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Abstract 

Background:  The analysis of large mosquito samples is expensive and time-consuming, delaying the efficient tim‑
ing of vector control measurements. Processing a fraction of a sample using a subsampling method can significantly 
reduce the processing effort. However, a comprehensive evaluation of the reliability of different subsampling meth‑
ods is missing.

Methods:  A total of 23 large mosquito samples (397–4713 specimens per sample) were compared in order to evalu‑
ate five subsampling methods for the estimation of the number of specimens and species: area, volume, weight, 
selection of 200 random specimens and analyses with an image processing software. Each sample was distributed 
over a grid paper (21.0 × 29.7 cm; 25 grid cells of 4.2 × 5.9 cm) with 200 randomly distributed points. After taking 
pictures, mosquito specimens closest to each of the 200 points on the paper were selected. All mosquitoes per grid 
cell were identified by morphology and transferred to scaled tubes to estimate the volume. Finally, the fresh and dry 
weights were determined.

Results:  The estimated number of specimens and species did not differ between the area-, volume- and weight-
based method. Subsampling 20% of the sample gave an error rate of approximately 12% for the number of speci‑
mens, 6% for the proportion of the most abundant species and between 6–40% for the number of species per 
sample. The error for the estimated number of specimens using the picture processing software ImageJ gave a similar 
error rate when analyzing 15–20% of the total sample. By using 200 randomly selected specimens it was possible to 
give a precise estimation of the proportion of the most abundant species (r = 0.97, P < 0.001), but the number of spe‑
cies per sample was underestimated by 28% on average. Selecting adjacent grid cells instead of sampling randomly 
chosen grid cells and using dry weight instead of wet weight did not increase the accuracy of estimates.

Conclusions:  Different subsampling methods have various advantages and disadvantages. However, the area-based 
analysis of 20% of the sample is probably the most suitable approach for most kinds of mosquito studies, giving suf‑
ficiently precise estimations of the number of specimens and species, which is slightly less laborious compared to the 
other methods tested.
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Background
Globalization and climate change resulted in the world-
wide spread of invasive mosquito species and associated 
pathogens including arthropod-borne viruses (arbovi-
ruses), nematodes and protozoans [1]. For example, the 
establishment of the exotic Asian tiger mosquito (Aedes 
albopictus) in Europe caused five outbreaks of the exotic 
chikungunya virus in France and Italy during the last 10 
years with at least 605 human cases [2–8]. Therefore, sur-
veillance programs are implemented in many countries 
worldwide in order to detect the circulation of native and 
exotic pathogens or to identify changes in mosquito spe-
cies compositions.

Most surveillance programs use baited mosquito traps 
(e.g. light and/or carbon dioxide), allowing mass trap-
ping of several thousand or more specimens per trap-
ping night [9]. These data provide information about the 
abundance and species composition of mosquitoes in the 
studied areas, which is a basic prerequisite to understand 
pathogen circulation or to perform effective control 
measurements like spatial-temporal application of larvi-
cides or adulticides [10]. However, the identification of all 
specimens in large samples can be time consuming and 
therefore can be quite expensive. Faster sample process-
ing for example can allow a more efficient timing of vec-
tor control measurements. Subsampling, i.e. analyses of a 
fraction of the sample and subsequent extrapolation, can 
be a suitable strategy to reduce the effort of sample analy-
sis. Thereby, an optimal subsampling method should save 
resources, but still give reliable estimates of the number 
of mosquito specimens and species per sample.

Subsampling of invertebrate samples is a common 
method in different fields of ecology, e.g. for samples of 
macroinvertebrates [11] or parasites [12, 13]. Common 
methods for adult mosquito samples are random sub-
sampling based on area [14, 15], volume [16], weight [17] 
or random selection of a fixed number of specimens (e.g. 
200 mosquitoes) [18–21]. Some studies also combined 
different methods, e.g. random subsampling of speci-
mens in combination with an extrapolation per weight 
[18, 22–32] or specimens selected by area and extrapo-
lated by weight [33].

However, only a few studies compared the precision 
of the applied estimation method. A comparative study 
was conducted by Van Ark [34], investigating the reli-
ability of subsampling based on volume and weight of 
large light trap catches including mosquitoes. This study 
revealed a more reliable estimation based on the weight 
compared to the volume. Debevec [17] used a weight-
based subsampling method and found a positive linear 
correlation between the abundance per subsample and 
the total number of specimens. In addition, a subsam-
ple of at least 30% was identified suitable to estimate the 

species richness. Another study determined a positive 
correlation between the number of specimens in a ran-
dom subsample of 30 specimens and the total number of 
specimens for a common species [19]. Burkett-Cadena 
et  al. [18] observed a positive correlation between the 
estimated and actual counts of different species, using a 
combination of random subsampling with an extrapola-
tion per weight. Furthermore, Kesavaraju and Dickson 
[35] tested a quick technique to estimate the number of 
mosquito specimens from standardized pictures ana-
lyzed with an image processing software. Optimized cali-
bration facilitates a reliable estimation of the number of 
specimens.

Although different subsampling methods are used in 
mosquito studies, a comprehensive evaluation of differ-
ent estimation methods is missing. The reliability of the 
applied estimation method has direct implications for the 
interpretation of mosquito monitoring results. Therefore, 
the objective of this study was to compare five different, 
commonly applied techniques (subsampling by area, 
volume or weight, selection of random specimens and 
analyses of pictures from the samples) to estimate the 
number of adult mosquito specimens and species. The 
study presents a systematic comparison of all five meth-
ods and discusses the potential applicability regarding 
their estimation accuracy and time efficiency.

Methods
A total of 23 samples of adult mosquitoes were collected 
on four dates between 7 June 2016 and 21 July 2016 
within a monitoring program of the German Mosquito 
Control Association in 12 trapping stations along the 
floodplains of the Upper Rhine Valley. Mosquitoes were 
sampled with Heavy Duty Encephalitis Vector Survey 
traps (EVS trap, BioQuip Products, Rancho Dominguez, 
CA, USA) baited with 1.5 kg of dry ice. Samples were 
stored at −20  °C until processing. These samples com-
promised a total of 37,557 mosquitoes, with an average 
(±SD) of 1632.2 ± 1135.1 specimens and 8 ± 1.4 species 
per sample (Additional file 1: Table S1, Additional file 2: 
Table S2).

Five different subsampling methods to estimate the 
number of mosquito specimens and species per sam-
ple were compared: extrapolation by volume, area, and 
weight, image processing (number of specimens only) 
and random selection of 200 specimens (number of spe-
cies only) (Fig.  1). The same workflow was applied for 
each sample. Mosquitoes were uniformly distributed over 
a sheet of paper (21.0 × 29.7 cm subdivided into 25 grid 
cells, 4.2 × 5.9 cm per cell) with 200 randomly distributed 
blue points; Additional file 3: Figure S1). Non-mosquito 
invertebrates and plant materials (e.g. leaves or wood 
waste) were removed. The paper with the sample was 
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placed on a laboratory bench with light from a 100-W 
neon bulb. Clustered accumulations of mosquito speci-
mens were avoided by re-sorting the sample. Photos were 
taken at a vertical distance of approximately 120 cm with 
a camera pointing straight downwards (Olympus OMD 
EM5, Olympus, Shinjuku, Tokyo, Japan). Thereby, we 
deliberately refrained from using special equipment to 
test the approach under field conditions, e.g. no photo 
developing tray or tripod were used [36]. Every sample 
was photographed three times to estimate the reproduc-
ibility of this method. The mosquitoes were rearranged 
between the images to alter the distribution pattern of 
specimens. Next, the mosquito specimen closest to each 
of the 200 random points on the paper was selected. 
The corresponding grid cell numbers of each of these 
specimens were recorded. Subsequently all mosquitoes 
per grid cell were identified based on morphology [36]. 
Depending on the size of the sample, mosquito speci-
mens of each grid cell were stored in 2  ml (Eppendorf, 
Hamburg, Germany) or 15  ml tubes (Sarstedt, Nüm-
brecht, Germany). The measurement of the volume per 
sample was conducted by first tapping the tube for 10–15 
times on a table to concentrate the sample on the bot-
tom of each container. The volume per subsample was 
estimated from the volume scale on each tube. Finally, 
weight measurements were conducted for each subsam-
ple in the same tubes used for the volume measurement. 

The fresh weight was determined by weighing each tube 
using an electronic scale (Sartorius R160P electronic 
semi-microbalance, Sartorius, Göttingen, Germany). For 
the dry weight analysis, tubes were kept open in an oven 
(Memmert type 400, Memmert, Schwabach, Germany) 
for seven days at 30 °C. A mix of rice and salt was added 
to bind the moisture as a cheap and easily accessible 
desiccant under field conditions. The drying substance 
was exchanged every day. Finally, the empty weight of 
each tube was determined to calculate the fresh and dry 
weight for each subsample.

Statistical analysis
The subsampling data were analyzed with R [37] using 
the packages magrittr [38], plyr [39] and tidyr [40]. 
Results were visualized with ggplot2 [41] and cowplot 
[42]. A bootstrap approach was applied to estimate the 
accuracy for the estimation of the number of mosquito 
specimens and species in relation to the proportion of 
each sample analyzed. As a basis for the analysis of the 
different subsampling methods, 1–25 raster cells were 
randomly selected 1000 times without replacement for 
each sample. The average number of specimens per cell 
was calculated and multiplied by the total number of 
cells (n = 25) for the area-based approach. Alternatively, 
the volume or dry/fresh weight of each subsample rela-
tive to the volume or weight of total sample was used to 

Fig. 1  Workflow of the sample processing
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estimate the total number of specimens. The correlation 
between the dry and fresh weight was evaluated with 
paired samples t-test. All these estimates were divided 
by the actual number of specimens per sample, giving a 
consistency score of over- or underestimation, i.e. esti-
mated number/actual number ×100. For each number 
of selected cells (1–25), the bootstrap means and confi-
dence intervals (95%) of the consistency scores were cal-
culated and averaged over the 23 samples. In addition, to 
evaluate the relevance of a random selection of grid cells, 
different proportions of adjacent grid cells (20, 40, 60 or 
80%) were selected in a single step (Additional file 4: Fig-
ure S2). Mean and standard deviation of the percentage 
of detected specimens were calculated over all samples. 
Using the same bootstrapping method, the proportion of 
the most abundant species and the number of detected 
species per sample were evaluated. There is only one 
most abundant species in each sample, but this could be a 
different species per sample. As the for the total number 
of specimens and species, this value is calculated rela-
tive to the actual value. Thus, the data can be analysed 
together.

The number of species and proportion of the most 
abundant species based on 200 randomly selected spec-
imens was compared to the actual values for each sam-
ple. The mean and standard deviation of the percentage 
of detected species were calculated over all samples. 
Pearson’s product-moment correlation was used to ana-
lyze the statistical relationship between the number of 
detected species and proportion of the most abundant 
species in the randomly selected 200 specimens and the 
actual sample.

Finally, the open-source image processing software 
ImageJ [43] was used to evaluate the number of speci-
mens per sample. The processing of the images was per-
formed according to Kesavaraju and Dickson [35]. The 
estimate of the total number of specimens predominantly 
depends on two variables, THRESHOLD (differentiation 
of mosquitoes from background) and SIZE (minimum 
area classified as an object). To identify the combina-
tion of both variables giving the best estimate, a macro 
for each combination of both variables THRESHOLD 
(1–100, in steps of 1) and SIZE (1–100, in steps of 1) was 
run for each sample using an automatic script (Additional 
file 5: Text S1). Again, the consistency of the estimation 
compared to the actual number of specimens was evalu-
ated by comparison with the actual number of specimens 
per sample, while the best combination was identified 
by a mean consistency between 97.5% and 102.5% with 
a minimal standard deviation over all samples tested. In 
addition, the reproducibility of the measurement was 
tested for the three replicated pictures per sample. The 
statistical relationship between the number of estimated 

and detected number of specimens per sample was ana-
lyzed with Pearson’s product-moment correlation.

Results
The consistency of the estimated number of specimens 
per sample did not differ between the subsampling meth-
ods based on area, volume or weight (Fig. 2). The analysis 
of 20% of the sample resulted in an error rate of approxi-
mately 12%. An increase of the analyzed proportion 
to up to 40% further reduced the error to ~8%, i.e. the 
consistency between the estimates and the actual values 
increase. Using the optimal combinations of THRESH-
OLD (replicate a: 57; b: 53; c: 56) and SIZE (replicate a: 
50: b: 63; c: 77) in the picture processing software ImageJ 
was similar to the consistency achieved by subsampling 
15–20% with an area/volume/weight-based approach 
(Fig. 2). The estimated number of specimens with ImageJ 
and the actual number of specimens were statistically sig-
nificantly correlated (replicate a: r = 0.84; b: r = 0.88; c: 
r = 0.82, P < 0.001 for all three replicates).

For the proportion of the most abundant species per 
sample, the analysis of 20% of the sample resulted in an 
error rate of approximately 6% for the number of speci-
mens (Fig. 3). Further increasing the analyzed proportion 
to 40% reduced the estimation error to ~4%. The random 
selection of 200 specimens allowed a precise estimation 
of the proportion of the most abundant species (r = 0.97, 
P < 0.001), which corresponds to an analysis of 40% of the 
total sample (Fig. 3).

The real number of species was significantly underes-
timated regardless of the subsampling method (Fig.  4). 
As for the estimation of the number of specimens, the 
accuracy of the methods based on the area, volume 
and weight did not differ substantially. Sorting 20% of 
the sample resulted in an average error of 23% (95% CI: 
6–40%) for the number of species. Increasing the propor-
tion of the analyzed sample to 40% reduced the error rate 
for the number of species to 13% (95% CI: 1–30%). Esti-
mation of the number of mosquito species based on the 
random selection of 200 specimens had a relatively high 
average number for missing species of 28%, which cor-
responds to sorting 12% of the total sample (Fig. 4). The 
correlation between the detected and actual number of 
species was low (r = 0.42, P = 0.04).

The selection of adjacent grid cells in comparison to 
random sampling of grid cells did not alter the accuracy 
of the estimate. This observation applies to the number 
of specimens (Fig. 2, Additional file 6: Figure S3), the pro-
portion of the most abundant species (Fig. 3, Additional 
file  7: Figure S4) and the number of species per sample 
(Fig. 4, Additional file 8: Figure S5).

The weight of the subsamples after the drying step 
was significantly lower than before (t(2777) = −50.98, 
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P ≤ 0.001). Drying reduced the sample weight by an aver-
age of 27.3% (standard deviation: 17.8%). However, the 
estimated number of specimens and species did not dif-
fer between dry and fresh weight (Figs. 2, 3, 4, Additional 
file 9: Figure S6, Additional file 10: Figure S7, Additional 
file 11: Figure S7).

Discussion
This study evaluated five different methods to estimate 
the number of mosquito specimens and species per sam-
ple based on four subsampling methods (area, volume, 
weight and 200 randomly selected individuals) and the 
image processing software ImageJ. The three approaches 
based on the area, weight or volume of the subsamples 
gave very similar results. An analysis of about 20% of 
the sample resulted in an estimation error of 12% for the 
actual number of specimens, 6% for the relative abun-
dance of the most abundant species and between 6–40% 
for the actual number of species. In concordance, Reinert 
[15] recommended to analyze at least 25% of the speci-
mens with a minimum of 100 specimens to reliably esti-
mate the mosquito abundance and species composition.

One important prerequisite of the area-based subsam-
pling method is an even distribution of the mosquito 
specimens between all grid cells. Clustered patterns 

generally cannot be completely avoided [44], e.g. fewer 
specimens are found in the peripheral cells. Therefore, 
different subsampling studies recommend a random 
selection of grid cells to allow a less biased estimation 
[44–47]. This significantly increases the sample process-
ing time, because the mosquito specimens must be indi-
vidually picked up. However, the results presented herein 
reveal that a laborious random selection of grid cells is 
not necessary to ensure reliable results. Depending on 
the sample size and the size of the most common species, 
the size of the grid paper might be adjusted to allow an 
even distribution of the sample.

Alternative estimation methods are subsampling tech-
niques based on weight or volume. The collection of the 
sample weight is more laborious compared to the area or 
volume [35], i.e. weighing of the container, transferring of 
the sample into the container, recording the weight and 
re-transferring the sample for further processing. Com-
pared to the wet weight, extrapolations based on dry 
weight are expected to increase accuracy of the estima-
tion. Drying reduces the variation of the water content 
between different samples, e.g. caused by differences in 
the water content of different sized species [48]. How-
ever, this processing step causes this method to be even 
more time consuming [24, 25, 49]. This might explain 

Fig. 2  Consistency for the estimated number of specimens calculated by a subsample based on area, volume or weight. Grey points indicate the 
consistency for the estimated number of specimens for the bootstrapped subsampling of grid cells. The weight data are based on dry weight, fresh 
weight data are shown in Additional file 9: Figure S6. The red lines for the dry weight and green lines for the fresh weight indicate the bootstrapped 
mean (solid) and 95% confidence intervals (dashed) of the subsampling dataset. Red points (mean) and red stars (standard deviation) indicate the 
results of proportional sampling with 20, 40, 60 and 80% of the grid cells. Blue lines indicate mean (solid) and standard deviation (dashed) of the 
estimation with the image processing software ImageJ over all mosquito samples. Black squares indicate optical orientation lines for a 10 or 20% 
error
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why most mosquito studies using this method do not 
mention a drying step [18, 22, 23, 26, 27, 29–32]. Nev-
ertheless, the usage of the dry weight of the subsamples 
only slightly improved the estimation for the number of 
specimens and species compared to the use of the fresh 
weight. Both, dry and wet weight, gave similar results 
compared to the area-based approach. The same applies 
when comparing with a volumetric subsampling method. 
This technique is considered to be only reliable if the 
majority of the species per subsample have a similar size 
[16]. Differently-sized species in different frequencies 
between the subsamples increase the difference between 
the estimation compared to the actual numbers [46, 50]. 
Such disadvantage resulting into a lower accuracy of the 
volumetric approach compared to the other subsampling 
methods was not observed. This might be explained by 
relative small size differences between the different mos-
quito species in our samples.

Using image processing software as an automatized 
counting tool was highly effective. It only takes margin-
ally longer to prepare the sample for the standardized 
picture if the total catch is very large, because the effort 
to remove non-mosquito bycatch or to equally distrib-
ute the specimens on the sheet of paper does not change 

significantly. Nevertheless, this approach is not suitable 
for differentiating between species, discriminate sexes 
or feeding status [35, 51]. More research is required to 
develop algorithms to identify typical characteristics of 
species, sexes and gonotrophic states, e.g. invasive taxa 
with a distinct coloration.

The random selection of specimens to estimate the 
number of mosquito species is commonly found in dif-
ferent mosquito studies selecting between 30–500 speci-
mens [19, 25, 26]. These estimation results are to be 
interpreted with caution. On average, about 28% of the 
actual number of species per sample was not recorded 
with this method for the tested samples in the present 
study. In contrast, as demonstrated before [18, 19], the 
random selection of specimens was highly precise to 
detect the proportion of the most abundant species per 
sample. A fixed number of random specimens might 
reduce the comparability between the subsampling 
results for different mosquito samples. For example, the 
selection of a fixed number of 200 specimens per sample 
would result in a high proportion of selected specimens 
(90%) for a sample with a total of 220 mosquitoes, but 
less than 10% for samples with more than 2000 mosqui-
toes. Thus, the appropriate number of randomly selected 

Fig. 3  Consistency for the estimated number of specimens for the most abundant species per sample calculated by a subsample based on area, 
volume or weight. The one most abundant species may vary from sample to sample. The estimated number of specimens for the most abundant 
species per sample was calculated relative to the actual number of specimens. Grey points indicate the consistency for the estimated number of 
specimens for the bootstrapped subsampling of grid cells. The weight data are based on dry weight, fresh weight data are shown in Additional 
file 10: Figure S7. The red lines for the dry weight and green lines for the fresh weight indicate the bootstrapped mean (solid) and 95% confidence 
intervals (dashed) of the subsampling dataset. Red points (mean) and red stars (standard deviation) indicate the results of proportional sampling 
with 20, 40, 60 and 80% of the grid cells. Blue lines indicate mean (solid) and standard deviation (dashed) of the estimation with the random 
subsampling of 200 specimens over all mosquito samples. Black squares indicate optical orientation lines for a 10 or 20% error
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specimens must depend on the size and the species 
diversity of the sample. Our results indicate that a huge 
proportion of the sample must be identified to detect 
most species. The analysis of at least 25% is required for 
an average deviation of 20% compared to the actual num-
ber of species, which is also supported by Barbour and 
Gerritsen [45]. Therefore, it is certainly not advisable to 
subsample by a fixed number of specimens but adapt the 
size of the subsample to the size of the sample. In addi-
tion, in order to minimize the number of non-detected 
species and to get a more representative estimation of 
species richness, a visual check of the unsorted part of 
the sample might be advisable in order to detect rare 
species [52]. Furthermore, it must be kept in mind, that 
the representativeness of the sample and subsamples for 
species richness and species abundance is also affected 
by biases inherent to the applied trapping methods [53]. 
Otherwise, the absence of species only found in small 
numbers can lead to misjudges regarding taxa richness or 
composition of the vector community.

Conclusions
Our study demonstrated that the random selection of a 
fixed number of specimens is by far the fastest method 
to estimate the proportion of the most abundant species, 

e.g. to decide whether control activities against nuisance 
species must be carried out. Nevertheless, this approach 
only has an insufficient accuracy for a comprehensive 
analysis of the species composition. This also applies to 
the sample analysis with the image processing software 
ImageJ, which can give a good estimation of the number 
of specimens, but no information on the presence of dif-
ferent species. Therefore, as an operational subsampling 
strategy, the area-based estimation method of 20% of the 
sample is probably the method of choice for most kinds 
of mosquito studies. This approach provided relative pre-
cise estimates of the number of specimens (12% error 
rate) and species per sample (6–40% error rate) and, at 
the same time, required significantly less effort compared 
to volume- and weight-based approaches.

Additional files

Additional file 1: Table S1. Number of mosquito specimens and taxa for 
each sample analysed.

Additional file 2: Table S2. Number of mosquito specimens per mos‑
quito taxa for each sample analysed.

Fig. 4  Consistency for the estimated number of species calculated by a subsample based on area, volume or weight. Grey points indicate the 
consistency for the estimated number of specimens for the bootstrapped subsampling of grid cells. The weight data are based on dry weight, 
fresh weight data are shown in Additional file 11: Figure S8. The red lines for the dry weight and green lines for the fresh weight indicate the 
bootstrapped mean (solid) and 95% confidence intervals (dashed) of the subsampling dataset. Red points (mean) and red stars (standard deviation) 
indicate the results of proportional sampling with 20, 40, 60 and 80% of the grid cells. Blue lines indicate mean (solid) and standard deviation 
(dashed) of the estimation with the random subsampling of 200 specimens over all mosquito samples. Black squares indicate optical orientation 
lines for a 10 or 20% error
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Additional file 3: Figure S1. Sheet of paper (21.0 × 29.7 cm) used for 
subsampling subdivided into 25 grid cells (4.2 × 5.9 cm per cell) and 200 
blue points.

Additional file 4: Figure S2. Adjacent grid cells selected for proportional 
subsampling (20, 40, 60 or 80%) in a single step.

Additional file 5: Text S1. Script to automatically analyse photos in 
ImageJ.

Additional file 6: Figure S3. Consistency for the estimated number of 
specimens calculated for a proportional subsample (20, 40, 60 and 80%) 
of the grid cells.

Additional file 7: Figure S4. Consistency for the estimated number of 
specimens for the most abundant species per sample, calculated for a 
subsample of 20, 40, 60 and 80% of the grid cells.

Additional file 8: Figure S5. Consistency for the estimated number of 
species per sample, calculated for a subsample of 20, 40, 60 and 80% of 
the grid cells.

Additional file 9: Figure S6. Consistency for the estimated number of 
specimens calculated by a subsample based on fresh weight.

Additional file 10: Figure S7. Consistency for the estimated number of 
specimens for the most abundant species per sample, calculated by a 
subsample based on fresh weight.

Additional file 11: Figure S8. Consistency for the estimated number of 
species per sample calculated by a subsample based on fresh weight.
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