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Angiogenesis is a key process for proper placental development and for the success of pregnancy. Although numerous in vitro
methods have been developed for the assessment of this process, relatively few reliable in vivo methods are available to evaluate
this activity throughout gestation. Here we report an in vivo technique that specifically measures placental neovascularization.
The technique is based on the measurement of a fluorescent alpha V beta 3 (𝛼V𝛽3) integrin-targeting molecule called Angiolone-
Alexa-Fluor 700. The 𝛼V𝛽3 integrin is highly expressed by endothelial cells during the neovascularization and by trophoblast cells
during their invasion of the maternal decidua. Angiolone was injected to gravid mice at 6.5 and 11.5 days post coitus (dpc). The
fluorescence was analyzed one day later at 7.5 and 12.5 dpc, respectively. We demonstrated that (i) Angiolone targets 𝛼V𝛽3 protein
in the placenta with a strong specificity, (ii) this technique is quantitative as the measurement was correlated to the increase of the
placental size observed with increasing gestational age, and (iii) information on the outcome is possible, as abnormal placentation
could be detected early on during gestation. In conclusion, we report the validation of a new noninvasive and quantitative method
to assess the placental angiogenic activity, in vivo.

1. Introduction

The placenta is a well-organized and highly vascularized
organ [1]. The placental vascular network is composed of an
extravillous and an intravillous vascular networks, also called
the fetomaternal interface (FI), and the fetal vascular system,
respectively. Intravillous neovascularization starts early on
during gestation and is followed by an active angiogenesis
throughout the first trimester of pregnancy, allowing the
prompt growth and branching of the placental vessels [1, 2].

The establishment of the FI circulation (FIC) depends on the
complex process of trophoblast differentiation during the first
trimester of pregnancy [3, 4]. At around 10–12wg, trophoblast
cells at the tip of the villi become invasive as they differentiate
into extravillous trophoblasts (EVT).TheseEVTsmigrate and
invade both the decidua and the maternal spiral arteries. The
invasion of maternal spiral arteries leads to the remodeling of
these vessels from high to low resistance vessels [5].

Both the FIC and the intravillous angiogenic processes are
known to be tightly controlled by pro- and antiangiogenic
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Figure 1: Protocol of gravid mouse treatment. Angiolone-Alexa-Fluor 700 was injected one day before imaging at days 6.5 and 11.5 dpc. Mice
were analyzed at days 7.5 and 1.25 dpc, respectively.

factors [6]. Among proteins that appear to accompany the
process of placental angiogenesis and the establishment of
the FIC are the integrins. These are a family of glycoproteins
that participate in a number of placental functions, including
cell adhesion, migration, and invasion [5, 7, 8]. Integrins
comprise noncovalently bound 𝛼 and 𝛽 subunits that par-
ticipate in cell-to-cell and cell-to-substratum adhesion [9].
In the process of the establishment of FIC, four combi-
nations of integrins appear to play important roles. These
include 𝛼
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𝛼V𝛽3 integrin-positive [10]. Disturbance of the expression of
some of these integrins at the surface of EVTs is associated
with pregnancy disorders such as preeclampsia [5, 11]. In
this disease differentiating/invading trophoblast cells retain
expression of 𝛼V𝛽6 [12, 13] and fail to upregulate 𝛼V𝛽3. The
𝛼V𝛽3 is an integrin that displays increased expression levels on
the surface of angiogenic endothelial cells as compared with
quiescent endothelial cells andwas reported as a useful tool to
estimate the levels of the neovascularization in a given organ
[14, 15]. Previous reports in the literature have shown that 𝛼V
and 𝛽

3
proteins are highly expressed in mouse placenta with

specific localizations to the endothelial and to trophoblast
cells present at the fetomaternal interface [16, 17].

Although numerous in vitro methods have been devel-
oped for the assessment of placental angiogenic activity,
relatively few reliable and quantitative methods are available
in vivo to assess this activity at the fetomaternal interface [18].
The in vivo approaches used so far are based on microul-
trasound analyses and color Doppler blood flow visualiza-
tion.The disadvantage of these techniques remains their non-
quantitative aspect.

Using a 3Doptical imaging of fluorescent probes imaging,
we have recently described a noninvasive and quantitative
assessment of in vivo angiogenesis of subcutaneous sponges
[19]. The probe used in this study is Angiolone-Alexa-Fluor
700, a fluorescent molecule that targets the 𝛼V𝛽3 integrin,
allowing quantitative determinations of the angiogenic activ-
ity, in vivo.

Angiolone-Alexa-Fluor 700 is a cyclic pentapeptide pre-
senting the arginine-glycine-aspartic acid (RGD) sequence
known to target the 𝛼V𝛽3 integrin [20].The tetrameric cRGD-
containing peptide, RAFT-c-(RGDfK-)4, was generated by
covalently linking four peptides (-cRGDfK-) to the cyclic

decapeptide platform “regioselectively addressable function-
alized template (RAFT)” [21]. AlexaFluor 700 fluorescent dye
was linked to the Angiolone to convert this reagent into an
optical imaging probe able to target 𝛼V𝛽3-expressing cells
[22–24].

To measure the accumulation of fluorescence in the vas-
cularized placentas with sufficient precision, we used the pre-
viously described 2D Hamamatsu system and continuous-
wave fluorescence diffuse optical tomography (fDOT) optical
imaging system [23, 24]. This assay is based on the use of
fluorescent in vivo labeling of the neoformed blood capilla-
ries with Angiolone-Alexa-Fluor 700 and whole body small
animal examination with a 2D system and abdominal area
with fDOT [23, 24].

Using this technology, we report here the validation of a
new noninvasive and quantitative method to assess placental
angiogenic activity during gestation in the gravid mouse.
Gravid mice were assessed at 7.5 and 12.5 dpc, two main time
points that represent placental angiogenesis and establish-
ment of the fetomaternal circulation, respectively.

2. Materials and Methods

2.1. Animal Experiments. Three-month-old pregnant female
OF-1 mice were obtained from Charles River Laboratories
(LesOncins, France). All animal studies were approved by the
institutional guidelines and by the European Community for
the Use of Experimental Animals. Gravid female OF-1 mice
were obtained by in-house mating. The date of the presence
of a vaginal plug was taken as day 0.5 post coitus (dpc).
The gravid females were maintained in the animal facility.
They were injected at day 6.5 or day 11.5 dpc of gestation,
and after imaging they were sacrificed at 7.5 or 12.5 dpc
via a lethal injection of Doletal (Figure 1). These gestational
ages correspond to the peak of angiogenic processes in the
placenta. At least three mice were used for each gestational
age examined. This group of animals was only used for
imaging. To assess the level of expression of the complex 𝛼V𝛽3
in the placenta, we used another set of gravid mice that were
sacrificed at 10.5, 14.5, and 17.5 dpc.This group of animals was
used as a control group and was not injected by Angiolone-
Alexa-Fluor. The choice of the gestational dates to study the
expression of 𝛼V𝛽3 in the placenta was based on the fact
that 10.5 dpc corresponds to the placental angiogenic peak
and represents the first trimester of pregnancy in women,
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14.5 dpc corresponds to the second trimester, and 17.5 dpc will
represent the third trimester.

2.2. Fluorescence In Vivo Imaging. For fluorescence imag-
ing, 200𝜇L Angiolone-Alexa-Fluor 700 (50𝜇M) (Fluoptics,
Grenoble, France) was injected into the mouse tail vein.
For reflectance imaging, mice were illuminated with 660-
nm light-emitting diodes equipped with interference filters
and fluorescence images, as well as black and white pictures,
which were acquired by a back-thinned charge-coupled
device (CCD) camera at −80∘C (ORCAII-BT-512G; Hama-
matsu, Massy, France) and fitted with a high-pass RG 9 filter
(Schott, Clichy, France) [22].

Three-dimensional fluorescence acquisition and quantifi-
cation were performed 24 h after injection with the continu-
ous-wave fDOT system previously described by Koenig et al.
[23, 24]. fDOT consists of a 690-nm laser source, a CCD cam-
era, and a set of filters. The light source is a 35-mW compact
laser diode (Power technology) equipped with a bandpass
interference filter (Melles Griot 685AF30OD6). The emitted
fluorescence is filtered by two 700-nmhigh-pass colored glass
filters (Schott RG9 OD5) placed in front of a NIR-sensi-
tive CCD camera (Hamamatsu ORCA AG) mounted with
a f/15-mm objective (Schneider Kreutznach). The excitation
sources described a regular 26 × 30-mm spaced grid over the
abdominal area of the mouse, were the embryos are present.
Two scans were successively performed for fluorescence and
diffusion. The exposure time was automatically computed at
each laser position to use the entire dynamic range of the
camera. The two stacks of diffusion and fluorescence images
were analyzed by the reconstruction algorithm to generate a
3D image.Three-dimensional reconstruction was performed
as described previously [26]. fDOT principle lies in the ability
to both reconstruct fluorescence even in highly heteroge-
neous attenuating media and handle complex geometries.
The results are presented as a 3D view of the reconstructed
area. The reconstructed area is a volume meshed with a 2-
mm sample rate in the 𝑥 and 𝑦 directions and 1mm in the 𝑧
direction (depth) that yields a size of approximately 8×10×15
voxels and may vary slightly depending on animal thickness.
Figure 2 presents the reconstructed fluorescence in 𝑧 cross-
sections. The cross-sections are presented from bottom to
top for 𝑧 = 0 (ventral side) and 𝑧 = 15 (dorsal side).
The superimposition of the reconstructed volumes viewed
as a smooth interpolation perspective and positioned on top
of the white-light image of the animal was allowed for the
generation of the final image. The procedure time on a 3-
GHz intel Xeon was 10min to reconstruct the fluorescence
distribution. Each fluorescence reconstruction is presented
with the same color scale to allow for visual comparison.

2.3. Scanner In Vivo Imaging. To visualize the whole animal
body, we performed a medium resolution microCT (VivaCT
40 Scanco Medical) with a 42 𝜇m isotropic voxel size, a
voltage of 45 kV, and a current of 114mA.The 3Dfluorescence
is merged with the mice’s skeleton in order to replace the
fluorescent signal in an anatomical context.

2.4. Statistical Analysis. All data are expressed as mean ±
SEM. Statistical comparisons were made using 𝑡-test analysis.
Calculations were performed using SigmaStat (Jandel Scien-
tific Software, San Rafael, CA).

3. Results

3.1. Visualization of the Placental Angiogenic Activity inGravid
Mice. In the gravid mice, the labeling of angiogenesis was
tracked during 24 h after injection of Angiolone-Alexa-Fluor
700 (Figure 2). The probe produced a positive staining in the
treated animals throughout the 24 h following the injection.A
semiquantitative measurement allowed us to determine that
the best signal to noise ratio in the placenta was obtained as
early as 24 h after injection of the probe.We, thus, imaged the
mice 24 h after injection in the following experiments.

Angiogenic activity in the gravid mice was evaluated
in three systems; the whole animal, the dissected gravid
horns, and the isolated individual placentas. The in vivo level
allowed the visualization and the quantification of placental
angiogenesis with a specific signal emanating from the intra-
uterine zone (panel (b)). Dissection of the gravid horns
allowed precise localization of the active angiogenic sites
within the horn (panel (c)). The strongest angiogenic activity
was observed in placentas localized at the base of the horn
compared to those localize at its end. When considering
isolated placentas, the angiogenic activity was concentrated
at the fetomaternal interface (Panel (d)). This observation
was confirmed in isolated placentas. Panel (e) shows a hybrid
image that reports 3D fluorescent signal from the placentas
in an anatomical context.

3.2. Comparison of Placental Angiogenic Activities during
Early Pregnancy. During mouse gestation, neovasculariza-
tion starts early on during gestation with the highest activity
occurring around 12.5 dpc. Using our imaging system, we
compared the levels of the placental angiogenic activity
in isolated placentas at 7.5 and 12.5 dpc. Figure 3 shows
comparisons of the angiogenic activities at the animal, horn,
and placentas levels. Angiogenic activity was detected as
early as 7.5 dpc (Figures 3(a), 3(b), and 3(c)) and signifi-
cantly increased at 12.5 dpc. Differences in the signals were
observed at the three levels. Quantification of the fluores-
cence in isolated placentas shows that the angiogenic activity
at 12.5 dpcwas 6 times higher than the onemeasured at 7.5 dpc
(Figure 3(d)).

3.3. Detection of Abnormal Placental Angiogenic Activity dur-
ing Gestation. In the series of the gravid mice analyzed in
this study we came across a gravid mouse that exhibited low
fluorescence signal at 12.5 dpc (Figure 4(c)) as compared to
age-matched control gravid mice (Figure 4(b)). Dissection
of its horns illustrated in Figure 4(e) showed horns with
reduced size compared to the horn of mice at 12.5 dpc
(Figure 4(d)). Furthermore, the gravid mouse had only three
placentas confirming the reduced fluorescence observed in
whole animal analysis. These data reveal the potential use of
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Figure 2: Imaging sequence performed for the gravidmice angiogenesis assay. Panel (a): intravenous injection of Angiolone-Alexa-Fluor 700
on day 6.5 or 11.5 dpc. Panel (b): 2D in vivo fluorescence. Vascularization was imaged using the fDOT2D system. Panel (c): 2D fluorescence
images in the uterine horns. Panel (d): 2D fluorescence images in isolated placentas. Panel (e): a hybrid image of placentas in an anatomical
context. The scale is provided in arbitrary unit because the fluorescence produces relative values unless a standard calibration has been
performed.
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Figure 3: Quantification and comparison of placental angiogenic activity in gravid mice at 7.5 and 12.5 dpc. Panel (a) compares fluorescence
emanating from the two gravid mice at 7.5 dpc and 12.5 dpc. Panel (b) compares the fluorescence at the level of dissected uterus. Panel (c)
compares the fluorescence in the placentas dissected from the 7.5 and 12.5 dpc horns. Panel (d) reports the comparison of the levels of the
fluorescence in the placentas. Fluorescence was measured in each individual placenta and reported as mean fluorescence per placenta.
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Figure 4: Illustration of detection of abnormal placentation using the proposed technique. Photographs in Panels (a), (b), and (c) show
three mice, nongravid mouse, 12.5 dpc gravid mouse with normal placentation, and a 12.5 dpc gravid mouse with abnormal placentation,
respectively. Panels (d) and (e) compare the horns dissected from the mice undergoing normal and abnormal placentations, respectively.

the noninvasive 2D fluorescence to detect abnormal placen-
tation during gestation.

4. Discussion

The placenta is by far the most angiogenic organ with the
highest angiogenic activity occurring in early gestation [27].
A normal angiogenic activity during this period is the key to
the success of pregnancy. Hence, a setup of a technique that
allows the assessment of this process is of great interest. Using
2D and 3D optical imaging, we established a reproducible
method to measure placental angiogenesis in a noninvasive
manner during mouse gestation. To our knowledge, this is
the first report of a direct and quantitative way to assess
physiological and pathological placental angiogenesis. The
specificity of this technique was verified by the intensification
of the measured signal between 7.5 and 12.5 dpc, which
correlates with the established increase in the intravillous and
the FC angiogenic activities. More importantly, we demon-
strated that this technique could be informative on abnormal
placentation through defects in the angiogenic activity.

To date, most experimental placental imaging techniques
are being used in post mortem specimens and consist of

vascular corrosion casting and microcomputed tomography
[28–30]. These techniques investigate normal villous vascu-
logenesis and angiogenesis, by (i) applications of corrosion
casts and observations under a scanning electronmicroscope,
(ii) injection of contrast medium, or (iii) using a classical
microscope and manual 3D reconstructions of paraffin sec-
tions.Though these techniques have improved over the years,
they still provide qualitative evaluation of placental pheno-
types [18, 28–30]. The advantage of the proposed technique
is its specificity to target placental neovascularization, a key
aspect of placental development.More importantly, this tech-
nique might help in (i) the diagnoses of placental abnormal-
ities, (ii) the evaluation of invasive placenta, such as placenta
accreta, and (iii) the assessment of placental perfusion.

The proposed technique was based on targeting of 𝛼V𝛽3,
a key integrin protein of placental angiogenesis. The phys-
iological importance of integrins during angiogenesis has
been most extensively studied in the case of the 𝛼V integrins.
Antagonists of 𝛼V𝛽3 and 𝛼V𝛽5 integrins block growth-factor-
and tumor-induced angiogenesis in multiple animal models
[3, 31]. Furthermore, recent data from clinical trials suggest
that antagonists of 𝛼V𝛽3 and/or 𝛼V𝛽5 may have a clinical
benefit in humans with solid tumors [32–34].



BioMed Research International 7

Beyond their importance asmolecular tools to specifically
allow targeting sites of neovascularization, integrins have
been reported to play major roles in placentation processes
and their deregulation is associated with placental patholo-
gies such as preeclampsia, the most threatening pathology of
human pregnancy [5, 13]. Interestingly preeclamptic placen-
tas have been shown to express low levels of 𝛼V𝛽3 integrins
[5], suggesting that this integrin may be important in proper
placental progression and that this complex might provide a
target for therapeutic intervention [35]. Moreover the use of
this integrin complex as a target in the proposed technique
can be informative on the outcome of an ongoing abnormal
pregnancy.

Because it was impossible to prospectively study placental
angiogenic processes in humans, we used the murine pla-
centa to test this new technique. While some of the gross
anatomy and physiology of mouse and human placentas are
different, these two species show a similar haemochorial type
of placentation and considerable histological and mecha-
nistic similarities in placental development [36–38]. Hence,
studies of placentation in mice are likely to yield new insights
into therapies and into the use of new imaging techniques in
human pregnancy. Validation of this technique in primates
should lead to its better characterization in the view to its
transfer to human pregnancy.
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