
Mean (SD) 7.20 (4.80) 7.59 (3.57) 0.318 
Median [Min, Max] 7.00 [0.240, 17.2] 7.21 [1.25, 17.3]  

Met.status 
0 131 (66.2 %) 195 (56.2 %) <0.001 
1 37.0 (18.7 %) 125 (36.0 %)  
Missing 30.0 (15.2 %) 27.0 (7.8 %)  

Dead 
0 157 (79.3 %) 241 (69.5 %) 0.0169 
1 41.0 (20.7 %) 106 (30.5 %)   
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follicular helper T cells, monocytes, activated natural killer cells, M0 macrophages, and M2 macrophages) showed markedly different 
relative infiltration levels between the two disease subtypes (Fig. 3A). Further comparisons between the two subtypes revealed that the 
stromal and immune score estimates were significantly lower in cluster 2 than in cluster 1, but the tumor purity was significantly 
higher in cluster 2 (Fig. 3B). 

The differences in expression of specific immune checkpoint and HLA family genes between the two subtypes are shown in Fig. 3C. 
Most genes showed significantly different expression levels between the two subtypes. 

3.4. Construction and validation of the prognostic model 

On the basis of the 23 differentially expressed prognosis-related phagocytosis regulator genes, 10 optimal genes (FAM81A, EZR, 
NDUFB9, RCOR1, FOXO4, NHLRC2, KIF23, PTPN6, SMAGP, and MED13) were screened using a stepwise regression algorithm. The RS 
model was established using the regression coefficients of these 10 optimal genes and their expression levels in the samples from the 
training set. The samples were divided into high- and low-risk groups for both the training and validation sets. The prognosis of the 
low-risk group was significantly better than that of the high-risk group (Fig. 4A and B). The proportion of each disease subtype in the 
two risk groups was calculated to determine the relationship between the risk grouping and subtypes. As shown in Fig. 4C, the high-risk 
group contained more samples from cluster 2, which had a poor prognosis. 

Fig. 3. A, Relative infiltration of the 22 immune cell types in the two disease subtypes. B, Box plots of the immune, stromal, and immune 
microenvironment scores, and tumor purity of the two subtypes. C, Expression of immune checkpoint and HLA family genes in the two subtypes. 

Fig. 4. A and B, Prognostic Kaplan–Meier curves based on the risk score model for the training (A) and validation sets (B). C, Histogram of the 
proportions of the two disease subtypes in the high- and low-risk groups. 
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3.5. Independence analysis and nomogram establishment 

The RS, MetS status, and disease cluster were found to be independent prognostic factors of OS, according to the univariate Cox 
regression analysis (P < 0.05) (Fig. 5A). After multivariate Cox regression analysis, the RS and MetS status were retained as inde-
pendent prognostic factors (Fig. 5B) and used to construct a nomogram for predicting one-, three-, and five-year survival (Fig. 5C). The 
“total points” axis in the first row was used to predict the survival of the samples by integrating various clinical indicators. The 
predicted one-, three-, and five-year survival rates were in accordance with the actual survival rates (Fig. 5D). 

3.6. Gene set enrichment analysis 

GSEA was performed for all genes in the two risk groups, whereupon they were found to be enriched in 414 GO terms and 24 KEGG 
pathways. The genes related to DNA replication, ribosomes, spliceosomes, and chronic myeloid leukemia were upregulated, whereas 
those associated with axon guidance and the calcium and WNT signaling pathways were downregulated (Fig. 6A). Additionally, genes 
enriched in spindle elongation and mitotic DNA replication processes were activated, whereas those related to the regulation of trans- 
synaptic signaling and metal and calcium ion transport were suppressed (Fig. 6B). 

3.7. Correlation between the model genes and immune cell infiltration 

Spearman’s correlation analysis revealed that M2 macrophages were positively correlated with NDUFB9 and PTPN6 expression 
(Fig. 7A). The correlation scatter plots are shown in Fig. 7B. 

Fig. 5. A and B, Univariate (A) and multivariate (B) Cox regression forest maps of clinical factors. C, Nomogram used to predict the one-, three-, and 
five-year survival rates. D, Consistency charts of the predicted and actual survival rates. The horizontal axis represents the predicted survival rate. 
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3.8. Correlation between risk grouping and drug sensitivity 

The IC50 values of the common drugs were predicted using the pRRophetic algorithm. Nine drugs (AZD6244, AP.24,534, axitinib, 
bryostatin.1, FTI.277, erlotinib, bicalutamide, AS601245, and CMK) showed significant differences in IC50 values between the two risk 
groups (Fig. S1). 

4. Discussion 

In this study, 23 differentially expressed prognosis-related phagocytosis regulator genes in MB were selected, and two disease 
subtypes were identified on the basis of those genes. The prognoses of the patients in cluster 2 were significantly worse than those of 
the patients in cluster 1. Moreover, the immune microenvironment differed significantly between the two subtypes. Finally, 10 genes 
were selected using a stepwise regression algorithm to establish a prognostic model. The prognosis in the low-risk group was 
significantly better than that in the high-risk group. Furthermore, the model genes NDUFB9 (encoding NADH:ubiquinone oxidore-
ductase subunit B9) and PTPN6 (encoding protein tyrosine phosphatase non-receptor type 6) were positively correlated with M2 
macrophages. 

Innate immunity is a major part of the human immune system and serves as the first line of defense against infectious agents and 
malignant tumors [23]. Additionally, the innate immune system can cross-initiate the adaptive immune system, in which antigens are 
presented to naïve B and T cells by antigen-presenting cells [24]. The precursor to this bridge between innate and adaptive immunity is 
the capture of antigen-presenting cells via phagocytosis [25]. Therefore, understanding the mechanisms underlying phagocytosis 

Fig. 6. GO (A) and KEGG pathway maps (B) obtained by means of GSEA.  
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regulation can provide novel avenues for the development of next-generation therapeutic methods that act to unleash the power of the 
innate immune system, particularly macrophages [26]. In this study, 23 differentially expressed prognosis-related phagocytosis 
regulator genes in MB were selected on the basis of an MB-related dataset and phagocytosis regulator gene sets reported in the 
literature. These genes may serve as phagocytosis regulators during MB treatment. 

Molecular profiling of MB has identified at least four molecular subtypes (WNT, SHH, G3, and G4, the last two being non-Wnt/non- 
SHH), which have different clinical manifestations and prognoses [27]. The stratification of MB into subtypes has important clinical 
implications, as identifying their oncogenic drivers may lead to subtype-specific targeted therapy [28] and de-escalation strategies to 
treat tumors, resulting in better prognosis [29]. In this study, the MB samples were clustered into two subtypes (clusters 1 and 2) on the 
basis of the 23 differentially expressed prognosis-related phagocytosis regulator genes. Because the patients in cluster 2 were found to 
have a significantly worse prognosis, de-escalation strategies for the treatment of patients with this specific disease subtype may be 
feasible. Moreover, the immune and stromal scores in cluster 1 were significantly higher than those in cluster 2, suggesting that the 
patients in cluster 1 may be more suitable for immunotherapy. 

Among the 10 genes (FAM81A, EZR, NDUFB9, RCOR1, FOXO4, NHLRC2, KIF23, PTPN6, SMAGP, and MED13) used to construct the 
RS model, NDUFB9 and PTPN6 were found to be positively correlated with M2 macrophages. As members of innate immunity, 
macrophages are involved in antigen presentation and phagocytosis. After differentiating from monocyte precursors, macrophages 
polarize toward the M1 or M2 phenotype [30]. It has been reported that macrophage polarization plays a key role in the development 
of brain tumors, including MB [31,32]. NDUFB9 is an accessory component of the mitochondrial membrane respiratory chain. Its 
reduced expression promotes breast cancer cell proliferation and metastasis [33]. Lin et al. demonstrated that NDUFB9 might play a 
role in determining the malignancy or benignity of brain neoplasms through its modulation of mitochondrial metabolism [34]. PTPN6 
is a crucial regulatory protein that plays a central role in cellular signal transduction pathways involved in the regulation of 
inflammation and cell death [35]. PTPN6 has been shown to exert immunosuppressive effects on glioblastomas [36]. Given the roles of 
NDUFB9 and PTPN6 in cancer development, we speculate that both genes may be associated with the prognosis of MB through their 
relationship with M2 macrophages. 

Several of the other eight genes have been reported to be associated with MB. Ezrin (EZR) is a cytoplasmic peripheral protein that 
cross-links the oncogenic dry marker CD44 and cytoskeletal markers that participate in the migration of MB cells [37]. EZR knockdown 
reduces the migratory, adhesive, and invasive abilities of MB cells [38]. RCOR1 encodes REST corepressor 1 (CoREST), which acts as a 
core scaffold for recruiting epigenetic remodelers and DNA-binding factors. The post-translational modification of CoREST is a novel 
molecular mechanism associated with the G3 and G4 subtypes of MB [39]. Missense mutations in MED13 (which encodes mediator 
complex subunit 13) were detected in the WNT subtype of MB [40]. Despite limited reports on the involvement of the other genes in 
MB, they have been shown to play key roles in other cancers. For instance, Forkhead box protein O4 (FOXO4) suppresses the migration 
and metastasis of colorectal cells [41]. High expression of the protein NHL repeat containing 2 (NHLRC2) is associated with shortened 
survival in lung adenocarcinoma [42]. Kinesin family member 23 (KIF23) contributes to the deterioration of nasopharyngeal carci-
noma through modulation of the WNT/β-catenin signaling pathway [43]. Overexpression of small cell adhesion glycoprotein (SMAGP) 
fosters the malignant characteristics of glioblastoma cells [44]. Taken together, these findings suggest that these 10 model genes could 
serve as key prognostic factors in MB. 

This study had some limitations. First, the sample size was small. Second, the roles and regulatory mechanisms of these key genes in 
MB development have not been validated through in vivo or in vitro experiments. Therefore, additional samples need to be collected to 
verify our results. 

Fig. 7. A, Spearman’s rank-order correlations between the model genes and immune cells (*P < 0.05, **P < 0.01, ***P < 0.001). B, Scatter plots of 
the correlations between M2 macrophages and the NDUFB9 and PTPN6 genes. 
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5. Conclusion 

This study identified two MB subtypes on the basis of 23 differentially expressed prognosis-related phagocytosis regulator genes. 
Additionally, 10 key phagocytosis regulator genes were used to establish a prognostic model for MB. These 10 genes may serve as key 
prognostic biomarkers for this brain cancer type. 
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