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The life-threatening disease COVID-19 has inspired significant efforts to discover novel
therapeutic agents through repurposing of existing drugs. Although multi-targeted
(polypharmacological) therapies are recognized as the most efficient approach to
system diseases such as COVID-19, computational multi-targeted compound
screening has been limited by the scarcity of high-quality experimental data and
difficulties in extracting information from molecules. This study introduces MolGNN, a
new deep learning model for molecular property prediction. MolGNN applies a graph
neural network to computational learning of chemical molecule embedding. Comparing to
state-of-the-art approaches heavily relying on labeled experimental data, our method
achieves equivalent or superior prediction performance without manual labels in the
pretraining stage, and excellent performance on data with only a few labels. Our
results indicate that MolGNN is robust to scarce training data, and hence a powerful
few-shot learning tool. MolGNN predicted several multi-targeted molecules against
both human Janus kinases and the SARS-CoV-2 main protease, which are preferential
targets for drugs aiming, respectively, at alleviating cytokine storm COVID-19 symptoms
and suppressing viral replication. We also predicted molecules potentially inhibiting cell
death induced by SARS-CoV-2. Several of MolGNN top predictions are supported by
existing experimental and clinical evidence, demonstrating the potential value of our
method.
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INTRODUCTION

The global COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) resulted in over 120 million infected patients and 2.6 million deaths worldwide by
March 2021, mostly due to severe acute respiratory syndrome. Although COVID-19 vaccines offer a
path to control the spread of coronavirus, there remains the challenge of creating widely available
vaccines and rapidly developing updates to match fast-emerging new SARS-CoV-2 strains.
Meanwhile, the discovery of novel drugs and therapies against the SARS-CoV-2 infection is
critical for tackling the disease. However, discovery and development of effective antiviral
therapies can be costly and time-consuming. For this reason, significant efforts have been made
toward repurposing drugs for COVID-19 treatment (Beigel et al., 2020; Zhou et al., 2020; Galindez
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et al., 2021) as a time- and resource-saving alternative to de novo
drug discovery (Chong and Sullivan, 2007; Jin and Wong, 2014).

Conventional target-based drug repurposing approaches have
focused on the reuse of an existing drug against another single
target. However, COVID-19 is a systemic disease caused by the
direct effect of the viral infection and overreacted host
inflammatory response. Thus, polypharmacological therapies
are arguably more efficient by targeting multiple disease-
associated viral genes (Paolini et al., 2006; Apsel et al., 2008;
Hopkins, 2008; Hopkins, 2009). Identifying proper target
combinations and designing effective multi-targeting agents
require approaches such as in silico drug design, which
provides a powerful tool to speed up chemical compound
screening (Chaudhari et al., 2017; Peng et al., 2018;
Balasubramaniam and Reis, 2020; González-Durruthy et al.,
2020).

Machine learning techniques have been applied to various
tasks in drug discovery, such as molecular property prediction
(Duvenaud et al., 2015; Wu et al., 2018; Ayed et al., 2019) and
drug–target interaction prediction (Yamanishi et al., 2010; Chen
et al., 2012; Cai et al., 2021). One challenge for computational
drug discovery is to effectively learn accurate and informative
representation of molecules. Most traditional machine learning
methods focus on feature engineering for molecular
representation. However, recent advances in machine learning,
especially deep neural networks, have played a significant role in
virtual screening and fast development of new approaches to
representation learning of molecular properties (Gilmer et al.,
2017; Hu et al., 2019; Zheng et al., 2019). Among the new deep
learning architectures, the graph neural network (GNN) has
become a powerful tool for modeling molecule-related tasks.
Although various studies have reported promising results
(Kipf and Welling, 2017; Xu et al., 2019; Ying et al., 2019),
computational drug discovery still faces the problem of
insufficient labeled data precluding generalized predictive
models. For example, the state-of-the-art GNN method
ContextPred trains the model in a supervised manner based
on experimentally determined labels, which are not available
for many machine learning tasks (Hu et al., 2019).

To address the above issues, we have developed MolGNN as a
novel method that is able to 1) leverage the power of the graph
neural network with a pretraining process to learn molecular
embedding, with molecules represented by a heterogeneous
graph structure, with atoms as nodes and bonds as edges, and
2) employ a motif self-learning mechanism to encode
information extracted from frequent subgraph structures, such
as functional groups. In the following, we present evidence that
our method represents the molecular structure more efficiently
than the traditional sequence model (Wu et al., 2021), in addition
to being completely independent from extra-labeled data. All data
used in model pretraining are label free, and data preprocessing is
easy and fast. Furthermore, node- and graph-level pretraining
makes the pretrained model robust to scarce training data. As a
result, the performance of our model satisfies the criteria of few-
shot learning, which typically refers to machine learning
problems, where the training set contains limited information
(Garcia and Bruna, 2018). In the field of drug discovery, the

outcome of few-shot learning is the prediction of molecular
properties based on a small number of training samples. It is
particularly important for the drug discovery of new diseases such
as COVID-19 since few active compounds related to these
diseases have been discovered.

In this study, we applied MolGNN to predict drug-like
molecules potentially effective for COVID-19 treatment. We
first screened polypharmacological compounds to target the
Janus kinases (JAK) 1/2/3 and the main protease (MPro). JAK
is a family of intracellular tyrosine kinases (Wilks, 1989) playing a
major role in transmitting cytokine signals through receptor
phosphorylation. The primary lethal syndrome associated with
COVID-19 is the cytokine storm, an acute immune response that
results in overdosed cytokine release into the blood in a short
range of time (Fajgenbaum and June 2020; Hojyo et al., 2020).
Inhibiting the activity of JAKs may therefore alleviate body
responses to cytokine storms. MPro is a key enzyme initiating
SARS-CoV-2 replication, and its inhibition may also slow down
viral replication (Hilgenfeld, 2014; Pillaiyar et al., 2016; Zhang
et al., 2020). In addition, we also predicted drug candidates
derived from antiviral experiments lacking specific molecular
targets. Both strategies produced several hits supported by
existing experimental and clinical evidence, and hence they
may represent relevant candidates for COVID-19 clinical trials.

MATERIALS AND METHODS

Graph Neural Network Representation of
Chemical Structure
We used a graph neural network to model the ability of small
molecules to activate or inhibit potential drug targets. Let
G � (V , E ) be a graph with N � |V| nodes and M � |E|
edges. Given a molecule with N atoms and their atomic
numbers Z � {Z1,Z2, . . . , ZN} as well as M bonds, a graph G
is constructed such that atoms are nodes and bonds are edges.
The aim of molecular property prediction is to identify a given
target property t ∈ C of the molecule. The classification goal is to
find a function f : {Z}→C. Given auxiliary chemical information
such as atomic featuresΘ and bond featuresΦ, the goal function
is f : {Z,Θ,Φ}→C.

Network Motif
Network motifs are recurrent substructures or subgraphs within a
larger graph. In a chemical compound, chemical functional
groups or fragments such as benzene rings are endogenous
motifs. We applied PubChem fingerprints encoding molecular
fragments with binary digits to represent motifs (Kim et al.,
2021). PubChem fingerprints used in pretraining were calculated
with the Chemistry Development Kit (Willighagen et al., 2017).
The original fingerprint had 881 digits. Since the chemical
molecules in the data sets used in this study are mostly
organic drugs, we reduced the number of digits in the
fingerprint by removing digits associated with atoms rarely
appearing in drugs. Specifically, we only kept the digits related
to C, H, O, N, S, F, Cl, and Br atoms. That results in a filtered
fingerprint with 740 digits.
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Model Architecture
The model was built on a multitask learning framework with
three tasks: node- and edge-level embedding learning, self-
supervised motif learning, and supervised fine-tuning/graph
classification (Figure 1). We followed the “context” method
from Hu et al. (2019) to perform node and edge embedding
learning. Briefly, a subgraph that contains the central node is
chosen and the central node embedding is generated with a GNN
model. This embedding is trained to be similar with the
embedding generated with nodes within k hop of the
subgraph. In ContextPred, the model is further pretrained with
a supervised method on labeled data from the ChEMBL data set.
Supervised pretraining improves GNN model performance by
around 3% on average, close to performance gains from
unsupervised pretraining. However, in most cases, it is difficult
to identify a proper labeled data set to improve model
performance in downstream tasks. Thus, following node and

edge embedding pretraining, we applied PubChem fingerprint
directly generated from chemical molecules as labels for semi-
supervised graph-level pretraining. Context prediction and motif
learning stages share the same GNN backbone but have separate
dedicated multilayer perceptron (MLP) readouts. Pretrained
GNN weights were saved and reused for different downstream
classification tasks after fine-tuning with labeled task data.

The architecture of the backbone GNN Figure 1B is a five-
layer graph isomorphism network (GIN) with 512 and 256
hidden units for MLPs in each layer (Hu et al., 2019; Xu
et al., 2019). The GNN outputs a latent representation of all
nodes in each graph. To make the model permutational
invariant, a pooling function symmetric to permutations was
applied to node representations to generate graph-level
embeddings. We chose a mean pooling function that
outperformed sum or max functions in our experiments. The
fingerprint branch readout MLP had 370 hidden units (half the

FIGURE 1 | Overall workflow ofMolGNN. (A). Inputs were edges represented by the adjacency matrix A, node attributes XV , and edge attributes XE . The n-layer
(n � 5 in our experiments) GNN model was pretrained and fine-tuned with stage 1, context prediction; stage 2, motif learning; and stage 3, graph classification. (B).
Overall model architecture. The backbone GNN was shared by all three training components, while graph-level embedding was shared by the motif learning and fine-
tuning tasks (labeled as classification). Motif learning and fine-tuning had their own MLPs. k represents the dimension of input features, with k � 154 after one-hot
encoding. N is the number of atoms in the molecule.
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size of the filtered PubChem fingerprint dimension), while the
classification MLP had 256 hidden units (same as the
dimensions of node embeddings). Our model was built with
PyTorch and PyTorch Geometric (Fey and Lenssen, 2019; Paszke
et al., 2019). All pretraining and fine-tuning was performed on a
single Tesla V100 GPU.

Input Data
Our model inputs consisted of chemical molecules as graphs
represented by adjacency matrices A, node attributes XV

representing chemical atoms, and XE representing chemical
bonds. For atom attributes, we used atom types, atom degrees,
atom formal charges, hybridization types, atom aromatic, and
atom chirality, converted to one-hot encoding and concatenated
before being fed into the GNN. This approach differs from that of
Hu et al. (2019) who only included atom types and aromatic tags
as atom attributes. For edge attributes, we used bond types and
direction of double bonds.

For node and edge context prediction pretraining, we used
two million unlabeled chemical molecules sampled from the
ZINC15 database (Sterling and Irwin, 2015). For graph-level
self-supervised pretraining, we used a data set of 456 K
molecules sampled from ChEMBL (Gaulton et al., 2012;
Mayr et al., 2018). For downstream classification tasks
testing model efficiency in drug development, we applied
our method to chemical molecules related to COVID-19. We
derived our JAK data set from ChEMBL with kinases JAK1,
JAK2, and JAK3 binding affinity as labels. The original data set

included experimental IC50 values of thousands of chemical
molecules against JAK1, JAK2, and JAK3. We labeled all
molecules with the IC50 value under 10 μM as positive and
the remaining ones as negative. JAK1, JAK2, and JAK3 subsets
contained 3,717, 5,853, and 3,520 drug-like molecules,
respectively. The other three data sets included molecules
screened in vitro against COVID-19. The Amu data set
contained 1484 FDA-approved drugs tested as active or
inactive in inhibiting SARS-CoV-2 viral growth (Touret
et al., 2020). The Ellinger data set was a collection of
5,632 drug-repurposing compounds screened with
microscopy for their ability to inhibit SARS-CoV-2
cytopathicity (Ellinger et al., 2021). Mpro_xchem was a data
set with 880 compounds screened with X-Chem based on the
crystal structure of SARS-CoV-2 main protease MPro. All three
data sets are highly unbalanced with overwhelmingly negative
samples. They were used to test the robustness of our
pretrained model. The data set used in our final COVID-19
treatment drug prediction was the Drug Repurposing Hub data
set released on March 24, 2020 (Corsello et al., 2017) and
consisting of 13,553 entries derived from 6,253 molecules,
many of which were FDA-approved drugs.

Data set Splitting
The benchmark data sets were split with the scaffold splitting
method (Ramsundar et al., 2019). The Murcko scaffold of each
chemical was captured with RDKit (Landrum, 2006), and only
chemicals with the same scaffold were grouped together.

TABLE 1 | Performance comparisons between MolGNN, ContextPred, ContextPred without supervised stage, and GNN models without pretraining. The best results are
highlighted in bold. The second-best performance is underscored. * Indicates the statistically significant differences (p < 0.05) between the best and second-best
performer.

ROC-AUC (%) F1 (%) AP (%)

No pretraining

JAK1 97.74 ± 0.25 72.13 ± 4.67 99.92 ± 0.01*
JAK2 87.27 ± 0.94 72.39 ± 1.99 94.19 ± 0.60
JAK3 88.44 ± 0.65 68.31 ± 2.45 96.99 ± 0.20
Amu 54.95 ± 3.02 48.49 ± 1.06 11.13 ± 1.30
Ellinger 63.12 ± 1.39 48.97 ± 1.27 2.19 ± 0.18
Mpro_xchem 89.49 ± 3.45 65.20 ± 15.06 62.75 ± 10.16

ContextPred without a supervised stage

JAK1 98.32 ± 0.13 89.81 ± 0.68 99.78 ± 0.02
JAK2 91.20 ± 0.37 82.53 ± 0.46 95.83 ± 0.24
JAK3 92.86 ± 0.32 79.27 ± 1.82 98.30 ± 0.11*
Amu 60.64 ± 1.57 49.35 ± 1.65 8.45 ± 1.71
Ellinger 69.19 ± 2.14 55.74 ± 0.74 17.93 ± 1.00
Mpro_xchem 91.18 ± 2.32 76.35 ± 2.80 64.39 ± 5.85

ContextPred

JAK1 98.62 ± 0.10* 89.06 ± 0.77 99.82 ± 0.02
JAK2 91.99 ± 0.28 83.46 ± 0.68 96.19 ± 0.11
JAK3 93.12 ± 0.46 84.30 ± 0.62 95.34 ± 3.90
Amu 59.95 ± 1.49 48.49 ± 0.27 9.44 ± 0.87
Ellinger 74.26 ± 4.24 57.45 ± 1.54 20.47 ± 1.47
Mpro_xchem 94.69 ± 1.36 78.67 ± 0.99 73.68 ± 3.88

MolGNN (ours)

JAK1 98.19 ± 0.19 91.54 ± 1.22* 99.76 ± 0.03
JAK2 92.99 ± 0.28* 84.74 ± 0.34 96.21 ± 0.23
JAK3 92.37 ± 0.30 83.15 ± 0.67 97.12 ± 0.30
Amu 63.97 ± 3.79 49.04 ± 1.46 9.87 ± 0.88
Ellinger 81.61 ± 2.59* 57.63 ± 0.89 18.61 ± 4.19
Mpro_xchem 94.81 ± 1.01 78.71 ± 1.66 76.34 ± 2.74
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Groups were randomly permutated and added into training,
validating, or the testing set. This procedure made sure that the
testing set only contained chemicals with scaffolds differing
from those in the training and validating sets. Scaffold splitting
also causes chemical properties to differ between training and
testing sets and impairs prediction performance of a model
trained exclusively with labeled training data. As a result, the
splitting method allows for a better assessment of how the
model benefits from self-supervised pretraining with unlabeled
data. Furthermore, since new drug scaffolds often differ from
existing drugs, scaffold splitting was expected to provide
superior insights into the potential for drug discovery of our
trained model.

Loss Function and Metrics
Binary cross-entropy loss was used in the pretraining step of context
prediction. We treated PubChem fingerprints in the motif learning
network as a multi-label prediction problem, and a binary cross-
entropy loss was used for this network. For graph classification, we
used cross-entropy loss for multi-class classification, and binary
cross-entropy loss for binary or multi-label classification.

Because of the label imbalance in the data sets, accuracy was
not a good metric to evaluate our experiments. Instead, we
selected the area under the receiver operating characteristic
curve (ROC-AUC), average precision (AP), and F1 score as
metrics. All metrics were calculated with the scikit-learn
package (Pedregosa et al., 2011).

FIGURE 2 |ROC-AUC scores of few-shot learning experiments. The ratio number shown under the plots were the ratio of training, validation, and testing sets. Error
bars represent the standard deviation of five replicates.

Frontiers in Bioinformatics | www.frontiersin.org June 2021 | Volume 1 | Article 6931775

Liu et al. COVID-19 Multi-Targeted Drug Repurposing

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


RESULTS AND DISCUSSION

Label-Independent Self-Supervised
Pretraining is Critical toModel Performance
Our MolGNN included a two-stage pretraining method derived
from ContextPred (Hu et al., 2019). The first stage was an atom-
and edge-level pretraining stage with context prediction, which is
the same as in ContextPred. The second stage was a graph-level
self-supervised and label-independent pretraining step, different
from ContextPred that relies on experimental data (see Methods
for details). To demonstrate that MolGNN benefited from both
pretraining stages, we performed an ablation study (Table 1). For
all six data sets, MolGNN outperformed both models without
pretraining and models pretrained only with context prediction.
Ellingerwas the most imbalanced data set with an 84:1 negative to
positive ratio and was associated with the highest improvement
due to graph-level pretraining. The ROC-AUC showed
significant improvements of 17.9 and 29.3% compared to the
model pretrained with context prediction only and the model
with no pretraining, respectively. The AP showed nearly eightfold
relative improvement compared to the model with no
pretraining, although the absolute value of improvement was low.

Label-Independent Self-Supervised
Pretraining Outperforms Label-Dependent
Pretraining
Next, we compared MolGNN to the experimental label-based,
supervised pretraining model from ContextPred. We applied the
same scaffold-based splitting method from ContextPred to our
JAK and SARS-CoV-2 data sets. Both methods improved model
performance compared to the model without pretraining
(Table 1). MolGNN performance was superior or equivalent to
supervised pretraining. In JAK2 and Ellinger, our method was

significantly better than the supervised pretraining with p-values
of 0.0051 and 0.0107, respectively. There is no statistically
significant difference in other data sets. Given the supervised
pretraining needed a large number of experimentally labeled data,
the pretraining data set used in MolGNN was less costly, easier,
and faster to acquire. Our motif network pretraining could be a
complete replacement for the experimental label-based
supervised pretraining.

MolGNN Significantly Improves Few-Shot
Learning Performance
A challenge to machine learning when applied to chemical
molecules has been the scarcity of labeled data. We therefore
tested the performance of MolGNN with reduced labeled fine-
tuning data (Figure 2; Table 2). Compared to the GIN model
without pretraining, MolGNN benefitted from pretraining even
with very little training data. As a rule, the most significant
improvements occurred, when the ratio of training to testing data
was 1:8. When using the JAK1 data set, MolGNN showed a
relative improvement in the F1 score of 55.8% over the model
with no pretraining and 25.9% when the training to testing ratio
was 8:1. This was also the case for JAK2 and JAK3 with
improvements of 34.8 and 34.8% with the 1:8 ratio and 10.0
and 21.7% with the 8:1 ratio, respectively.

Potential Drugs Predicted From the
Repurposing Data set
To test our method in drug candidate prediction, we applied
MolGNN on JAK data sets to screen molecules, with the potential
to alleviate COVID-19 symptoms from the repurposing data set.
We then applied MolGNN to the MPro data set to search for
molecule candidates possibly inhibiting viral replication. The top-

TABLE 2 | Experimental results with reduced training data. Data ratio in training, validation, and testing sets are labeled in the first column.

No pretraining MoLGNN

ROC-AUC (%) F1 (%) AP (%) ROC-AUC (%) F1 (%) AP (%)

8:1:1

JAK1 94.67 ± 0.48 72.86 ± 3.72 99.24 ± 0.14 98.97 ± 0.11 91.74 ± 0.80 99.85 ± 0.01
JAK2 89.12 ± 0.37 74.51 ± 2.10 95.73 ± 0.19 92.04 ± 0.29 82.76 ± 0.63 96.67 ± 0.40
JAK3 86.79 ± 1.02 64.98 ± 5.56 92.34 ± 0.43 92.64 ± 0.19 83.00 ± 0.75 95.99 ± 0.16
Amu 69.02 ± 2.40 50.05 ± 1.19 20.75 ± 3.59 73.39 ± 2.09 59.46 ± 1.32 25.71 ± 1.46
Ellinger 71.68 ± 3.97 49.36 ± 0.87 4.61 ± 1.82 85.93 ± 2.60 63.19 ± 0.73 28.17 ± 2.14
MPro 77.55 ± 0.36 58.34 ± 1.62 56.73 ± 3.67 83.05 ± 1.25 78.32 ± 1.81 68.18 ± 1.58

5:1:4

JAK1 93.70 ± 0.90 63.51 ± 3.86 98.79 ± 0.22 97.68 ± 0.12 88.00 ± 0.58 99.69 ± 0.01
JAK2 88.45 ± 0.48 69.51 ± 2.28 95.05 ± 0.38 90.09 ± 0.45 81.27 ± 0.57 95.35 ± 0.26
JAK3 82.48 ± 1.31 57.72 ± 3.61 90.54 ± 0.74 90.15 ± 0.30 80.37 ± 0.61 94.88 ± 0.26
Amu 65.72 ± 2.08 48.84 ± 0.84 11.41 ± 0.82 64.43 ± 1.82 50.79 ± 0.78 9.86 ± 0.41
Ellinger 61.99 ± 1.47 48.95 ± 0.49 2.18 ± 0.16 72.56 ± 1.10 54.45 ± 0.97 5.35 ± 0.71
MPro 74.53 ± 0.62 53.26 ± 1.16 29.92 ± 0.91 76.82 ± 2.03 71.66 ± 0.84 46.82 ± 1.29

1:1:8

JAK1 83.97 ± 1.79 51.84 ± 5.84 96.98 ± 0.38 93.64 ± 0.48 80.76 ± 0.41 98.91 ± 0.05
JAK2 76.89 ± 1.24 49.46 ± 2.97 89.89 ± 0.73 85.48 ± 0.70 75.87 ± 0.29 93.58 ± 0.38
JAK3 67.80 ± 1.36 47.50 ± 2.32 81.85 ± 1.00 83.46 ± 4.36 72.87 ± 0.26 89.01 ± 0.52
Amu 55.03 ± 1.43 42.48 ± 3.28 7.54 ± 0.23 59.39 ± 0.82 52.01 ± 0.64 9.43 ± 0.83
Ellinger 59.29 ± 0.33 45.83 ± 1.99 1.64 ± 0.27 67.09 ± 0.42 52.26 ± 0.36 2.89 ± 0.68
MPro 67.39 ± 3.86 50.85 ± 1.90 20.98 ± 2.10 75.08 ± 1.04 62.51 ± 1.32 37.78 ± 3.38
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ranked candidates from JAK andMPro data sets were selected, and
their intersection is listed in Table 3.

We also predicted potential COVID-19 drugs by applying
MolGNN to data sets based on in vitro assays not specifying drug
targets. The top hits with their original effects are listed in
Table 4. Attempts to obtain intersections between these two

groups, or with JAK and MPro top-ranked, molecules failed,
suggesting that molecular structures effective against SARS-
CoV-2 in vitro were different from molecules specifically able
to bind to JAK or MPro.

Among predicted drug candidates, several molecules have
already been under study due to their anti–COVID-19 effects,

TABLE 3 | Top-ranked drugs according to predicted potential to bind JAK and MPro.

Predicted target PubChem CID Drug/molecule name Original effects

JAK1 + MPro

2,907 Cyclophosphamide Immune system suppressor, chemotherapy drug
2,578 Carmustine Antineoplastic chemotherapy drug, causes cross-links in DNA and RNA
65,702 Trofosfamide Antineoplastic chemotherapy drug, causes abnormal paring of DNA bases and strand breakage
428,573 Eprodisate Treatment of secondary amyloidosis

17,928,441 ABT-202 Neural nicotinic acetylcholine receptor agonist, analgesic
3,690 Ifosfamide Chemotherapy drug, binds to DNA and inhibit DNA synthesis
3,950 Iomustine Chemotherapy drug, causes cross-links in DNA
4,121 Methyclothiazide Diuretic, blocks active reabsorption of chloride and possibly sodium
8,313 Dicloralurea Veterinary food additive, inhibits methane production

130,918 Adatanserin 5-HT1A receptor agonist, not a pursued antidepressant

JAK2 + MPro

9,571,836 Triapine Radiochemotherapy drug
135,411 CD-437 Antitumor toxin, DNA polymerase α inhibitor

71,542,096 IDF-11774 Suppress tumor growth by attenuating the translation of HIF-1α
5,356 Sultiame Anticonvulsant, carbonic anhydrase inhibitor

133,079 Sonepiprazole Antipsychotic for the treatment of schizophrenia
9,952,709 CD-1530 Retinoic acid receptor (RARc) agonist, treatment for oral-cavity squamous-cell carcinoma
16,124,208 TAK-901 Aurora B kinase inhibitor, suppresses histone H3 phosphorylation and induces polyploidy
44,607,965 AMZ30 Covalent inhibitor of protein phosphatase methylesterase-1 (PME-1)

JAK3 + MPro

65,632 Erdosteine Mucolytic medicine, treat the symptoms in chronic bronchitis
15,134 WIN-18446 Inhibits retinoic acid biosynthesis
27,200 Thiamphenicol Antibiotic, binds to the 50S ribosomal subunit of bacteria and blocks peptide bond formation
114,811 Florfenicol Antibiotic with similar mechanism of action as thiamphenicol
11,367 Diloxanide Treats ameba infections
25,975 Dichloroacetate Potential metabolic-targeting therapy for cancer, promotes glucose oxidation over glycolysis
656,833 Chloramphenicol Broad-spectrum antibiotic

16,219,401 GW-441756 Selective TrkA inhibitor

TABLE 4 | Top-ranked drugs/molecules according to potential anti-COVID effects.

Fine-tuning
data set

PubChemCID Drug/molecule
name

Original effects

Amu

65,036 Allicin Defense molecule from garlic with broad antimicrobial activities
604,519 Ipidacrine Reversible acetylcholinesterase inhibitor used in treatment of memory disorders
65,625 Dimesna Protective agent used to decrease urotoxicity
864 Thioctic acid Helps lower the level of liver enzymes with strong antioxidant activity

67,678 L-cystine Mucolytic agent, precursor for synthesis of glutathione
16,124 Medronic acid Complexed with radioisotopes to be used as nuclear medicine to detect bone abnormalities
68,740 Zoledronic acid Bone density conservation agent
3,671 Ibudilast Cyclic nucleotide phosphodiesterase inhibitor, potential treatment for all forms of multiple sclerosis

16,158,208 Linaclotide Intestinal guanylate cyclase type C agonist used for treatment of chronic constipation
11,159,621 MK-0354 Potential drug for the treatment of atherosclerosis targeting the G protein–coupled receptor

Ellinger

135,413,553 Etifoxine Anxiolytic and anticonvulsant drug
276,389 Harringtonine Translational protein synthesis inhibitor, used for treatment of leukemia
6,918,485 Isavuconazole Broad-spectrum antifungal drug
16,720,766 Pevonedistat NEDD8-activating enzyme (NAE) inhibitor, potential cancer drug
467,825 Ravuconazole Discontinued triazole antifungal.
9,083 Methylene

dimethanesulfonate
Antitumor molecule that causes the DNA-histone cross-link.

92,727 Lopinavir Protease inhibitor used for the treatment of HIV infection
11,103 Hematoporphyrin Drug used against photosensitivity
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providing a validation to our predictions. For example, we
predicted that cyclophosphamide, recently shown to mitigate
acute respiratory distress syndrome among COVID-19 patients
(Revannasiddaiah et al., 2020), could inhibit JAK1 and MPro. We
also predicted that erdosteine, which has shown promising results
in improving the condition of COVID-19 patients (Santus et al.,
2020), may be a co-inhibitor of JAK3 and MPro. Among other
examples, allicin (an organosulfur molecule found in garlic) is
believed to decrease the rate of SARS-CoV-2 viral infection
(Donma and Donma, 2020; Khubber et al., 2020; Shekh et al.,
2020). Ipidacrine, a reversible acetylcholinesterase inhibitor
originally used for the treatment of memory disorders, was
found in X-ray crystallographic screening studies to exhibit MPro

binding activity (Günther et al., 2020). Thioctic (alpha-lipoic) acid
may protect diabetic patients against COVID-19 (Cure and
Cumhur Cure, 2020). Harringtonine used in leukemia treatment
has also been included in COVID-19 clinical trials (Wen et al.,
2021). Lopinavir, a protease inhibitor used in HIV treatment, was
under the clinical trial for the treatment of adults with severe
COVID-19 symptoms (Cao et al., 2020).

CONCLUSION

We developed a new GNN-based and self-supervised learning
methodMolGNN to facilitate drug discovery. Compared to state-
of-the-art techniques, our implementation showed the following
advantages:

1. In the pretraining step, MolGNN was fully self-supervised. It
did not require any extra-labeled data to obtain graph-level
embedding as in Hu et al. (2019), while achieving equivalent
performance.

2. Specifically designed for chemicals, MolGNN not only
captured atom- and bond-level information but also
substructure information, which was critical for its superior
performance in chemical-related tasks.

3. MolGNN can successfully handle sparse labeled data. The
graph-level label we used in self-supervised pretraining could
be much more easily acquired than labels derived from specific
experiments, providing our method with a wider range of use.

The GNN model trained with MolGNN showed robustness,
when applied to a small labeled fine-tuning data set, suggesting a
potentially powerful few-shot learning method. Even with very
little fine-tuning data, pretraining was able to improve final

performance by a large margin. This confirms that
substructure-based labels can assist neural networks in
capturing intrinsic chemical attributes of molecules in their
latent space.

Our method provides a powerful tool for new drug
development, especially in the case of new and poorly known
diseases. Our fine-tuned model successfully identified various
molecules exhibiting anti–COVID-19 activity from a large set of
chemical compounds. Some of our proposed candidates have
already shown potential to contribute to COVID-19 treatment
and have been included in the clinical trial. We suggest that such
compounds should be tested both in vitro and in vivo. The
experimental validation of our testable hypotheses should also
be the subject of future collaborative work. Our method may
contribute to polypharmacology by predicting candidate
molecules for multiple targets, based on various models
pretrained and fine-tuned with MolGNN. Finally, we believe
that our method may speed up drug development both in the
specific case of COVID-19 and of other diseases for which few
effective therapies are currently available.
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