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Design and interpretation of genome sequencing assays in clinical diagnostics and
research labs is complicated by an inability to identify information from the medical
literature and related databases quickly, comprehensively and reproducibly. This
challenge is compounded by the complexity and heterogeneity of nomenclatures
used to describe diseases, genes and genetic variants. Mastermind is a widely-used
bioinformatic platform of genomic associations that has indexed more than 7.5 M
full-text articles and 2.5 M supplemental datasets. It has automatically identified,
disambiguated and annotated >6.1 M genetic variants and identified >50 K disease-
gene associations. Here, we describe how Mastermind improves the sensitivity and
reproducibility of clinical variant interpretation and produces comprehensive genomic
landscapes of genetic variants driving pharmaceutical research. We demonstrate an
alarmingly high degree of heterogeneity across commercially available panels for
hereditary cancer that is resolved by evidence from Mastermind. We further examined
the sensitivity of Mastermind for variant interpretation by examining 108 clinically-
encountered variants and comparing the results to alternate methods. Mastermind
demonstrated a sensitivity of 98.4% compared to 4.4, 45.6, and 37.4% for alternatives
PubMed, Google Scholar, and ClinVar, respectively, and a specificity of 98.5% compared
to 45.1, 57.6, and 68.8% as well as an increase in content yield of 22.6-, 2.2-, and
2.6-fold. When curated for clinical significance, Mastermind identified more than 4.9-
fold more pathogenic variants than ClinVar for representative genes. For structural
variants, we compared Mastermind’s ability to sensitively identify evidence for 10
representative disease-causing CNVs versus results identified in PubMed, as well as
its ability to identify evidence for fusion events compared to COSMIC. Mastermind
demonstrated a 4.0- to 43.9-fold increase in references for specific CNVs compared
to PubMed, as well as 5.4-fold more fusion genes when compared with COSMIC’s
curated database. Additionally, Mastermind produced an 8.0-fold increase in reference
citations for fusion events common to Mastermind and outside databases. Taken
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together, these results demonstrate the utility and superiority of Mastermind in terms
of both sensitivity and specificity of automated results for clinical diagnostic variant
interpretation for multiple genetic variant types and highlight the potential benefit in
informing pharmaceutical research.

Keywords: genome sequence analysis, copy number variant, rare disease, oncology, gene fusions, variant
interpretation and classification

INTRODUCTION

Need for Improved Access to
Information in the Medical Literature for
Clinical Genomics
Next-generation DNA sequencing (NGS) has made it possible
to sequence patient genomes at scale and to diagnose and treat
a much broader and more diverse group of indications. This
technique is also used extensively in research labs to uncover
novel genomic associations with disease resulting in thousands
of new articles on human genetic variants being added each
week to the over 30 million existing medical articles listed in
the National Library of Medicine/MEDLINE/PubMed database.
The information in a single article can often mean the difference
between an American College of Medical Genetics/Association
of Molecular Pathology (ACMG/AMP) designation of variant
of uncertain significance (VUS) and a variant deemed to be
likely pathogenic and therefore clinically actionable. Missing
even one article from among these millions can significantly
impact the accuracy of clinical variant calling, reducing the
chance that patients receive the best and most appropriate care.
Therefore, having ready access to the most complete database of
published variants and all the associated evidence annotations
is essential in reducing the time it takes to interpret a variant
and ensuring the accuracy of that interpretation. Moreover,
an inability to interrogate the full breadth and depth of the
empirical evidence in the scientific literature frustrates the efforts
of geneticists and pharmaceutical researchers seeking to assemble
the most comprehensive and thoroughly annotated dataset of
these causative variants with clinical and functional annotations.

More specifically, limited access to information in the
medical literature is one of the biggest bottlenecks preventing
more automated and more reproducibly accurate diagnostic
sequencing panel design and variant interpretation for diagnosis
of genetic diseases like cancer and constitutional conditions
based on these sequencing assays. This challenge is due to the
inability to search through the entirety of this body of knowledge
and also due to the complexity and heterogeneity of genetic
variant nomenclatures in addition to the challenge of recognizing
entities such as diseases, genes and drug compounds in these
texts. Current solutions to collecting this information include
manually searching through PubMed which only permits title
and abstract searching or otherwise using Google Scholar which
doesn’t reconcile disparate biological entity nomenclatures. Both
of these widely used techniques therefore both suffer from a
lack of sensitivity. Moreover, when searching using PubMed
or Google Scholar, many false positive results are returned for

instance, owing to the inability to properly determine to which
gene any given variant cited in an article is referring leading to a
decrease in specificity. Finally, laborious and error-prone manual
review of this data is also a significant challenge even if all the
results needed to make an informed conclusion are available.

Mastermind is a genomic search engine that allows users
to search a comprehensive dataset comprising the medical
literature, pre-annotated for genetic content, which is intended
to resolve these challenges (Genomenon Inc., 2020a). In addition
to the search engine user-interface, there are also two other
useful tools for evaluation of the genomic associations identified
by Mastermind including the Cited Variants Reference (CVR;
Genomenon Inc., 2020b) and the Mastermind API (Genomenon
Inc., 2020c). The CVR is a download of Mastermind’s database
that includes all variants affecting less than 4 nucleotides along
with the number of references in the standard VCF format.
The Mastermind API also allows for more comprehensive
access to Mastermind’s database through programmatic use
of a number of endpoints including genes, variants, diseases,
phenotypes, and therapies.

We demonstrate here, for multiple applications, the benefits
of applying the automated genomic association indexing
capability of Mastermind for solving several challenges facing
clinical diagnostic genetics and pharmaceutical research
driven by genomics.

The Need for Evidence-Based Gene
Panel Design
Next-generation DNA sequencing has fundamentally changed
the way molecular diagnostic assays are designed and performed
in clinical laboratories. One of the most consequential changes
that has resulted is the trend toward larger and larger numbers
of genes being sequenced per patient and the consolidation of
use cases into single, so-called comprehensive gene panels due
to the ease and cost-efficiency of producing this data using NGS.
The genes selected for sequencing for a given indication are
bundled into discrete units known as gene panels. This bundling
into gene panels is helpful to streamline clinical laboratory
workflows and assay validations as multiple disparate sequencing
assays can be consolidated into a single assay. Moreover, larger
gene panels afford the opportunity for labs to identify a wider
variety of clinically meaningful biomarkers at a lower cost for
any given patient.

Diagnostic gene panels are used in clinical practice to confirm
diagnoses, to inform prognostic determinations, and increasingly
to tailor therapy to molecular etiology of disease, particularly in
oncology. Many commercial and academic reference laboratories
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offer sequencing as a service using pre-defined gene panels for
many different clinical circumstances. In particular, many of
these reference laboratories are offering larger and larger gene
panels for a wide variety of diseases including gene panels
intended to be used for multiple cancer types.

The selection of the most relevant genes as biomarkers on
these NGS panels is typically performed using labor-intensive,
manual consultation of available databases and medical literature
followed by data organization in a process that can take many
months to complete and is non-scalable. This process is often
predicated on incomplete and subjective information gathered by
individuals with widely differing levels of experience. Moreover,
within the typical process used to select content for gene
panels, the criteria utilized can be highly variable. Gene panel
composition, for example, can be influenced by factors that
require limiting the number of genes selected for the final assay,
such as the inclusion or exclusion of known fusion genes or of
genes with a desired level of certainty regarding their association
with the given diagnostic target.

Because of the degree of subjectivity introduced by those
criteria and inherent in the process overall, there is the potential
for substantial discordance between commercial gene panels that
purport to be useful for the same indications. In this study,
we introduce an evidence-driven automated literature curation
approach using Mastermind for identification and interpretation
of genes for inclusion on such sequencing panels. To demonstrate
the value of this approach, we sought to investigate the extent
to which there is discrepancy among gene targets comprising
multiple commercial panels. In response, we present an alternate,
evidence-based approach to interrogating the medical literature
using text-mining and automated bio-curation techniques to
make this process more reproducible as well as reveal sufficient
evidence for each biomarker candidate to allow for rapid
confirmation and assessment of final panel design.

The Need for More Complete Variant
Databases to Foster Accurate and
Reproducible Variant Interpretation
Techniques
Analogous to the design and use of these panels, consistent
analysis of the sequencing data that results for any given
patient remains a significant issue for clinical laboratories. For
the results of any sequencing assay to be clinically actionable
(including those resulting from gene panels but also those
resulting from exome or genome sequencing), each variant
discovered in a particular patient must be accurately interpreted
as being pathogenic, benign, or a VUS. This interpretation
relies on consultation of a number of databases that serve
different purposes in the variant interpretation process and
are, at times, dependent on the type of variant and/or disease
being investigated. These databases include population frequency
databases [e.g., gnomAD (gnomAD, 2020) and 1,000 Genomes],
databases for single nucleotide polymorphisms (e.g., dbSNP),
databases for characterization of genetic diseases [e.g., OMIM
(Online Mendelian Inheritance in Man [OMIM], 2020) and
Orphanet (Orphanet, 2020)], databases for somatic variants in

cancer (e.g., COSMIC and The Cancer Genome Atlas), databases
for computational predictions of functional consequences [e.g.,
PolyPhen (PolyPhen-2, 2020), SIFT (Ng and Henikoff, 2001), and
MutationTaster (Schwarz et al., 2010)], databases for structural
variants (e.g., the Database of Genome Variants, DECIPHER, and
CNVDigest), and more comprehensive variant databases [e.g.,
ClinVar (National Center for Biotechnology Information [NCBI],
2020b) – somatic, germline, and structural variants, HGMD
(Cooper et al., 1998) – germline variants, AVADA (Birgmeier
et al., 2020) – monogenic disease variants]. Importantly,
however, the variant interpretation process additionally requires
consultation of the medical literature and detailed examination
of its contents, carried out largely by manual searches of public
databases such as PubMed and Google Scholar – a process
that can take up to 3 h per variant. This allows for substantial
discordance across clinical laboratories (Hoskinson et al., 2017).

In 2015, the American College of Medical Genetics (ACMG)
released a set of criteria for determining the pathogenicity
of variants for Mendelian disorders in an attempt to provide
more substantial guidelines that could remedy this discordance
(Richards et al., 2015). However, this attempt appears to
be only partially successful. One study found that for 9
clinical laboratories, there was only 34% concordance in variant
interpretation that increased to 71% once the laboratories
discussed all the prevailing evidence and further clarified the
criteria (Amendola et al., 2016). Additionally, the concordance
between these laboratories’ own criteria for variant interpretation
and ACMG criteria was higher, at 79%, representing the
subjectivity of applying these criteria. This study attests to the
difficulty of ensuring consistent interpretation when criteria are
not made sufficiently clear as well as when evidence is not
provided systematically.

Paramount to resolving the heterogeneous results of
interpretation across different labs is a need to ensure all
interpreters begin with the same evidence with which to draw
their final conclusions. Critical metrics to consider when
assessing the comprehensiveness and quality of such a variant
database include rates of both false negatives and false positives.
Specifically, the ideal database will necessarily

• Minimize false negatives by ensuring adequate searching of
full-text and supplemental data.
• Minimize false negatives by ensuring the broadest coverage

of empirical evidence.
• Minimize false negatives by ensuring a comprehensive

variant indexing process.
• Minimize false positive variants by eliminating text matches

that merely resemble variants.
• Minimize false positive variants by ensuring correct

identification of corresponding genes.

Beyond matching standardized variant nomenclatures, search
techniques must be able to recognize a number of non-standard
nomenclatures, styles, and special characters that are used to
describe variants in the published literature and even more so in
the heterogeneous supplemental data. Capturing all the variant
types and all the ways an author can describe a variant takes
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years of development and domain experience. The broad range
of both variant types and nomenclatures exposes the indexing
process to the increased likelihood of numerous false positives
resulting from inappropriate variant matches and faulty gene-to-
variant pairing.

Solving these challenges requires years of development and
iterative improvement in eliminating these false positives in
a systematic fashion and requires an ongoing commitment to
improving search result quality with a specific focus on genetics
and genomics. By implementing an automated approach to
literature curation utilizing the entirety of the genetic literature
as well as an organized and useful user-interface, we demonstrate
the improved consistency and accuracy of variant interpretation
resulting from automated indexing of the empirical evidence
through Mastermind.

The Need for More Complete
Clinical-Grade Structural Variant Databases
CNVs – DNA segments of 1,000 base pairs or more that are
either deleted or amplified in a single genome - are increasingly
recognized as the cause of a variety of diseases, including
cancer and hereditary constitutional diseases. They are causative
due to the likelihood of altering gene expression levels due
to a gene dosage effect. The complexity and heterogeneity of
different CNVs and the difficulty in determining a priori what
the pathogenic consequence of any given CNV may be (as it
can influence many hundreds to thousands of genes on any
one locus) make it challenging to find the information needed
to properly ascribe pathogenicity. Nevertheless, vast amounts of
CNV data are published in the historical and current literature
that are critical to providing patients with an accurate diagnosis.
A recent study suggested that 15–25% of clinical cases submitted
for genome sequencing are caused by CNV driver variants.
Moreover, current databases that contain CNV information lack
the comprehensiveness required to be clinically useful. One such
database, the Database of Genome Variants (DGV1) (The Center
for Applied Genomics, 2020), is vast but contains polymorphic
CNV data from healthy individuals. ClinGen2 (ClinGen -
Clinical Genome Resource, 2020) seeks to catalog disease-
gene associations but to date has only reviewed 1,778 genes
across the many thousands known or perceived to be disease-
causing due to their manual approach to database assembly.
Moreover, ClinGen’s manual evidence review procedures make
a comprehensive approach to identifying relevant information
impossible. Another database, DECIPHER3 (DECIPHER, 2020)
lacks the empirical evidence supporting each identified CNV as
disease-causing limiting its utility for clinical purposes.

Two recent publications highlighted this need and proposed
solutions that culminated in the Copy Number Variation in
Disease (CNVD Database; Qiu et al., 2012) and the CNVdigest4

(CNVdigest, 2020). However, the CNVD was manually produced
by examining fewer than 10,000 references and suffers from an

1http://dgv.tcag.ca/dgv/app/home
2https://clinicalgenome.org/
3https://decipher.sanger.ac.uk/
4http://cnv.gtxlab.com/

inability to scale. On the other hand, the CNVdigest database
utilizes an automated text-mining approach, but it only indexes
the MEDLINE title and abstract data and PubMed Central full-
text articles and is to date limited to fewer than 50,000 references.
It is therefore missing a significant fraction of the empirical
evidence in the medical literature including many millions of
full-text articles and supplemental datasets. Finally, neither of
these databases were available at the time of this writing as the
websites returned server errors. Given this need, we sought to
apply the ability of Mastermind to identify CNVs and compared
these results to results obtained using standard PubMed searches.

In addition to CNVs, another class of larger structural
alterations influences disease development, progression and
response to therapy – fusion genes. For instance, fusion
genes have long been known to play an important role in
the development of cancer (Mitelman et al., 2007). Since
the discovery of the first fusion gene in 1960, researchers
have continued to discover fusion events involved in cancer
development. In recent years, hundreds of novel fusions have
been identified across a multitude of cancer types, due in large
part to the ease of producing this data using next generation
sequencing techniques like RNAseq and their broad use in clinical
diagnostic labs. Fusion genes therefore are playing an increasingly
important role in clinical diagnosis. Identifying and documenting
each newly discovered fusion is crucial in both patient diagnosis
and the development of precision medicine.

This diagnostic modality allows for the proper application of
existing therapies and the development of new therapies. Two
recent studies reported that 6–15% of patients with metastatic
cancer harbored genomic rearrangements, many of which
produced putative fusions (Zehir et al., 2017; Gao et al., 2018).
While 35% of these fusions involved kinase genes, indicating
they could possibly be targeted by kinase inhibitors, 19% of them
involved novel partner genes. Currently, the Catalog of Somatic
Mutations in Cancer (COSMIC) and OncoKb serve as the main
source for documented fusions (Tomczak et al., 2015; Tate et al.,
2019). At the time of this writing, COSMIC contains 297 unique
fusion pairs derived from ∼1.4 million tumor samples, while
OncoKb contains data from literature curation. We applied
Mastermind to identify fusion events and compared the results
to data contained in these two databases.

METHODS

Extraction of Information From Empirical
Evidence
All data discussed below was assembled by indexing the full-
text and supplemental material of prioritized references identified
in MEDLINE/PubMed5 (National Center for Biotechnology
Information [NCBI], 2020a). These references were evaluated to
identify diseases, genes and genetic variants (including single-
nucleotide changes, indels, copy number variants, fusion genes
and karyotypic abnormalities) and all supporting information

5https://www.ncbi.nlm.nih.gov/pubmed
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(including functional and clinical key terms) as detailed in the
Supplementary Material.

Titles and abstracts and additional data fields (including
Substances, Genes, and MeSH fields) for all references available
through MEDLINE (using the eutils API6) (Sayers, 2010)
were indexed for the mention of diseases and genes using
the ontologies described in each subsequent methods section.
References were identified by PubMed identification number
(PMID) and full-text and supplemental materials were indexed
after prioritization based on the information content of the
title. This prioritization was based on abstract and/or full-
text indexing results; for instance, the mention of any one
of the diseases, genes or supporting key terms in the title,
abstract, or metadata fields. Data are indexed with a custom-
built, multi-step process. A variety of common font-encoding and
character set problems are corrected using custom designed data
processing tools. Extraneous parts of the article such as references
sections are also detected and excluded from processing using
Grobid7 (Lopez, 2020). The text of the article was searched for
diseases, phenotypes, therapies, genes, and keywords, using an
extensive set of synonyms, ontologies, and downstream processes
described below.

This information is publicly available through the Mastermind
Genomic Search Engine8 (Genomenon Inc., 2020a) and in
downloadable form9 (Genomenon Inc., 2020b). All information
is referenced under the protection of the fair use provision
of applicable copyright law. Mastermind users are encouraged
to examine the full extent of published, copyrighted content
available to them only through licensed access provided by the
respective publishers or distribution channels such as PubMed.
All appropriate citations are included with each annotated fact
derived from these materials in the Mastermind software.

Diseases and Genes
Disease and Gene Identification
Diseases and their synonyms were identified by Medical Subject
Heading Terms (MeSH10) (National Center for Biotechnology
Information [NCBI], 2020d) and gene symbols by HGNC
nomenclature11 (Hugo Gene Nomenclature Committee [HGNC],
2020). Synonyms and aliases from a variety of additional
sources including UniProt12 (UniProt, 2020) were incorporated
and treated as equivalent to accepted names or symbols in
the indexing process. Manual review of a summary of the
complete output of this indexing process was performed to
enhance the specificity of these results by removing highly non-
specific synonyms.

Mastermind Hereditary Cancer Gene Panel
The Mastermind Hereditary Cancer Gene Panel was created
for the 206 genes that were included on at least one of the 8

6https://www.ncbi.nlm.nih.gov/books/NBK25497/
7https://grobid.readthedocs.io/en/latest/
8https://mastermind.genomenon.com/
9https://www.genomenon.com/cvr/
10https://www.ncbi.nlm.nih.gov/mesh
11https://www.genenames.org/
12https://www.uniprot.org/

hereditary cancer panels that were evaluated. Per gene, articles
that mentioned the gene within the title and/or abstract were
identified and then prioritized first by the presence of the gene
within the title, then by the citation count as a measure of
relevance, and finally by the presence of one or more cancer-
related keywords within the title. For the top 100 of these
prioritized articles, the sentences from the full-text that contained
the input gene were extracted from the Mastermind database
and evaluated by the presence of keywords related to a particular
genetic mechanism: mutation, copy number variation, fusion, or
expression level change. This was represented as a percentage of
the total sentences evaluated that contained a keyword related to
the respective mechanism. The top 10 of the prioritized PMIDs
and their titles were subsequently displayed in the final panel.

Commercial Disease-Gene Panel Comparison
Comprehensive gene panels available commercially were
identified using a combination of Concert Genetics13 (Concert
Genetics, 2020), the Genetic Testing Registry14 (National Center
for Biotechnology Information [NCBI], 2020c) and Google
searching15 (Google, 2020a) to mimic the typical process of
initially identifying relevant clinical assays undertaken by clinical
offices. The composition of each panel was ascertained from
respective laboratory websites and organized into a spreadsheet
(Supplementary Table 1). Gene names that did not conform
to HGNC nomenclature were manually corrected and the
overlap among each panel was determined. For examination
of the evidence in the literature available for biomarkers not
on a consensus of comprehensive hereditary gene panels, each
gene was queried using Mastermind and the total number of
abstracts and full text articles mentioning each gene as well as
the aggregate number of mentions of that gene. For development
of the automated hematological panels, each PMID containing
the mention of the MeSH term “Leukemia” or “Lymphoma”
was further assessed for the mention of any gene symbol or
synonym and the data organized into disease-gene associations.
A comprehensive itemization of the genes associated with
leukemia/lymphoma was thereby listed in descending order of
the number of references that cite each gene. For this analysis,
any references mentioning the targeted gene were prioritized
first by the gene’s presence in the article’s title, then the citation
count of the article as a measure of relevance (in descending
order), and finally the presence of cancer related keywords in the
article’s title. Additionally, the genetic mechanism(s) referenced
to the targeted gene were analyzed by retrieving the number
of related keywords from sentences mentioning the gene from
the top 100 prioritized articles as a percentage of the total
number of sentences mentioning the gene. Enhancements to the
Mastermind user interface that facilitate the automation of gene
panel design are scheduled for release between 2020 and 2021
though all the results of our analysis can currently be reproduced
manually using Mastermind as described above. Alternatively,
motivated users can collect the requisite data and associated

13https://www.concertgenetics.com/
14https://www.ncbi.nlm.nih.gov/gtr/
15https://www.google.com/
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TABLE 1 | Mastermind contains more content than HGMD, COSMIC, OncoKb, and ClinVar.

Mastermind HGMD COSMIC OncoKB ClinVar

Genes 19,413 11,320 1 238 4 671 3 32,832 6

Variants 6,812,408 298,409 8 408,000 4 5,150 3 703,806 6

Germline variants Yes Yes No Yes Yes

Somatic variants Yes No Yes Yes Yes

Journals 33,126 2,600 2 N/A Unknown 2,977

Full-text articles indexed 7,619,062 86,000 2 27,496 5 Unknown 70,538 7

Supplemental datasets indexed 2,599,660 N/A 2 N/A Unknown N/A

Update schedule Weekly Quarterly Quarterly Quarterly Weekly

Free version content Up to date 4 years old Up to Date <3 months old Up to date

Interpretation criteria ACMG/AMP Own criteria AMP Own criteria ACMG/AMP

Sources
1http://www.hgmd.cf.ac.uk/ac/stats.php
2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429360/
3https://www.oncokb.org/
4https://cancer.sanger.ac.uk/cosmic/curation
5https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323903/
6https://www.ncbi.nlm.nih.gov/clinvar/submitters/
7 ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/
8https://digitalinsights.qiagen.com/wp-content/uploads/2020/10/hgmdstatistics_2020_3.pdf

reference citations using the Mastermind API16 which offers a
variety of endpoints to repeat our analyses in high throughput.

Single-Nucleotide and Indel Variants and
Variant Interpretation
Single-Nucleotide and Indel Variant Identification
Identification of single-nucleotide and indel variants relies on
recognition of variant forms in the text using numerous regular
expressions. The results of these matches are reconciled to cDNA
or protein positions as appropriate or otherwise matched to
rsIDs found in dbSNP17 (National Center for Biotechnology
Information [NCBI], 2020e). Each variant is then mapped to
a Mastermind database key based on its protein-level effects.
The article text and the set of matched genes are then indexed
for variants by indexing article text using a finite state machine
that recognizes variant descriptions in standard HGVS notation,
by rsID, and in other less commonly-used forms, e.g., ‘T1799A’
for cDNA variants, ‘1R30,’ and so on. Matches are evaluated
in the context of a set of candidate genes for that paper, with
each variant being checked for validity against transcript and
protein sequences for each gene. cDNA variants are converted to
normalized protein-level representations, associated with genes,
converted to normalized Human Genome Variation Society
(HGVS18) (Human Genome Variation Society [HGVS], 2020)
representations, and assigned Mastermind key values. Finally,
appropriate gene-variant associations are selected in a whole-
article context after considering numerous textual relationships
and then stored in Mastermind. When generating Mastermind
keys for matches, cDNA positions are converted to single-letter
amino acid positions, e.g., V600E. For intronic variants, the

16https://mastermind.genomenon.com/api
17https://www.ncbi.nlm.nih.gov/snp/
18https://varnomen.hgvs.org/

amino acid coded for at the 5′ side of the intron is used, so
BRAF would have E80sd, E80int, and E80sa. Splice sites are
the first and last two bases of the intron. Splice regions include
additional nucleotides in the intron as well as coding variants
flanking the exon-intron and intron-exon junctions and are
designated as srd and sra, respectively. Similarly, for frameshift
variants, the index amino acid is used and the Mastermind key
designated with an fs, as in M123fs. Variants in the 5′ and 3′
UTR regions are similarly grouped together regardless of cDNA
change and assigned Mastermind keys of 5UTR and 3UTR. In
the user interface of the Mastermind Genomic Search Engine,
the specificity of search results is reflected in the priority order
of the returned article list depending on the nature of the search
performed by the user. For instance, if a specific cDNA search
is performed and there is data that matches that specific search
result, the references where this match occurred are listed first
before other less specific search results and demarcated in the
interface for ease of reference.

Single-Nucleotide and Indel Variant Database
Comparison
A list of 108 genetic variants provided by various clinical
laboratories encountered during routine diagnostic practice
were examined for content in Mastermind. Each of these
variants had fewer than 5 papers identified by each lab after
a search of routinely used databases and search strategies
including the Human Gene Mutation Database (HGMD,
Professional Edition19), PubMed, ClinVar20 (National Center for
Biotechnology Information [NCBI], 2020a) and Google and/or
Google Scholar21 (Google, 2020b). References were identified
with PMID and the resulting lists were examined for concordance

19http://www.hgmd.cf.ac.uk/ac/index.php
20http://clinvar.com/
21https://scholar.google.com/
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and sensitivity between lab-returned results and results returned
after performing a Mastermind search.

Variant Interpretation According to ACMG Guidelines
and Comparison With ClinVar
Interpretation of variants according to standard accepted ACMG
published guidelines was performed and the results compared
to assertions made for variants in entire genes as distributed
in ClinVar. The approach to interpreting variants according
to ACMG guidelines includes consultation of databases of
population frequency, databases and algorithms of in silico
models of pathogenicity prediction, and consultation of the
medical literature. Details of this process are provided in the
Supplementary Material. For the majority of this work, internal
automation processes and curation capabilities that allow for
rapid assessment of the ACMG categories were used to produce
the data comprising Table 3. All the work present in this table
is reproducible using the Mastermind user interface and related
publicly available databases. Of note, release of many of these
enhanced features into the Mastermind user interface to further
enhance the utility of Mastermind in identifying and assessing the
meaningfulness of each reference according to ACMG guidelines
is planned for 2021.

Copy Number Variants and Karyotypes
Copy Number Variant and Karyotype Identification
Using the data content in Mastermind, we have applied an
exhaustive complement of regular expressions to identify all
possible CNV citations from text and figures and tables. These
regular expressions capture CNVs describing exon or whole gene
level deletions by first identifying text describing the gene symbol
or any analogous synonym (as described in the section “Methods”
section above) and further identifying key words referencing
deletion or amplification terms in the surrounding text. In
addition, the data content of Mastermind was further evaluated to
identify the mention of any cytoband (e.g., 1p36.33) as itemized
in the UCSC Genome Browser Cytoband file22 (University of
California Santa Cruz, 2020). Finally, CNVs described in a variety
of karyotype nomenclatures were also identified, extracted, and
disambiguated to associate them with cytobands. All user inputs
or cited CNVs in the Mastermind database index – whether
exon-level, gene-level, cytoband-level, or genomic coordinates
in any nomenclature – were first normalized to standardized
chromosomal coordinates based on data in the relevant genome
build23 (National Center for Biotechnology Information [NCBI],
2020f) for alignment and comparison purposes. For each user
input, returned matches included “Exact” matches (results from
Mastermind that cited the same CNV only after normalization
to genomic co-ordinates), and “Surrounding,” “Contained,” and
“Intersecting” matches where Mastermind results overlapped,
were contained within, or intersected with the normalized user
query. For display purposes, results were prioritized according
to overall size of the CNV citation, proportion of overlap with
the user’s CNV query, and the match type in the following

22http://genome.ucsc.edu/cgi-bin/hgTables
23https://www.ncbi.nlm.nih.gov/refseq/

order: “Exact,” “Contained,” “Surrounding,” and “Intersecting.”
The results by PMID were then output in table form with
the citing PMID, the match type, and supporting information
demonstrating prioritization. These results were then visualized
in a custom designed stacked CNV plot. Ranges of CNVs that
spanned multiple cytobands were identified and normalized to
include results for all associated intervening cytobands.

Copy Number Variant Database Comparison
A randomly selected list of clinically relevant chromosomal
cytobands was used to search Mastermind for PMIDs that
contained mentions of each cytoband. The results were compared
to those obtained using standard searches of PubMed. CNVD
was non-functional at the time of writing, and the CNVdigest
database was also not available.

Gene Fusion Pairs
Gene Fusion Pair Identification
We extracted all articles mentioning any of the 507 genes
included on the Illumina TruSight Fusion Gene Panel (Illumina,
2020) from Mastermind24. To extract the fusion pairs, we
systematically searched articles that mentioned each index gene
and any additional gene and prioritized articles that contained
any of the three most commonly used formats for describing
fusions: ‘gene1:gene2,’ ‘gene1/gene2,’ and ‘gene1-gene2,’ etc. or
otherwise mentioned the two genes in the same sentence or
paragraph of text. Once these fusions were extracted from
individual articles, any articles mentioning the same fusion,
regardless of the order of the two genes mentioned, were
combined into a single entry for that specific fusion pair. The
validity of each fusion pair was confirmed by manually evaluating
the sentences and titles of the articles and the actual matching
sentence from which the fusion pair was extracted. Identifying
references describing gene fusions can be performed in the
Mastermind user interface for known fusion pairs using the
Boolean search capability for “gene A” and “gene B” along
with categorical keywords pertaining to fusion events (“fusion,”
“rearrangement,” etc.). Enhanced fusion gene and rearrangement
search capability allowing for display of all fusion pairs for a given
“gene A” search is planned for 2021. However, motivated users
can currently perform searches for all fusion events involving
“gene A” using the Mastermind API25 which offers a variety of
endpoints sufficient to reproduce the results of our analyses.
Additionally, a post-API script available on the Genomenon
GitHub site facilitates the organization of these data26.

Gene Fusion Pair Database Comparison
To assess the ability of Mastermind to identify gene fusion events
we examined results (including both fusion identification and
article identification) for each of the 507 genes from the Illumina
TruSight Fusion Gene Panel known to be involved in pathogenic
gene fusions in cancer and compared with results obtained

24https://www.illumina.com/products/by-type/clinical-research-products/
trusight-rna-fusion.html
25https://mastermind.genomenon.com/api
26https://github.com/Genomenon/mastermind-api-cookbook
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from the Catalog of Somatic Mutations in Cancer (COSMIC27)
(Catalogue of Somatic Mutations in Cancer [COSMIC], 2020).

RESULTS

Disease and Gene Associations and
Comparison of Commercially-Available
Diagnostic Panels
In total at the time of this writing, through its automated indexing
process the Mastermind database includes 32,282,936 abstracts,
and contains information from 7,619,062 full-text articles, and
2,599,660 supplemental files not restricted by journal type that
span from 1950 to the present and are kept up to date on a
weekly basis. In total, this reflects 32,799 unique journals. Each
of these references was indexed for the mention of any of 41,636
named genetic entities or their associated synonyms, with 33,709
mentioned in at least one reference, 19,413 of which were found
with identified genetic variants.

In order to test the validity and utility of these automatically
assembled data, we sought to draw a comparison between
previous gold standard, manually retrieved data by collecting the
genes included on 20 distinct commercially available products.
To account for variations among these panels due to size and
selection criteria, we grouped and analyzed panels of similar
proposed clinical use-cases, size, and type(s) of genetic lesions
being detected (Supplementary Tables 2, 3). Additionally, to
allow for the most equitable comparison, we compared eight
hereditary cancer panels that did not include genes exclusively
related to hematological cancers, ranging from 34 to 128 genes
(mean panel size, 75.1 ± 33.1 genes; Supplementary Table 4A).
These panels overall appeared to have the greatest degree of
concordance in gene selection as well as diagnostic targets
(Supplementary Tables 2, 3). Among these panels, 28 genes
(13.6% of the 206 unique genes) were found on all nine panels
(Supplementary Table 4A) and 98 genes (47.6%) were found on
only one panel total (Supplementary Table 4B).

Under the assumption that these 8 hereditary panels are being
used for a set of identical indications (i.e., to detect germline
mutations generating an increased risk for cancer development),
we expected that the smallest panel would fully overlap with
the next largest and so on. As such, we investigated the overlap
between the panels which were of the most similar size (Figure 1).
Comparison of the three largest panels – Children’s Hospital
of Philadelphia’s (CHOP) Comprehensive Hereditary Cancer
Gene Panel (128 genes), Fulgent’s Full Comprehensive Cancer
Panel (127 genes), and Ambry Genetics’ CustomNext-Cancer
(81 genes) – revealed only 63 out of 172 total unique genes
(36.6%) to be concordant across all three panels (Figure 1A).
The relatively low level of overlap between CHOP and Fulgent’s
panel, despite there only being a difference of one gene in
the size of the panel (128 and 127 genes, respectively), is
especially concerning; only 89 genes were found on both panels.
As seen in Figures 1A–C, however, the overlap appears to
improve as the panels become smaller. Comparison of the

27https://cancer.sanger.ac.uk/cosmic

three smallest panels – Otogenetics’ Extended Comprehensive
Inherited Cancer Gene Tests (55 genes), GeneDx’s OncoGeneDx:
Comprehensive Common Cancer Panel (47 genes), and Quest
Diagnostics’ MYVantage Hereditary Comprehensive Cancer
Panel (34 genes) – revealed 27 out of 56 unique genes (48.2%)
to be concordant across all three panels (Figure 1C). Since the
smallest panel has 34 genes, the observed overlap of 27 genes was
21% less than what would have been expected had these panels
truly been comprehensive for the same indications. Overall,
these results reflect a poor concordance rate across multiple
panels used commercially for diagnosis or evaluation of risk for
hereditary cancer.

Finally, these results indicate that these panels are not only
inconsistent but are not truly comprehensive; often they fail
to include genes with sufficient evidence for conferring cancer
susceptibility or include genes that lack said evidence. A more
detailed discussion of the statistical analysis of these results as
well as specific gene omissions among these panels and the
detailed analysis of the supporting evidence using Mastermind’s
genomic association data is provided in the Supplementary
Methods section.

Single-Nucleotide and Indel Variant
Identification and Comparison to ClinVar,
PubMed, HGMD, and Google Scholar
The content contained in Mastermind was compared to the
databases whose purpose was most analogous to that of the
Mastermind database. These include ClinVar, COSMIC, and
HGMD as representative variant databases for all mutations,
somatic mutations in cancer, and germline mutations,
respectively. Additionally, for more detailed evaluation of
the indexing capabilities of Mastermind, Google Scholar and
PubMed were included as representative search engines.

The overall content of Mastermind compared to manually
compiled databases of genetic variants is presented in Table 1
for ClinVar, COSMIC, and HGMD. In most cases, Mastermind’s
content exceeded the content of any one given manual database
by 2- to 10-fold. In total, the Mastermind database includes
6,812,408 total unique variants. Fewer than 6% of these are
identified in the title or abstract and the remainder are present in
the full-text or supplemental files. In fact, 23% of these variants
are only found in the supplemental materials. A breakdown
of variants that were identified is presented by source in
Supplementary Table 9A and by type in Supplementary
Table 9B. This includes variants mentioned at the cDNA or
protein level as well as rsIDs for both coding and non-coding
variants, using HGVS standard nomenclature or not. A listing of
some of the variant nomenclatures identified using Mastermind
indexing is presented in Supplementary Table 10 for the most
commonly cited variant, BRAF p.V600E. There were 99 unique
ways that authors described the BRAF p.V600E variant, from
48,531 mentions of “BRAF V600E” to nomenclatures used only
once such as “1799 T → A.” Additionally, there were 172
unique ways authors describe the CFTR p.508del (deletion)
variant, from 34,091 mentions of “F508del” to single mentions
of “1-F508” and “DeltaPhe508.” Alternate transcripts and legacy
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FIGURE 1 | Commercially available hereditary cancer panels show significant discrepancies. (A) Comparison of the genes targeted by Fulgent’s Full Comprehensive
Cancer Panel (123 total genes), Ambry Genetics’ CustomNext-Cancer (68 total genes), and Centogene’s CentoCancer R© (56 total genes). 48 genes were found to be
on all 3 panels. (B) Comparison of the genes targeted by Ambry Genetics’ CustomNext-Cancer (68 total genes), Centogene’s CentoCancer R© (56 total genes), and
GeneDx’s Comprehensive Common Cancer Panel (46 total genes). 40 genes were found to be on all three panels. (C) Comparison of the genes targeted by
Centogene’s CentoCancer R© (56 total genes), GeneDx’s Comprehensive Common Cancer Panel (46 total genes), and Otogenetics’ Comprehensive Inherited Cancer
Panel (39 total genes). 27 genes were found to be on all three panels. (D) Comparison of the genes targeted by Counsyl’s ReliantTM Cancer Screen (expanded
panel; 36 total genes), Quest diagnostics’ MYvantage R© Hereditary Comprehensive Cancer Panel (34 total genes), and Color Genomics’ Hereditary Cancer Test (30
total genes). 27 genes were found to be on all three panels.

nomenclatures are also reconciled and disambiguated to ensure
a maximally sensitive search result. These findings indicate that
the automated approach to variant identification by Mastermind
is likely to be more comprehensive than previous gold standard
manual databases.

In order to test this explicitly, we collected a list of 108
variants assembled from user submissions during software trial
periods. Each of these variants were encountered in routine
clinical practice and were tied directly to clinical casework.
No patient specific information was provided or used for this
analysis. Instead, the search results provided by each user for
their routine Google Scholar, PubMed and ClinVar searches were
compared to the search results for Mastermind. To assess the
sensitivity and specificity of the results, each variant was searched
using each of the specified resources and the references were
collected and assessed for accuracy. These results are presented
in full in Table 2. A representative screenshot of the Mastermind
interface for a similar variant search is presented in Figure 2. For

this random sampling of variants encountered in clinical practice,
Mastermind identified a total of 866 references compared to
706, 467, and 194 for Google Scholar, ClinVar and PubMed,
respectively. Closer inspection of these references indicated a
substantial number of false positives in all but the Mastermind
results. Specifically, Mastermind’s true positive percentage was
98.5% indicating that 814 references were valid. In contrast, the
true positive rate for Google Scholar, ClinVar, and PubMed was
57.6, 68.8, and 45.1%, respectively, meaning the total number of
true positive references for all these variants was 377, 309, and 36.

When the data was examined on a per case basis, there
were 76 variants for which additional references were returned
beyond the number contained in the other resources, reflecting
a benefit of using Mastermind in 70% of cases. Moreover, there
were 15 variants where Mastermind was the only resource that
contained references. This indicates that 13.9% of these cases
showed empirical evidence only in Mastermind which would
have otherwise been missed if using Google Scholar, ClinVar, and
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TABLE 2 | Mastermind has increased sensitivity and specificity for evidence curation for genetic variants.

Mastermind Google scholar PubMed ClinVar

Gene Variant Total
number

of papers

Papers
that are

true
positives

(%)

Number
of true

positive
references

Total
number

of papers

Papers
that are

true
positives

(%)

Number
of true

positive
references

Total
number

of papers

Papers
that are

true
positives

(%)

Number
of true

positive
references

Total
number

of papers

Papers
that are

true
positives

(%)

Number
of true

positive
references

References
only found in
Master mind

Additional
references

found in
Master
mind

Reference
missing in

Master
mind

Resource
with

reference
missing in

master
mind

ABCC6 R760W 8 100 8 10 50 5 0 – 0 0 – 0 More
ABCC8 N188S 27 100 27 17 64.7 11 1 100 1 14 100 14 More
AGA A101V 6 83.3 5 13 23.1 3 0 – 0 4 100 4 More
ALPL R152H 15 93.3 14 16 62.5 10 0 – 0 12 66.7 8 More
AMPD1 Q45K 78 39.7 31 0 – 0 0 – 0 0 – 0 Only More
ANO10 D615N 5 100 5 4 100 4 0 – 0 1 100 1 More
ANO5 N64fs 58 100 58 1 0 0 0 – 0 0 – 0 Only More
AP5Z1 R138X 2 100 2 0 – 0 0 – 0 0 – 0 Only More
APC A1358V 2 100 2 3 33.3 1 0 – 0 6 50 3 Missing ClinVar
APC E152fs 5 100 5 1 100 1 6 50 3 0 – 0 More
APC Q1244X 2 100 2 0 – 0 0 – 0 0 – 0 Only More
APC R2714H 3 100 3 1 100 1 1 0 0 2 50 1 More
ASL R182X 6 100 6 5 80 4 0 – 0 2 100 2 More
ATM E3007X 1 100 1 0 – 0 0 – 0 9 0 0 Only More
ATM Q2729H 5 100 5 2 100 2 3 0 0 3 66.7 2 More
ATM S1455R 5 100 5 3 100 3 1 0 0 3 100 3 More
ATP7B L795F 15 100 15 18 72.2 13 0 – 0 10 70 7 More
BMPR1A R254C 3 100 3 1 0 0 0 – 0 6 66.7 4 Missing ClinVar
BRCA1 E638K 2 100 2 4 25 1 0 – 0 0 – 0 More
BRCA1 H1283R 1 100 1 0 – 0 0 – 0 7 71.4 5 Missing ClinVar
BRCA1 H239R 8 100 8 12 33.3 4 0 – 0 4 100 4 More
BRCA1 L668F 22 100 22 17 70.6 12 1 0 0 14 85.7 12 More
BRCA1 P897fs 12 100 12 4 100 4 0 – 0 18 22.2 4 More
BRCA1 S1139I 4 100 4 2 100 2 1 0 0 5 60 3 More
BRCA1 V1665M 11 100 11 13 46.2 6 7 0 0 17 70.6 12 Missing ClinVar
BRCA2 Q2561R 3 100 3 1 100 1 7 0 0 4 25 1 More
BRCA2 R1160K 2 100 2 1 0 0 4 0 0 2 0 0 Only More
BRCA2 R118H 6 100 6 16 18.8 3 4 0 0 5 60 3 More
BRCA2 R3007G 3 100 3 4 75 3 7 0 0 1 0 0
BRCA2 S683P 1 100 1 1 100 1 4 0 0 0 – 0
BRCA2 Y3035S 15 100 15 18 55.6 10 4 0 0 13 76.9 10 More
CACN
A2D1

D1045A 3 100 3 2 100 2 31 3.2 1 0 – 0 More

CAPN3 W373R 4 100 4 3 100 3 3 0 0 4 100 4
CCM2 R19X 12 100 12 11 63.6 7 1 100 1 0 – 0 More
CDK4 R209C 8 100 8 5 60 3 0 – 0 7 85.7 6 More
CHRNA4 R495Q 1 100 1 2 50 1 0 – 0 0 – 0
COL4A4 G545A 22 100 22 21 76.2 16 0 – 0 12 91.7 11 More
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TABLE 2 | Continued
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COX4I2 R85W 2 100 2 3 66.7 2 0 – 0 1 100 1
DMD E2910V 16 100 16 12 58.3 7 1 100 1 13 69.2 9 More
EXT2 A202V 2 100 2 5 40 2 0 – 0 0 – 0
FAH R174X 8 100 8 12 41.7 5 1 100 1 5 100 5 More
FANCA L1339fs 4 100 4 0 – 0 0 – 0 2 100 2 More
FANCC R179X 4 100 4 0 – 0 0 – 0 0 – 0 Only More
FBN1 C2659X 2 100 2 2 50 1 2 0 0 2 50 1 More
FCN3 L117fs 27 100 27 15 80 12 0 – 0 4 100 4 More
FIG4 F254fs 3 100 3 0 – 0 0 – 0 4 75 3
FREM2 P187L 1 100 1 1 100 1 0 – 0 0 – 0
FTO V201I 3 100 3 2 50 1 0 – 0 0 – 0 More
GCDH G390R 4 100 4 12 33.3 4 1 100 1 4 100 4
HBB G84fs 6 100 6 0 – 0 0 – 0 16 18.8 3 More
HMBS H256Q 1 100 1 2 50 1 0 – 0 0 – 0
HNF1B V61G 13 100 13 16 50 8 2 0 0 7 85.7 6 More
HNRNPU R324G 2 100 2 2 100 2 0 – 0 13 15.4 2
HOGA1 P190L 8 100 8 12 58.3 7 2 100 2 4 100 4 More
KCNE1 R67H 10 100 10 17 35.3 6 1 100 1 8 62.5 5 More
KCNH2 D501N 12 100 12 15 53.3 8 0 – 0 12 75 9 More
KCNQ1 R397W 15 100 15 19 31.6 6 1 100 1 13 92.3 12 More
LDB3 A698T 4 100 4 6 66.7 4 0 – 0 5 80 4
LDLR D304E 5 100 5 3 66.7 2 4 0 0 13 7.7 1 More
LDLR D482G 1 100 1 4 25 1 7 0 0 1 100 1
LDLR D492H 3 66.7 2 1 0 0 0 – 0 3 0 0 Only More
LDLR D622G 1 100 1 1 100 1 7 0 0 2 50 1
LDLR F73C 1 100 1 1 100 1 7 0 0 0 – 0
LIPT1 S292X 5 100 5 1 100 1 1 100 1 3 33.3 1 More
LRRK2 R521G 3 100 3 20 10 2 0 – 0 1 0 0 More
MCCC1 M325R 6 100 6 3 66.7 2 0 – 0 5 60 3 More
MLH1 K461N 3 100 3 2 100 2 0 – 0 0 – 0 More
MLH1 S577L 3 100 3 1 0 0 0 – 0 5 80 4 Missing ClinVar
MLH1 V664del 2 100 2 0 – 0 0 – 0 0 – 0 Only More
MMACHC Y130C 6 100 6 4 100 4 1 100 1 2 100 2 More
MMP21 W401X 1 100 1 0 – 0 0 – 0 1 100 1
MSH2 A636V 1 100 1 2 50 1 0 – 0 5 0 0
MSH2 Q377X 2 100 2 9 0 0 0 – 0 0 – 0 Only More
MSH2 R171K 1 100 1 6 16.7 1 2 0 0 2 100 2 Missing ClinVar
MSH6 S564X 1 100 1 3 0 0 0 – 0 4 25 1
MSH6 T767I 4 100 4 9 33.3 3 1 100 1 3 33.3 1 More

(Continued)

Frontiers
in

G
enetics

|w
w

w
.frontiersin.org

11
N

ovem
ber

2020
|Volum

e
11

|A
rticle

577152

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-577152
N

ovem
ber9,2020

Tim
e:14:48

#
12

C
hunn

etal.
M

asterm
ind:

G
enom

ic
A

ssociations
D

atabase

TABLE 2 | Continued
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MUTYH W174X 3 100 3 6 16.7 1 0 – 0 0 – 0 More
MYBPC3 S858N 10 100 10 10 50 5 1 0 0 9 88.9 8 More
MYH7 D778E 15 100 15 16 62.5 10 1 0 0 9 88.9 8 More
MYH7 I530V 2 100 2 4 25 1 5 0 0 3 100 3 Missing ClinVar
MYO7A R336C 1 100 1 0 – 0 0 – 0 0 – 0 Only More
MYO7A T165M 8 100 8 15 60 9 2 100 2 9 100 9 Missing Google,

ClinVar
MYPN P1112L 18 100 18 9 88.9 8 1 100 1 8 87.5 7 More
MYPN Y20C 15 100 15 24 41.7 10 1 100 1 6 100 6 More
OCA2 A334T 1 100 1 0 – 0 0 – 0 12 0 0 Only More
OCA2 N489D 21 100 21 24 79.2 19 1 100 1 6 83.3 5 More
PAH F39del 58 100 58 8 100 8 0 – 0 20 90 18 More
PALB2 T226A 1 100 1 0 – 0 0 – 0 0 – 0 Only More
PMS2 E473K 1 100 1 7 14.3 1 0 – 0 3 33.3 1 More
PMS2 E661K 1 100 1 0 – 0 1 0 0 3 66.7 2 Missing ClinVar
PMS2 L729fs 15 100 15 0 – 0 0 – 0 0 – 0 Only More
PRODH A455S 6 100 6 7 71.4 5 1 100 1 2 100 2 More
PTCH1 G38A 1 100 1 6 0 0 0 – 0 0 – 0 Only More
PTEN C296X 3 100 3 2 100 2 0 – 0 0 – 0 More
RAD50 R138X 4 100 4 6 33.3 2 0 – 0 3 66.7 2 More
SETX G2169G 1 100 1 1 100 1 36 0 0 0 – 0
SHOX R147H 5 100 5 8 62.5 5 1 100 1 0 – 0
SLURP1 W15R 19 100 19 22 54.5 12 4 100 4 5 100 5 More
SMPD1 L180fs 1 100 1 0 – 0 0 – 0 4 25 1
SOS1 P340S 2 100 2 4 50 2 1 100 1 3 66.7 2
SURF1 D202H 15 100 15 5 40 2 0 – 0 0 – 0 More
TMC1 R389X 17 100 17 14 78.6 11 1 100 1 3 100 3 More
TMPRSS3 A306T 18 100 18 23 65.2 15 6 100 6 7 100 7 More
TP53 E343Q 2 100 2 1 100 1 3 0 0 0 – 0 More
TSC2 A84V 5 80 4 5 20 1 0 – 0 1 100 1 More
TTR E109K 6 100 6 9 55.6 5 0 – 0 0 – 0 More
TTR E74Q 5 80 4 8 25 2 0 – 0 3 100 3 More
WNK4 P556T 4 100 4 7 57.1 4 1 100 1 0 – 0
Total/average 866 98.5 814 706 57.6 377 194 45.1 36 467 68.8 309 15 76 9
Sensitivity
per
variant

100.0% 76.9% 22.2% 63.9%

Specificity
per
article

98.5% 57.6% 45.1% 68.8%

Frontiers
in

G
enetics

|w
w

w
.frontiersin.org

12
N

ovem
ber

2020
|Volum

e
11

|A
rticle

577152

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-577152
N

ovem
ber9,2020

Tim
e:14:48

#
13

C
hunn

etal.
M

asterm
ind:

G
enom

ic
A

ssociations
D

atabase

TABLE 3 | Mastermind contains more disease-causing variants than ClinVar.

Mastermind Total Disease-
causing
variants

ClinVar

Gene Total Pathogenic Likely
pathogenic

Conflict Variant of
uncertain

significance

Likely
benign

Benign MM/CV MM/CV Total Pathogenic Likely
pathogenic

Conflict Variant of
uncertain

significance

Likely
benign

Benign Other

(1) TP63 753 30 93 0 513 0 117 2.4 0.9 318 103 33 6 74 64 38 0

(2) PHEX 478 239 74 0 140 3 22 1.2 1.0 406 251 66 5 36 26 20 2

(3) BBS9 585 23 51 0 376 0 135 1.9 1.1 316 60 6 31 104 53 62 0

(4) ALMS1 1104 338 75 0 634 1 56 0.6 1.1 1918 145 223 82 875 459 132 2

(5) IFT172 254 9 19 0 209 0 17 1.9 1.2 134 19 4 2 24 52 33 0

(6) ATP7B 1310 366 282 14 566 30 52 1.1 1.3 1230 245 240 97 353 190 97 8

(7) NTRK2 302 1 6 0 73 5 217 9.2 1.4 33 5 0 1 4 18 4 1

(8) THRB 525 30 69 0 297 0 129 2.3 1.4 232 59 10 6 82 52 23 0

(9) EDA 470 105 126 0 221 0 18 2.1 1.5 226 101 50 6 44 11 13 1

(10) BBS2 384 36 69 0 259 0 20 2.1 1.7 187 35 28 14 62 36 12 0

(11) GBA 852 104 182 2 551 3 10 3.6 1.9 236 114 35 10 45 9 11 6

(12) CEP290 766 3 349 0 375 0 39 1.3 2.2 592 113 50 54 165 127 65 14

(13) NECTIN1 320 1 12 0 247 4 56 6.5 2.2 49 6 0 0 0 17 26 0

(14) IKBKG 703 81 116 1 501 1 3 7.6 2.8 93 56 14 3 7 5 1 7

(15) MKKS 283 46 42 4 161 4 26 2.6 2.8 108 25 6 3 44 15 14 1

(16) TARDBP 303 15 88 2 187 1 10 3.5 5.2 86 18 2 4 42 10 10 0

(17) WDPCP 974 0 36 0 887 49 2 9.5 6.0 103 4 2 7 52 23 13 2

(18) POMC 287 48 34 0 183 2 20 6.2 6.3 46 12 1 5 19 6 3 0

(19) CFI 349 45 70 2 189 1 42 3.6 6.8 97 10 7 1 27 22 21 9

(20) BDNF 632 0 17 0 549 0 66 27.5 8.5 23 0 2 0 3 8 10 0

(21) CFH 845 102 127 10 416 4 186 6.6 9.5 129 22 2 1 36 33 26 9

(22) C3 313 25 61 4 141 2 80 2.2 9.6 140 3 6 7 37 47 35 5

(23) LEPR 692 42 47 0 261 4 338 11.0 9.9 63 6 3 2 33 4 15 0

(24) PCSK1 414 31 84 2 235 7 55 4.7 12.8 89 7 2 3 51 22 4 0

(25) LRRK2 962 29 126 37 460 13 297 3.1 12.9 308 10 2 10 178 61 47 0

(26) MC4R 919 136 408 33 304 32 6 11.6 13.9 79 33 6 4 20 8 3 2

(27) MC3R 508 21 118 10 346 4 9 127.0 N/A 4 0 0 0 0 2 0 2

Total 16287 1906 2781 121 9281 170 2028 9.7 4.8 7245 1462 800 364 2417 1380 738 71
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TABLE 4 | Mastermind has increased sensitivity for identifying references for literature curation for CNVs.

Cytoband Chr Start End Disease name(s) Total references
identified in
Mastermind

Total exact
matches

identified in
Mastermind

Total references
identified in

PubMed

Ratio of
references
identified in
Mastermind/

PubMed

Ratio of
references

containing exact
matches in

Mastermind/
PubMed

Key
references

11q23 chr11 110,600,000 121,300,000 Jacobsen syndrome,
11q23 deletion syndrome

7,926 1,625 490 16.2 3.3 31895838,
29307309

14q32.2 chr14 95,800,000 100,900,000 Kagami–Ogata syndrome 2,470 147 30 82.3 4.9 30232357

15q11.2 chr15 20,500,000 25,500,000 15q11.2 BP1–BP2
microdeletion syndrome,
Burnside-Butler syndrome

4,095 850 268 15.3 3.2 30342661,
28254235,
25689425,
31207912

17p11.2 chr17 16,100,000 22,700,000 Smith–Magenis syndrome 3,604 1,093 403 8.9 2.7 29138588,
20301487

17q12 chr17 33,500,000 39,800,000 17q12 microdeletion
syndrome, 17q12 deletion
and duplication syndrome,
17q12 deletion syndrome

4,677 619 169 27.7 3.7 27409573,
29060963,
30032214,
32219821

18q21.1 chr18 45,900,000 50,700,000 Pitt–Hopkins syndrome 2,525 344 71 35.6 4.8 28520343,
22934316

22q11.2 chr22 17,400,000 25,500,000 22q11.2 Deletion syndrome
(22q11.2DS)

13,363 4,808 2,086 6.4 2.3 32117416,
20301696,
30380194

22q13.3 chr22 43,800,000 50,818,467 Phelan-McDermid
syndrome, 22q13.3
deletion syndrome

2,882 545 116 24.8 4.7 20301377,
26350728

2q22.3 chr2 143,400,000 147,900,000 Mowat–Wilson syndrome 1,099 52 11 99.9 4.7 19215041,
20301585

4q35.1 chr4 182,300,000 186,200,000 Terminal chromosome 4q
deletion syndrome

2,312 100 19 121.7 5.3 24962056

Average 4,495 1,018 366 43.9 4.0

Min 1,099 52 11 6.4 2.3

Max 13,363 4,808 2,086 121.7 5.3
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FIGURE 2 | Representative screenshot of the Mastermind software interface. A representative screenshot depicting the results of a typical Mastermind variant
search including the variant landscape for all variants in the searched for gene (upper left), the literature landscape results for the searched for variant (upper right;
size of each icon reflects the relevance of the reference to the searched for content including categorized keywords) as well as context for the mention of the relevant
search terms in the text of the specified reference (lower right).

PubMed alone. On the other hand, there were 13 references that
were identified in these other resources that were not identified
in Mastermind representing a low false negative rate of 1.6%
(or 13 out of 827 references) compared to a relatively high false
positive rate of 95.6% for PubMed, 62.6% for ClinVar, and 54.4%
for Google Scholar. In 8 out of 9 of these cases where Mastermind
was missing a reference, there was only 1 additional reference
found in ClinVar. Google Scholar had an additional reference in
only a single case compared to Mastermind. Integration of the
publicly available ClinVar dataset is a planned future feature of
Mastermind at which time no references in ClinVar will not be
included in Mastermind. Overall, these results demonstrate the
superiority of the Mastermind database for both sensitivity and
specificity of returned reference matches.

To examine in more depth the value of the references returned
for any of these variants, we sought to curate complete sets
of variants for a randomly selected cohort of genes associated
with constitutional disease (according to the ACMG guidelines)
as identified using Mastermind. We chose 27 genes across a
variety of diseases and curated the assembled evidence across
all variants for each of the genes. These interpretation results
were compared with results per variant in ClinVar. In total,
Mastermind identified 16,287 total variants whereas ClinVar

identified 7,245, reflecting a 2.2-fold increase in variants when
using Mastermind (average 9.7 across all 27 genes, reflecting a
wide range from 0.9 to 127-fold increase). When the nature of the
individual variants was examined using the ACMG guidelines for
assessing pathogenicity, Mastermind identified 4,687 Pathogenic
or Likely Pathogenic variants, each with supporting evidence
from the empirical literature (ranging from one supplemental
reference to more than 8,000 articles). In contrast, ClinVar
identified only 2,262 Pathogenic or Likely Pathogenic variants,
representing a 2.1-fold increase in disease-causing variants when
using Mastermind. Closer scrutiny of this data also suggested
that many of the pathogenic variants identified in ClinVar lacked
reference citations, calling into question the validity of these
user submitted interpretations (data not shown). These results
are presented in full in Table 3. Overall, these results indicate
that Mastermind can identify, on average, 9.7-fold more variants
than the previous gold standard ClinVar, including 4.8-fold more
pathogenic variants. This is in addition to allowing for a more
complete understanding of the clinical and functional evidence
supporting the pathogenicity and actionability of each variant.
Mastermind is therefore a superior resource for identifying
evidence with which to interpret genetic variants according to
industry-accepted standards including ACMG guidelines.
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TABLE 5 | Mastermind has increased sensitivity for identifying references for
literature curation for gene fusion events.

Fusion event Number of
references
identified in
Mastermind

Number of
references
identified in

COSMIC

Ratio of
references
identified in
Mastermind/

COSMIC

RUNX1-RUNX1T1 2706 55 49.2

ETV6-JAK2 365 8 45.6

ETV6-RUNX1 1940 43 45.1

PML-RARA 1477 42 35.2

HEY1-NCOA2 51 2 25.5

TPM3-ROS1 22 1 22.0

SLC45A3-ELK4 37 2 18.5

FGFR3-TACC3 238 14 17.0

TMPRSS2-ERG 1895 114 16.6

ETV6-PDGFRB 252 16 15.8

NPM1-ALK 1322 86 15.4

TCF3-PBX1 796 53 15.0

EPC1-PHF1 43 3 14.3

FUS-ERG 228 16 14.3

NAB2-STAT6 168 12 14.0

EWSR1-PBX1 28 2 14.0

PAX3-NCOA2 28 2 14.0

PAX3-NCOA1 41 3 13.7

FUS-CREB3L1 66 5 13.2

ETV6-NTRK3 641 49 13.1

EWSR1-CREB1 143 11 13.0

MN1-ETV6 87 7 12.4

CLTC-TFE3 48 4 12.0

PAX3-FOXO1 835 72 11.6

ETV6-ABL1 283 25 11.3

MEAF6-PHF1 33 3 11.0

DNAJB1-PRKACA 66 6 11.0

IRF2BP2-CDX1 11 1 11.0

SS18L1-SSX1 11 1 11.0

PRCC-TFE3 119 11 10.8

FUS-FEV 32 3 10.7

NUP214-ABL1 167 16 10.4

CCDC6-RET 1652 164 10.1

SLC45A3-ERG 30 3 10.0

STRN-ALK 49 5 9.8

CIC-FOXO4 29 3 9.7

FUS-DDIT3 461 48 9.6

ASPSCR1-TFE3 314 33 9.5

JAZF1-PHF1 57 6 9.5

EWSR1-NFATC2 19 2 9.5

EWSR1-PATZ1 19 2 9.5

FUS-CREB3L2 112 12 9.3

SQSTM1-ALK 28 3 9.3

FGFR3-BAIAP2L1 27 3 9.0

PAX7-FOXO1 496 56 8.9

FUS-ATF1 42 5 8.4

SLC45A3-BRAF 25 3 8.3

EWSR1-FLI1 1387 167 8.3

NONO-TFE3 33 4 8.3

(Continued)

TABLE 5 | Continued

Fusion event Number of
references
identified in
Mastermind

Number of
references
identified in

COSMIC

Ratio of
references
identified in
Mastermind/

COSMIC

EWSR1-ATF1 384 47 8.2

EWSR1-POU5F1 49 6 8.2

RANBP2-ALK 89 11 8.1

EWSR1-ZNF384 8 1 8.0

PCM1-JAK2 135 17 7.9

EWSR1-ETV1 93 12 7.8

PAX5-JAK2 30 4 7.5

TPM4-ALK 99 14 7.1

BRD3-NUTM1 42 6 7.0

JAZF1-SUZ12 131 19 6.9

TPM3-ALK 185 27 6.9

SEC31A-ALK 33 5 6.6

SS18-SSX2 904 137 6.6

MSN-ALK 39 6 6.5

EWSR1-DDIT3 173 27 6.4

CBFA2T3-GLIS2 50 8 6.3

EWSR1-ERG 559 91 6.1

EWSR1-WT1 325 55 5.9

CRTC1-MAML2 212 36 5.9

HIP1-ALK 16 3 5.3

TFG-ALK 130 25 5.2

EML4-ALK 2566 518 5.0

SET-NUP214 74 15 4.9

CLTC-ALK 122 25 4.9

ATIC-ALK 97 20 4.9

EWSR1-ETV4 63 13 4.8

PPFIBP1-ALK 14 3 4.7

CARS-ALK 28 6 4.7

EWSR1-FEV 79 17 4.6

HAS2-PLAG1 18 4 4.5

EWSR1-SP3 9 2 4.5

KIF5B-RET 230 53 4.3

SS18-SSX4 82 19 4.3

KIF5B-ALK 133 31 4.3

ERC1-RET 38 9 4.2

COL1A1-PDGFB 217 52 4.2

HMGA2-RAD51B 20 5 4.0

TCF12-NR4A3 16 4 4.0

COL1A2-PLAG1 12 3 4.0

HMGA2-LPP 63 16 3.9

SS18-SSX1 501 136 3.7

PCM1-RET 25 7 3.6

SSBP2-JAK2 14 4 3.5

TAF15-NR4A3 37 11 3.4

EWSR1-NR4A3 71 22 3.2

SLC45A3-ETV1 9 3 3.0

TMPRSS2-ETV1 100 34 2.9

EZR-ROS1 53 19 2.8

SFPQ-TFE3 20 8 2.5

(Continued)
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TABLE 5 | Continued

Fusion event Number of
references
identified in
Mastermind

Number of
references
identified in

COSMIC

Ratio of
references
identified in
Mastermind/

COSMIC

TMPRSS2-ETV4 47 19 2.5

PAX8-PPARG 183 77 2.4

TRIM24-RET 22 10 2.2

SLC34A2-ROS1 91 44 2.1

EWSR1-SMARCA5 4 2 2.0

EWSR1-NFATC1 2 1 2.0

EWSR1-YY1 2 1 2.0

FGFR1-ZNF703 2 1 2.0

HMGA2-CCNB1IP1 2 1 2.0

KMT2A-MLLT3 58 36 1.6

KMT2A-MLLT1 35 33 1.1

KMT2A-FOXO4 2 2 1.0

PPFIBP1-ROS1 1 1 1.0

KMT2A-SEPT5 1 1 1.0

HMGA2-COX6C 2 2 1.0

NUP107-LGR5 1 1 1.0

ERC1-ROS1 1 1 1.0

ETV6-ITPR2 1 1 1.0

KMT2A-AFF1 63 74 0.9

HMGA2-LHFP 2 3 0.7

KMT2A-MLLT10 15 26 0.6

KMT2A-MLLT6 5 10 0.5

KMT2A-ELL 8 17 0.5

KMT2A-TET1 2 5 0.4

KMT2A-MLLT11 2 7 0.3

KMT2A-SEPT6 3 13 0.2

KMT2A-CREBBP 1 8 0.1

PRKAR1A-RET 4 38 0.1

KMT2A-EPS15 1 14 0.1

Copy Number Variant and Karyotype
Abnormality Identification and
Comparison to PubMed
A major challenge when interpreting the pathogenicity of
CNVs is the difficulty associated with finding empirical and
clinical evidence from the medical literature necessary for
making determinations about the diagnostic, prognostic and/or
therapeutic actionability of a patient’s CNV profile. We took
advantage of Mastermind’s ability to identify associations from
the empirical literature by searching for CNV data whether
described at the karyotypic level (as from cytogenetic and
chromosomal banding techniques), the cytoband level (as from
a microarray result), the whole gene or gene exon level (such
as when describing more focused or specific deletions or
amplifications and their effects), or lastly, at the genomic co-
ordinate level.

To assess the benefit of this new approach to evidence
assembly for CNVs, we chose 10 randomly selected, clinically
relevant cytobands from among the total 863 named cytobands in
the human genome and compared search results in Mastermind
to results from PubMed. The results of this comparison
are provided in Table 4. The unique number of references

identified in Mastermind ranged from 52 to 4,808 (average
1,018) for exact matches compared to 28 to 3,322 (average
881) for exact matches in PubMed. This reflects an average
4.0-fold increase in references identified using Mastermind and
resulted from a deeper reach into the full-text compared to
PubMed. Additionally, Mastermind’s superior ability to recognize
appropriate content without the requirement that there be
an exact match for a given query resulted in vastly more
references compared to PubMed. For instance, deletions or
amplifications described solely at the gene level are also critical
to understanding the significance of clinical and functional
evidence needed to properly interpret a CNV and would
not be available in a PubMed CNV search. The increase
in references identified in Mastermind when these additional
matches were considered reflected a 43.9-fold increase compared
to PubMed results containing only exact matches – between
1,099 to 13,363 prioritized references (average 4,495) for total
matches in Mastermind. In fact, only 1 in 8 of the search
results in Mastermind were from entries that reflected a
exact match of the searched for CNV (12.5% “Exact”; 3.3–
25.8%) indicating that the majority of relevant results were
previously unobtainable in PubMed or other search strategies
such as those using Google Scholar that require an exact
match. For the representative CNVs depicted in Table 4, the
majority of the references comprising the search results described
the CNV as either a cytoband or karyotype (79.4%; 69.8–
89.4%) with the balance of the references referring to specific
gene exon deletions/amplifications (2.2%; 0.7–4.4%) or entire
gene deletion/amplifications (18.4%; 9.9–27.2%). The breakdown
of the match types based on article count is depicted in
Supplementary Tables 11A,B.

Identifying these mentions using the Mastermind index
and associating the results with additional ontological entities
or key terms will provide a powerful tool to expedite the
interpretation of CNV data at the same time it will likely improve
diagnostic yield.

Fusion Gene Identification and
Comparison to COSMIC
In order to determine whether Mastermind could serve as a more
comprehensive source for documented fusions, we developed a
process to automatically retrieve fusion genes from our database
of approximately 6.5 million full-text genomic articles. To focus
our study on fusion events of clinical significance, we restricted
our analysis to the 507 genes comprising the Illumina TruSight
Fusion Gene Panel (Illumina, 2020). The result of this analysis
for the representative gene ALK is presented in Supplementary
Table 12. For these 507 genes, we discovered a total of 1,896
unique fusion pairs cited in the scientific literature, all of which
were manually validated. This represents a 538% increase in
yield over the 297 unique fusions in the COSMIC database
(for detailed results for top genes see Figure 3) (Catalogue of
Somatic Mutations in Cancer [COSMIC], 2020). Additionally,
even for those fusions also identified in COSMIC, Mastermind
typically found significantly more references per fusion gene pair
(Table 5).
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FIGURE 3 | Mastermind identifies a significant number of additional fusion gene partners than COSMIC. The number of unique fusion partners identified by
Mastermind (blue) compared to results for those same genes identified in COSMIC (pink) from among genes routinely commercially tested for fusion events using the
Illumina TruSight RNA fusion Sequencing Panel.

Additionally, we were able to identify fusions that are not
found in the two most commonly used databases for documented
fusion events: COSMIC and TCGA. NPM1-TYK2 is an example
for which there is a known pathogenic disease association and a
potential therapy. This fusion was discovered in 2014 and found
to be recurrent in cutaneous CD30-positive lymphoproliferative
disorders (Velusamy et al., 2014). Because the fusion event
involves activation of the JAK-STAT pathway member TYK2, it
represents a potentially targetable fusion event.

The top 5 most common fusion partners we discovered
were ALK (n = 94 unique fusion partners), BRAF (n = 74
unique fusion partners), ETV6 (n = 62 unique fusion partners),
EWSR1 (n = 53 unique fusion partners), and RUNX1 (n = 50
unique fusion partners). Overall, the top 20 most common
fusion partners represented 28.9% of the total fusion partners
identified (Supplementary Table 13). Based on the publication
date of the articles describing these fusions, we also discovered
that both the total number of articles describing fusions and
the number of articles describing novel fusions involving these
genes has experienced a relatively constant increase from 1987 to
2018 (Supplementary Table 14). This trend represents a steady
increase in the recognition of fusion genes in clinical diagnostic
labs and research laboratories.

In 2018 alone, over 200 novel gene fusions were found across
nearly 500,000 newly published scientific articles containing
genomic content. In 2019, we identified 31 novel fusions across
21 articles involved in the genesis of multiple cancer types
(Supplementary Table 15). Several of these fusions were unique,
having been discovered in an individual patient. BRAF-SEPT3
is a novel fusion discovered in one patient with melanoma and
conferred the least proliferative but most invasive phenotype of
the three BRAF fusions that were evaluated, as well as a low

treatment response to MAPK inhibitors (Turner et al., 2019).
Similarly, NTRK3-KHDRBS1 was discovered in an infant with
a CD34-positive spindle-cell skin tumor and is of particular
interest due to the more recent identification of NTRK3 fusions
as drivers in the development of rare cancer types, as well as
the recent development of TRK inhibitors (Tallegas et al., 2019).
Other fusions were detected in more than one case. LPP-RFC4,
is a recurrent but non-pathogenic fusion in mucinous breast
cancer (Pareja et al., 2019) and CBFA2T3-PAX5 is a recurrent
fusion in a high-risk subtype of B-progenitor acute lymphoblastic
leukemia (Gu et al., 2019). Overall, these findings illustrate an
increased interest in the role of fusions in cancer generally, as
well as emphasize the true breadth and heterogeneity of the
fusion landscape.

DISCUSSION

Benefits of Mastermind for Identifying
Genetic Associations for Designing Gene
Panels
Our results indicate that there is substantial discordance between
commercially available comprehensive hereditary cancer panels
that claim to be useful for the same purpose – to detect
germline mutations associated with an increased risk for
cancer development. These panels included genes that were
not adequately supported as cancer predisposition or cancer-
causing genes as well as failed to include genes that are
adequately supported as cancer predisposition genes. These
results underscore the need to carefully examine the biomarker
content of any commercial gene panel to ensure there is adequate
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diagnostic utility, especially pertaining to panels marketed
as comprehensive.

As these panels are being utilized within clinical settings
as opposed to laboratory research, the inclusion of genes with
contradictory or inconclusive evidence is also concerning. In
order for the panels to be clinically useful, they must produce
actionable information; a gene of undetermined significance in
relation to cancer susceptibility cannot produce this information.
Moreover, the absence of a clinically meaningful gene from
a sequencing panel will result in clinically consequential
false negatives.

These discrepancies in comprehensive hereditary cancer
panels could potentially be attributed to two factors – one, a
lack of consensus on what a ‘comprehensive’ cancer panel should
consist of (e.g., common cancer types versus more rare cancer
predisposition syndromes) and two, a gap in knowledge where
recently described and/or lesser known cancer predisposition
genes simply are missed during the labor-intensive, manual
curation process. False positives – namely, mistakenly selected
genes with little to no evidence supporting a disease-association –
could also be attributed to lack of a sufficiently comprehensive
knowledgebase to eliminate remaining suspicions about a
gene’s potential role in cancer development and/or the exact
nature of that role.

Thus, we propose the use of more systematic and
comprehensive approaches to evidence-based gene biomarker
selection to come closer to a consensus in the selection
of biomarkers. Our results have indicated that the use of
Mastermind to systematically organize and evaluate evidence
from the genetic literature was a useful mechanism to assess
the validity of any given biomarker candidate and may help
facilitate more automated approaches to evidence-based gene
panel design. Finally, systematic examination of the evidence
supporting the inclusion of biomarker candidates provided a
useful mechanism to assess the validity of any given biomarker
candidate and may help facilitate more automated approaches to
evidence-based gene panel design.

Benefits of Mastermind for Clinical
Interpretation of Single-Nucleotide and
Indel Variants
With the increasingly widespread adoption of rapid and
inexpensive genome sequencing assays in both the clinic and
in research, it is becoming clearer that the manual approach
to curating and interpreting this information is not scalable.
Particularly in diagnostic labs where the reproducibility of
the interpretations is paramount, the dramatic increase in
information that needs to be accessible in the empirical evidence
is a major bottleneck. Moreover, as the trend toward larger and
larger panels culminates in full exome or genome sequencing
of patients, the need to have a reliable, comprehensive and
automatic understanding of this published information is critical.

Attempts to aid variant interpretation beyond using PubMed
or Google Scholar have been made, including by ClinVar, a
freely available public archive of variants and their interpretations
(Landrum et al., 2018). ClinVar relies on user submissions

to curate interpretations for variants and provide supporting
evidence from the empirical literature. However, due to
inconsistency among clinical laboratories even with the use
of ACMG criteria and applying similar search strategies to
identify and interpret the empirical evidence, the process
remains error-prone (Gradishar et al., 2017; Harrison et al.,
2017). The opportunity for open communication between
clinical laboratories that ClinVar provides, however, has been
shown to increase concordance (Harrison et al., 2017). Another
tool built as an aid for variant interpretation, specifically for
applying ACMG criteria, is InterVar (Li and Wang, 2017).
However, InterVar only provides support for 18 of the 28
ACMG criteria and relies solely on existing public databases,
including ClinVar, which have been shown to suffer from
inadequacies and inconsistencies (Harrison et al., 2017; Yen
et al., 2017). Moreover, it does not provide access to critical
information from the genetic literature that can provide support
for the remaining 10 criteria as well as assist in resolving
the inconsistencies which exist in these databases. In order to
improve on this, the information contained within the genetic
literature needs to be captured and presented in an organized,
systematic manner.

In this work, we have shown how Mastermind’s automated
approach to data aggregation, organization and annotation solves
these problems by examining results for individual variant
curation using Mastermind and comparing its performance to
previously used resources like PubMed, Google Scholar, and
ClinVar. Mastermind outperformed each of these resources
both in terms of sensitivity as well as specificity. In fact, in
nearly 14% of these cases, Mastermind was the only resource
that contained information necessary to adequately interpret
the clinical significance of the variant. This suggests that use
of Mastermind on previously unresolved cases is likely to
significantly improve diagnostic yield by allowing VUS results
to be converted to more clinically meaningful results. Anecdotal
evidence from our users indicates that this is indeed true
(manuscripts in preparation).

Moreover, when the variant content for entire genes was
examined using the data contained in Mastermind, the data
indicated a dramatic increase in the number of variants that were
determined to be pathogenic as compared to ClinVar indicating a
failure of the manual approach even when facilitated by crowd-
sourced curation. The limitations of the model employed by
ClinVar are apparent when considering the lack of evidence
and reference citations supporting any of the user-submitted
results resulting in frequently discordant results. Moreover,
the challenge of keeping up to date with newly published
information for each previously entered variant in addition to
newly published variants will be a continual rate-limiting step
in maintaining this resource to ensure its accuracy and utility.
We propose Mastermind as an alternative to ClinVar and similar
manually curated databases including HGMD for coalescing this
information as Mastermind has a much more comprehensive
collection of informative variants and the needful empirical
evidence for each.

Finally, the ability to more thoroughly automate the curation
and interpretation of genetic variants is achievable by leveraging

Frontiers in Genetics | www.frontiersin.org 19 November 2020 | Volume 11 | Article 577152

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-577152 November 9, 2020 Time: 14:48 # 20

Chunn et al. Mastermind: Genomic Associations Database

Mastermind’s superior and more comprehensive data and
puts the possibility of rapidly curating the entire genome
of all hypothetical variants within reach – work which is
forthcoming.

Evidence for Clinical Assessment of
CNVs and Gene Fusions
While curating single nucleotide and smaller insertion deletion
variants solves much of the challenge associated with interpreting
genetic sequencing assays, a significant proportion of cases have
disease-causing and diagnostically useful structural alterations
whose contribution to clinical care must be taken into account.
These larger structural alterations – CNVs and fusion events –
contribute to clinical decision-making and treatment decisions
in 10–25% of clinical cases for either constitutional disease or
somatic cancers and therefore are an important consideration for
a large number of otherwise unresolved cases.

Identifying evidence for CNVs is challenged by a lack of
appropriate databases and searching independently for this
evidence is especially difficult given the myriad of different
nomenclature types used by authors of empirical studies to
describe these changes. Not only does this searching take a great
deal of time for clinical scientists, geneticists and pathologists, but
the subjectivity of the search and the restriction of exact match
requirements using other search techniques makes this process
prone to numerous false negatives and irreproducibility across
different labs or even different searchers within the same lab.
We therefore applied the Mastermind indexing infrastructure to
identify and categorize CNVs. Our approach included looking
for CNVs mentioned by authors as deletions or amplifications
according to specific genomic coordinate ranges, affecting
specific genes or gene exons, involving chromosomal cytobands,
or otherwise embedded in the descriptions of karyotypic results.
When results for representative CNV searches in Mastermind
were compared with those in PubMed, Mastermind identified
several-fold more results, indicating an improved sensitivity of
search results. Moreover, Mastermind’s ability to cross-index any
of these results with additional annotations including diseases,
phenotypes, therapies and associated clinical and functional
keywords reflects a uniquely powerful capability to improve the
specificity of the search results as well.

Whereas there is no suitable database of clinically relevant
CNVs for an adequate comparison, there are manually assembled
databases of clinically relevant fusion gene events. We compared
the data content in these databases with the content in
Mastermind for fusion events and the results have indicated
that COSMIC the most widely utilized database for fusion
events in cancer– are insufficient sources for comprehensive
documentation of fusion events. COSMIC lacks the literature
support needed to ensure that the database is fully inclusive of
all documented fusions, as evidenced by fusions Mastermind
identified that were present in neither database. Additionally,
the fusions in COSMIC are aggregated from large sequencing
studies which prevents the more detailed curation that is
possible through analysis of the literature. Through the use of
Mastermind, we were able to discover several-fold more fusions

than were documented in the COSMIC database, all of which
were manually validated to be clinically relevant.

Since the number of fusions being documented is steadily
increasing, the need for literature support in documenting these
fusions will similarly increase. The literature can ultimately
provide a more detailed understanding of the effects of fusion
events than is currently possible using sequencing-based datasets
such as COSMIC. Without the literature, the mechanistic
evidence behind a fusion’s role in cancer development cannot be
fully elucidated, preventing the development and use of effective
targeted therapies. Moreover, these fusions being aggregated
from large patient sequencing studies, without more detailed
curation, introduces the potential for inclusion of incidental
fusion events that do not drive disease, non-functional read-
through fusions, or sequencing and bioinformatic artifacts.

Overall, our results have indicated that Mastermind, with its
ability to systematically organize and analyze the medical/genetic
literature, can serve as a more comprehensive source for the
documentation of structural alterations including CNVs and
fusion events in both constitutional diseases and somatic cancer.

Overall Conclusion
Altogether, these findings demonstrate that Mastermind’s novel
automated approach to extraction, organization, and annotation
of genomic association data from the primary scientific
literature is of superior sensitivity compared to manual database
assembly methods without compromising specificity. Moreover,
we demonstrate Mastermind’s superior utility for designing and
assessing gene panels as well as identifying references for and
arriving at interpretations of genetic variants including structural
alterations such as CNVs and fusion events. New information
about disease-gene associations and an increasing number of
additional insights about previously identified genetic variants
and newly discovered variants are being published on a weekly
basis. As such, the reliable and scalable solution provided by
Mastermind is essential to ensure patients receive adequate care
based on their disease’s genomic profile.
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