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Emerging studies have demonstrated that interleukin (IL)-33 and its receptor ST2 act as
key factors in inflammatory diseases. Moreover, accumulating evidence has suggested
that cytokines, including tumor necrosis factor (TNF)-α and IL-1β, trigger an inflammatory
cascade. SIRT1 has been shown to suppress the expression of inflammatory cytokines.
However, the effects of SIRT1 on IL-33/ST2 signaling and initiation of the inflammatory
cascade via modulation of TNF-α and IL-1β by IL-33 remain unclear. In the present
study, we found that the dorsal root ganglion (DRG) IL-33 and ST2 were upregulated
in a rat model of spared nerve injury (SNI) and intrathecal injection of either IL-33
or ST2 antibodies alleviated mechanical allodynia and downregulated TNF-α and
IL-1β induced by SNI. In addition, activation of SIRT1 decreased enhanced DRG
IL-33/ST2 signaling in SNI rats. Artificial inactivation of SIRT1 via intrathecal injection of
an SIRT1 antagonist could induce mechanical allodynia and upregulate IL-33 and ST2.
These results demonstrated that reduction in SIRT1 could induce upregulation of DRG
IL-33 and ST2 and contribute to mechanical allodynia induced by SNI in rats.

Keywords: neuropathic pain, IL-33, ST2, SIRT1, inflammation

INTRODUCTION

Chronic pain, often characterized by allodynia, hyperalgesia, and spontaneous pain affects
approximately one-third of the world’s population (Alford et al., 2008). In the United
States, direct and indirect costs of chronic pain have been estimated to be approximately
$100 billion annually, which is more than the combined costs of cancer, heart disease, and
diabetes (Pizzo and Clark, 2012). It is well established that peripheral and central sensitizations
are the basic mechanisms of chronic pain (Meacham et al., 2017). Inflammation has been
extensively reported to be associated with peripheral and central sensitization (Ji et al., 2018).
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However, the type of inflammatory cytokine that triggers the
inflammation cascade remains controversial.

Interleukin (IL)-33 belongs to a member of the IL-1 family
and exerts its effects via binding to its receptor ST2 (Xu et al.,
2019). It has been demonstrated that IL-33 plays a vital role
in many inflammatory conditions, including septic shock (Ding
et al., 2019), atherosclerosis (Buckley et al., 2019) and rheumatoid
arthritis (Pinto et al., 2019). Furthermore, other studies have
suggested that IL-33 modulates cutaneous hyper-nociception in
inflammatory pain in mice (Verri et al., 2008) and has been
implicated in activating astrocytes in the spinal cord in mouse
models of bone pain (Zhao et al., 2013). However, the role of
IL-33 in the dorsal root ganglion (DRG) in neuropathic pain
remains unclear.

The silent information regulator 1 (SIRT1) is an NAD+-
dependent deacetylase belonging to the SIRT family (Hattori
and Ihara, 2016). Among SIRT family, SIRT1 has been validated
to be most related in this family and function as deacetylating
and regulating histones (Ling et al., 2018) as well as a wide
range of non-histone substrates, such as NF-κB (Kauppinen
et al., 2013), p53 (Nakamura et al., 2017), FOXO (Brunet et al.,
2004), ERK (Han et al., 2017), peroxisome proliferator-activated
receptor γ (PPARγ) and others (Kauppinen et al., 2013). With
regulating this protein, SIRT1 plays a central role in regulating
cellular processes, including apoptosis (Ling et al., 2017), cellular
proliferation (Jablonska et al., 2016), and inflammation (Zhang
et al., 2017). In the nervous system, SIRT1 suppress the
neurodegenerative diseases such as Alzheimer’s disease and
Parkinson’s disease via anti-apoptosis, anti-inflammation (Singh
et al., 2017; Gomes et al., 2018). Recently, several studies
have reported that the activation of SIRT1 in the spinal cord
alleviates neuropathic pain induced by chronic constriction
injury (CCI) surgery in rats and mice via inhibition of the
inflammatory cascade (Shao et al., 2014; Lv et al., 2015). In
addition, SIRT1 in the spinal cord epigenetically upregulates
inflammasome NALP1 expression and contributes to the
chronic pain induced by the chemotherapeutic drug bortezomib
(Chen et al., 2018). However, whether SIRT1 modulates the
inflammatory cytokine IL-33 remains unclear.

In the present study, we performed spared nerve injury
(SNI) surgery in rats to establish a neuropathic pain model and
hypothesized that downregulation of SIRT1 in the DRG induced
by SNI enhances IL-33/ST2 signaling and triggers a downstream
inflammatory cascade leading to mechanical allodynia.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats, weighing 200–250 g, were obtained
from the Institute of Experimental Animals of Southern Medical
University (Guangzhou, China; Approval number: SCXK 2016-
0041). The animals were housed in standard cages in a
temperature-controlled (24 ± 1◦C) colony room under a
12 h light/dark cycle regimen, with ad libitum access to food
and water. The experimental protocols were approved by the
Southern Medical University Animal Care and Use Committee

and were performed in accordance with the National Institutes
of Health Guide for the Care and Use of Laboratory Animals.

Surgery and Drug Administration
SNI model rats were developed in accordance with previously
described procedures (Decosterd and Woolf, 2000). Briefly, after
making an incision on the skin at the lateral surface of the thigh,
a section was made directly through the biceps femoris muscle to
expose the sciatic nerve and its three terminal branches, the sural,
common peroneal, and tibial nerves. The SNI procedure involves
axotomy and ligation of the tibial and common peroneal nerves
but leaves the sural nerve intact. The common peroneal and tibial
nerves were tightly ligated using 5.0 silk and transected distal to
the ligation, removing approximately 4 mm of the distal nerve
stump. Care was taken to avoid any damage to the nearby sural
nerve. After surgery, all wounds were irrigated with sterile saline
and closed in layers. In the sham group, an identical procedure
was performed to expose the sciatic nerve and its three terminal
branches, but without any nerve injury. For intrathecal delivery
of the SIRT1 agonist SRT1720, the animals were implanted with
catheters during the same surgery, as previously reported (Hirai
et al., 2014). Briefly, a sterile catheter filled with saline was
inserted through the lumbar (L) 5/6 intervertebral space, and
the tip of the tube was positioned at the lumbosacral spinal
level. Animals that exhibited hind limb paralysis or paresis
after surgery were excluded. For animals without movement
disorders, lidocaine (2%) was administered through the catheter
to verify the intraspinal location. An immediate bilateral hind
limb paralysis (within 15 s) lasting 20–30 min confirmed the
correct catheterization. Animals without the aforementioned
features were not used in the experiments that followed. The
SIRT1 agonist SRT1720 and antagonist EX-527 were dissolved
in DMSO and intrathecal administration at concentration of
15 mg/kg and 10 mg/kg respectively. IL-33 (rIL-33; 3626-
ML) and ST2- neutralizing antibody (AF1004) were purchased
from R&D Systems (Minneapolis, MN, USA). The rIL-33
and ST2 antibodies were diluted in sterile phosphate buffer
solution (PBS).

Behavioral Test
Mechanical sensitivity was assessed using von Frey hairs and
the up-down method, as previously described (Chaplan et al.,
1994). Briefly, after acclimatization to the testing environment
for 2 h per day on three consecutive days, the rats were placed
in separate transparent testing chambers positioned on a wire
mesh floor. After a 10-min adaptation period, each stimulus
consisted of a 2–3 s application of von Frey hairs to the middle
of the plantar surface of the hind paws and the lateral surface of
ipsilateral hind paws for SNI rats, with a 5-min interval between
consecutive tests. Quick withdrawal or licking of the paw in
response to the stimulus was considered a positive response.
The operator performing the behavioral tests was blinded to the
study design.

Immunohistochemistry
The animals were deeply anesthetized using 50 mg/kg sodium
pentobarbital (intraperitoneal) and perfused through the
ascending aorta with saline, followed by 4% paraformaldehyde
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in 0.1 M phosphate buffer (4◦C, pH 7.4), as previously
described. After perfusion, the L4, L5, and L6 DRGs were
removed and post-fixed in the same fixative for 3 h, which
was subsequently replaced with 30% sucrose (in 0.1 M PBS)
overnight. Frozen tissues were sectioned in the longitudinal
plane with a thickness of 16 mm using a microtome and
processed for immunofluorescence staining. All sections were
blocked with 3% donkey serum in 0.3% Triton X-100 for 1 h at
room temperature and incubated over two nights at 4◦C with
primary antibodies. After incubation with primary antibodies,
the tissue sections were washed three times in 0.01 M PBS
and then incubated in Cy3-conjugated donkey anti-rabbit IgG
(diluted 1:300; Jackson ImmunoResearch,West Grove, PA, USA)
for 1 h at room temperature. For double immunofluorescence
staining, tissue sections were incubated with a mixture of
anti-SIRT1 [1:200, Cell Signaling Technologies (CST), Danvers,
MA, USA] antibody with neurofilament-200 [NF-200 (a
marker for myelinated A-fibers), 1:200; Chemicon/Thermo-
Fisher Scientific, Waltham, MA, USA], IB4 [FITC-conjugated
(a marker for nonpeptidergic C-type neurons), 20 mg/ml
(Sigma)], anti-calcitonin gene-related peptide [CGRP (a marker
of peptidergic C-type neurons), 1:500, Abcam, Cambridge,
MA, USA], IL-33 (1:300, Abcam, Cambridge, MA, USA), ST2

(1:400, Abcam, Cambridge, MA, USA) over two nights at 4◦C.
Except for isolectin-B4 (IB4)-treated tissue sections, all of the
aforementioned sections were treated with a mixture of FITC
and Cy3-conjugated secondary antibodies for 1 h at room
temperature. The sections were rinsed with 0.01 M PBS three
times and mounted on gelatin-coated slides and air-dried. The
stained sections were examined using a fluorescence microscope
(Leica, Wetzlar, Germany) and images were captured using a
charge-coupled device spot camera.

Western Blotting
Western blotting was performed according to the method
described in a previous study (Hnasko and Hnasko, 2015).
Briefly, L4–L6 DRG tissues of animals were removed and
homogenized in 15 mmol/L Tris containing a cocktail of
proteinase inhibitors after the animals were anesthetized with
50 mg/kg sodium pentobarbital (intraperitoneal). Next, the
L4–L6 DRG lysates were prepared and separated using sodium
dodecyl polyacrylamide gel electrophoresis and transferred to
a polyvinylidene fluoride membrane. The membranes were
then pre-incubated with blocking buffer for 1 h at room
temperature. After incubating with diluted primary antibodies
against SIRT1 (1:1,000, CST), IL-33 (1:1,000, Abcam), ST2

FIGURE 1 | Spared nerve injury (SNI) induced mechanical allodynia and enhanced expression of interleukin (IL)-33 and ST2 in dorsal root ganglion (DRG) of rats.
(A) SNI induced mechanical allodynia in the ipsilateral but not contralateral hind paw (n = 6), but the sham operation did not induce changes in bilateral hind
paw(n = 6). (B,C) Compared with the sham rats, expression of IL-33 and its receptor ST2 increased in L4-L6 DRG since day 1 and persisted till day 14 after SNI
(n = 4). *p < 0.05, ***p < 0.001 compared with the sham group.
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(1:1,000, Abcam), tumor necrosis factor (TNF)-α (1:1,000,
Abcam), and/or β-actin (1:2,000, Abcam) overnight at 4◦C,
the membranes were incubated in horseradish peroxidase-
conjugated secondary antibody for 1 h at room temperature.
Finally, protein bands on the membranes were visualized using
a commercially available enhanced chemiluminescence assay
(Pierce, USA) according to the manufacturer’s instructions. The
bands were subsequently quantified using a computer-assisted
imaging analysis system.

Statistical Analysis
All data are expressed as mean ± standard error of the mean
(SEM). Statistical analysis was performed using SPSS version 20.0
(IBM Corporation, Armonk, NY, USA). For the behavior test,

one- or two-way analysis of variance (ANOVA) with repeated
measures, followed by a Tukey post hoc test, was performed.
Western blot was analyzed using one-way ANOVA followed by
the Turkey post hoc test. Differences with p 0.05 were considered
statistically significant.

RESULTS

IL-33 and Its Receptor ST2 in DRG Were
Induced and Upregulated by SNI in Rats
Consistent with the results of a previous study (Boccella et al.,
2018), the mechanical withdrawal threshold was significantly
reduced in SNI rats (Figure 1A). To further study the role of IL-

FIGURE 2 | Intrathecal injection both IL-33 and its receptor ST2 neutralization antibody ameliorated mechanical allodynia and reversed the increased expression of
tumor necrosis factor (TNF)-α and IL-1β. (A,B) Intrathecal application of IL-33 or ST2 neutralization antibody alleviated SNI-induced mechanical allodynia but IgG
treatment did not show effects on mechanical allodynia induced by SNI. The dose of IL-33 or ST2 neutralization antibody was 100 ng for consecutive 10 days and
250 ng for consecutive 10 days, respectively. The time point for intrathecal injection was 15 min before SNI surgery, n = 6/group. (C,D) Upregulation of TNF-α and
IL-1β was blocked after intrathecal injection of IL-33 neutralization antibody on day 7 (n = 4/group). ***p < 0.001 compared with sham group, #p < 0.05, ##p < 0.01,
###p < 0.001 compared with SNI+IgG group.

Frontiers in Molecular Neuroscience | www.frontiersin.org 4 February 2020 | Volume 13 | Article 17

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Zeng et al. SIRT1/IL-33 Pathway Mediates Neuropathic Pain

33/ST2 signaling in neuropathic pain induced by SNI, western
blot assay was performed to analyze protein expression of IL-33
and ST2. As shown in Figures 1B,C, IL-33, and ST2 in DRG (L4-
L6) was markedly increased on day 1 following SNI surgery and
lasted at least until day 14.

Enhanced IL-33 and ST2 Expression
Contributed to Mechanical Allodynia
Induced by SNI
We determined whether the increased expression of IL-33
and ST2 was involved in the development of mechanical
allodynia in SNI rats. We investigated the behavior response after
intrathecally injecting IL-33 and ST2 neutralizing antibodies. The
results revealed that both IL-33 and ST2 neutralizing antibodies
alleviated mechanical allodynia induced by SNI surgery for seven
consecutive days (Figures 2A,B). Studies have reported that
TNF-α and IL-1β activate the inflammatory cascade (Cavaillon
et al., 2003; Iwawaki, 2017) and that IL-33 may also play an
important role in it. To determine the role of IL-33 in the
inflammation, we used the western blot assay to quantify the
expression of TNF-α and IL-1β after intrathecal administration
of IL-33 antibodies. The results revealed that both TNF-α
and IL-1β levels were significantly decreased in the DRG
(Figure 2).

Reduction of SIRT1 Is Involved in the
Mechanical Allodynia Induced by SNI
SIRT1 plays an important role in synaptic plasticity and
chronic pain. The levels of SIRT1 protein in the DRG
started to decrease on day 1 following SNI surgery, which
lasted until at least day 14 (Figure 3B). Meanwhile, behavior
testing demonstrated that intrathecal administration of the
SIRT1 agonist SRT1720 remarkably decreased the paw withdraw
thresholds induced by SNI in rats (Figure 3A).

SIRT1 Is Expressed in DRG Neurons
It has been reported that SIRT1 is only expressed in neurons
in the spinal cord; however, the distribution of SIRT1 in
DRG remains unclear. To further verify the distribution
of SIRT1 in the DRG of rats, double immunofluorescent
staining was performed. As shown in Figure 4, SIRT1 was
primarily expressed in NF200-positive cells (large-diameter
neurons), IB4-positive cells, and CGRP-positive cells (small- and
medium-diameter neurons).

Activation of SIRT1 Downregulated IL-33/
ST2, TNF-α, and IL-1β
Several recent studies have presented evidence that
SIRT1 mediates chronic pain through modulation of
inflammation in the spinal cord. Thus, we determined whether
SIRT1 regulated the DRG IL-33/ST2 signaling in rats with
SNI-induced neuropathic pain. The double immunofluorescence
staining showed that SIRT1 colocalized with IL-33 and ST2
(Supplementary Figure S1). As shown in Figures 5A,B, DRG
IL-33 and its receptor ST2 were remarkably downregulated
on day 7 following intrathecal injection of the SIRT1 agonist
SRT1720. Similarly, the expression of the inflammatory cytokines
TNF-α and IL-1β was reduced on day 7 after the injection of
SRT1720 (Figures 5C,D). Furthermore, the enhanced acetylation
of NF-κB was significantly alleviated by SRT1720 but have no
effects on p-ERK (Supplementary Figure S2).

SIRT1 Antagonist EX527 Induced
Mechanical Allodynia in Naïve Rats
To further define the effects of SIRT1 in DRG on pain behavior,
the rats were intrathecally administered the SIRT1 antagonist
EX-527 at a dose of 10 mg/kg for five consecutive days. A
mechanical allodynia behavior test using von Frey filaments
demonstrated that the paw withdrawal threshold was decreased
in naïve rats from day 2 and lasted until day 8 after EX-527
treatment. However, the naïve rats that were administered saline

FIGURE 3 | SNI reduced expression of DRG SIRT1 and intrathecal administration of SIRT1 agonist alleviated SNI-induced mechanical allodynia. (A) Intrathecal
injection of SIRT1 agonist (15 mg/kg) 15 min before SNI surgery for consecutive 10 days alleviated the mechanical allodynia. (B) The time courses of the changes in
the expression of SIRT1 after SNI surgery. *p < 0.05, ***p < 0.001 compared with sham group, $p < 0.05, $$p < 0.01 compared with SNI+DMSO group.
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FIGURE 4 | SIRT1 in DRG mainly expressed in neurons of rats. Double immunofluorescence staining showed that SIRT1 expressed in peptidergic neurons (CGRP
marked) and non-peptidergic (IB-4 and NF-200 marked) neurons in DRG. Scale bar 200 µm.

exhibited no significant mechanical allodynia compared with
naïve rats. Therefore, the EX-527 treatment in naïve rats induced
mechanical allodynia (Figure 6).

Inactivation of SIRT1 Can Enhance the
Expression of IL-33 and ST2 in Naïve Rats
Having observed that the SIRT1 antagonist contributed to
mechanical allodynia in naïve rats, we tested whether the
inactivation of SIRT1 modulated the expression of IL-33 and
ST2. The results of the western blot analysis demonstrated
that both IL-33 and ST2 proteins were upregulated on day
5 after intrathecal administration of EX-527 compared with
saline treatment in naïve rats (Figures 7A,B).

DISCUSSION

In the present study, we found that the expression of IL-33 and
its receptor ST2 in DRG increased after SNI surgery. Intrathecal
administration of both IL-33 and ST2 antibodies alleviated

mechanical allodynia induced by SNI. Intrathecal injection
of IL-33 antibody and rat recombinant IL-33 decreased the
enhanced expression of TNF-α and IL-β in SNI rats and induced
the expression of TNF-α and IL-β in naïve rats, respectively.
In addition, SNI surgery reduced the expression of SIRT1 in
DRG neurons, and intrathecal injection of the SIRT1 agonist
SRT1720 ameliorated mechanical allodynia and reversed the
upregulation of IL-33 induced by SNI. Collectively, our results
revealed a newmechanism in which reduction of SIRT1 activates
IL-33/ST2 signaling and subsequently triggers the TNF-α and IL-
1β inflammatory cascade, thus contributing to the mechanical
allodynia induced by SNI.

The Role of IL-33 in Triggering
Inflammatory Cascade in Neuropathic Pain
Following SNI
IL-33 is a cytokine in human endothelial cells that was discovered
in 2003 (Baekkevold et al., 2003), it exerts its biological
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FIGURE 5 | The increased expression of IL-33, ST2, TNF-α, and IL-1β were retarded by intrathecal injection of SIRT1 agonist SRT1720. (A,B) Application of
SRT1720(i.t.) reduced the expression of IL-33 and its receptor ST2 after SNI surgery on day 7. (C,D) Inflammatory cytokines TNF-α and IL-1β were significantly
downregulated by delivery of SRT1720(i.t.) on day 7, n = 4/group, ***p < 0.001 compared with the sham group, ###p < 0.001 compared with SNI+DMSO group.

effects through the ST2/IL-1RAcP (IL-1 receptor accessory
protein) receptor complex. Recent evidence has shown that
IL-33 deficiency results in reduced innate papain-induced lung
inflammation (Oboki et al., 2010). More recent studies have
suggested that IL-33/ST2 contributes to the development of
pain. For example, the expression of spinal IL-33 and ST2 was
enhanced in mice with formalin-induced inflammatory pain
(Zarpelon et al., 2013). Furthermore, activation of spinal IL-33
and ST2 has been reported to contribute to bone cancer pain
(Zhao et al., 2013). In this study, we first found that the
expression of DRG IL-33 and ST2 increased in a rat model of
neuropathic pain induced by SNI. Intrathecal administration of
IL-33 and ST2 antibodies alleviated mechanical allodynia. It has
been firmly established that inflammatory cytokines are involved
in the development and maintenance of neuropathic pain (Old
et al., 2015; Ronchetti et al., 2017). Both TNF-α and IL-β have
been reported to be cytokines that trigger the inflammatory
cascade (Rider et al., 2011; Zelová and Hošek, 2013). In our
study, we found that intrathecal administration of IL-33 and

ST2 antibodies in SNI-treated rats could reduce the enhanced
expression of TNF-α and IL-β. These results demonstrated that
SNI could activate the IL-33/ST2 signaling pathway in DRG,
subsequently trigger the inflammatory cascade, and contribute to
the mechanism of allodynia.

SIRT1 in DRG Contributes to the Activation
of IL-33/ST2 Signaling Following SNI
Accumulating evidence has demonstrated that SIRT1 modulates
the expression of inflammatory cytokines via targeting nuclear
factor (NF)-κB (Yeung et al., 2004; Kauppinen et al., 2013).
A recent study revealed that SRT1720 ameliorated chronic
pain induced by chronic CCI through the regulation of
spinal cord inflammation (Lv et al., 2015). Similarly, we
found that intrathecal injection of the SIRT1 agonist SRT1720
suppressed the upregulation of TNF-α and IL-1β in the DRG
and alleviated mechanical allodynia in SNI-treated rats. We
also observed that the reduction of SIRT1 in DRG neurons
contributed to the activation of the IL-33/ST2 signaling pathway.
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FIGURE 6 | Continuous intrathecal injection of SIRT1 agonist EX527 at a
dose of 10 mg/kg for successive 5 days induced mechanical allodynia in
naïve rats. n = 6/group, *p < 0.05, **p < 0.01,***p < 0.001 compared with
sham group.

FIGURE 7 | Continuous intrathecal injection of SIRT1 antagonist EX-527
upregulated DRG IL-33 and ST2. (A,B) The expression of IL-33 and
ST2 significantly upregulated on day 5 after continuous delivery EX-527 in
naïve rats. n = 4/group, ***p < 0.001 compared with the sham group.

SIRT1 is an important deacetylase that directly deacetylates
NF-κB (Deng et al., 2017). In addition, IL-33 can activate NF-κB
through binding to ST2 (Numata et al., 2016). In our study,
we observed that SRT1720 dramatically reduced the acetylation
of NF-κB p65 induced by SNI. It is possible that the reduction
of SIRT1 in the DRG increased acetylated NF-κB, upregulated
IL-33, and triggered the inflammatory cascade, which may have
played a vital role in the development of mechanical allodynia
induced by SNI surgery.

Collectively, our results demonstrate that IL-33 in DRG and
its receptor ST2 upregulated and modulated the expression
of TNF-α and IL-1β in neuropathic pain induced by SNI. In
addition, we observed that the reduction of DRG SIRT1 activated
IL-33/ST2 signaling and contributed to mechanical allodynia in
SNI rats. These results may suggest a new potential therapeutic
target for neuropathic pain.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The animal study was reviewed and approved by Southern
medical university animal protection and use committee.

AUTHOR CONTRIBUTIONS

YZ conceived and designed the experiments. YZ, YS, HZha, WL,
GC, HZho, YW, and SH performed the experiments. YZ and YS
collected and analyzed the data and wrote the article. HZha and
WL contributed the reagents, materials and analysis tools. WW
and SC provided the financial support. The first communication
author in this article is WW, and the second communication
author is SC.

FUNDING

This work was supported by: (1) National Natural Science
Foundation of China (NNSFC), China; Contract grant number:
81772430; (2) Clinical Research Foundation of Southern Medical
University, China; Contract grant number: LC2016PY037;
(3) Guangzhou Science and Technology Project, China; Contract
grant number: 201607010288; and (4) Science and Technology
Planning Project of Guangdong Province, China; Contract
grant number: 2015A030401070; (5) China Postdoctoral Science
Foundation, China; Contract grant number: 2019M662995.

ACKNOWLEDGMENTS

We would like to thank Hui Deng for excellent technical
support of intrathecal injection, Huifang Shi for guiding animal
injection, Wenchao Liu for the guidance of modeling and
the extraction of nerve tissue, Luying Lai for guiding basic
experiment related skills, Cuicui Liu for guiding the animal
behavior test, Zhengnan Zhou and Xiaolan Wang for their
suggestions on the experimental scheme, and Mengyu Yao for
critical comments on a previous version of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnmol.2020.
00017/full#supplementary-material.

FIGURE S1 | The colocalization of SIRT1/IL-33 and SIRT1/ST2. Double
immunofluorescence staining showed that SIRT1 colocalized with IL-33 (A–C)
and ST2 in DRG (D–F). Scale bar 100 µm.

FIGURE S2 | SIRT1 agonist reduced the acetylation of NF-κB p65 but had no
effects on p-ERK. (A) The enhanced acetylation of NF-κB p65 in DRG was
significantly alleviated in SNI rats by intrathecal administration SIRT1 agonist
SRT1720 (n = 4/group). (B) SIRT1 agonist SRT1720 showed no effects on the
increased p-ERK in DRG of SNI rats (n = 4/group). ***p < 0.001 compared with
the sham group, ##p < 0.01 compared with the SNI+DMSO group.
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