
Plant Pathol. J. 31(4) : 323-333 (2015)
http://dx.doi.org/10.5423/PPJ.RW.08.2015.0150
pISSN 1598-2254 eISSN 2093-9280 ©The Korean Society of Plant Pathology

The Plant Pathology Journal

MINI-Review Open Access

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity
Chang-Jin Park1* and Young-Su Seo2*
1Department of Plant Biotechnology and PERI, Sejong University, Seoul 143-747, Korea
2Department of Microbiology, Pusan National University, Busan 609-735, Korea

(Received on August 3, 2015; Revised on September 14, 2015; Accepted on September 14, 2015)

As sessile organisms, plants are exposed to persistently 
changing stresses and have to be able to interpret 
and respond to them. The stresses, drought, salinity, 
chemicals, cold and hot temperatures, and various 
pathogen attacks have interconnected effects on plants, 
resulting in the disruption of protein homeostasis. 
Maintenance of proteins in their functional native 
conformations and preventing aggregation of non-
native proteins are important for cell survival under 
stress. Heat shock proteins (HSPs) functioning 
as molecular chaperones are the key components 
responsible for protein folding, assembly, translocation, 
and degradation under stress conditions and in many 
normal cellular processes. Plants respond to pathogen 
invasion using two different innate immune responses 
mediated by pattern recognition receptors (PRRs) or 
resistance (R) proteins. HSPs play an indispensable 
role as molecular chaperones in the quality control of 
plasma membrane-resident PRRs and intracellular R 
proteins against potential invaders. Here, we specifically 
discuss the functional involvement of cytosolic and 
endoplasmic reticulum (ER) HSPs/chaperones in plant 
immunity to obtain an integrated understanding of the 
immune responses in plant cells.
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Heat shock proteins (HSPs) are ubiquitous proteins found 
in plant and animal cells. They originally were described in 
relation to heat shock (Ritossa, 1962) but are now known 
to be induced by a wide variety of stresses, including expo-
sure to cold, UV light, wound healing, tissue remodeling, 
or biotic stresses (Boston et al., 1996; Lindquist and Craig, 
1988; Vierling, 1991). Thus, the term “heat shock protein” 
is a misnomer since many stresses other than heat induce 
expression of hsp genes. 

HSPs are essential components contributing to cellular 
homeostasis under optimal and detrimental growth condi-
tions in prokaryotic and eukaryotic cells (Lindquist and 
Craig, 1988; Lindquist, 1986; Wang et al., 2004). It is well-
known that HSPs are responsible for protein folding, as-
sembly, translocation, and degradation during ordinary cel-
lular growth and development (Lindquist and Craig, 1988; 
Lindquist, 1986; Wang et al., 2004). HSPs also function 
in the stabilization of proteins and assist protein refolding 
under stress conditions (Huttner and Strasser, 2012; Sitia 
and Braakman, 2003; Whitley et al., 1999). Most members 
of HSPs perform critically important chaperone functions 
such as three-dimensional folding of newly formed proteins 
and/or proteins damaged by stress within cells (Whitley et 
al., 1999). For this reason, many chaperones are considered 
as HSPs due to their nature to aggregate when denatured 
by heat stress.

In plants and animals, there are five major families of 
HSPs conservatively recognized as molecular chaperones 
based on their approximate molecular weights, such as 
HSP100, HSP90, HSP70, HSP60, and small HSP (sHSP) 
(Gupta et al., 2010; Kotak et al., 2007; Wang et al., 2004). 
Many of these HSPs are mainly located in the cytoplasm 
and respond to abiotic and biotic stresses (Boston et al., 
1996; Vierling, 1991). In addition to the cytosol, HSPs are 
located in other organelles such as the ER, chloroplasts, 
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mitochondria, and nucleus, suggesting that they play dif-
ferent and dynamic roles in protein homeostasis (Boston et 
al., 1996; Vierling, 1991). 

Some HSPs in animals have been reported to play im-
portant roles in the immune response, including antigen 
presentation, activation of lymphocytes and macrophages, 
and activation and maturation of dendritic cells (Li et al., 
2002; Tsan and Gao, 2009; Wallin et al., 2002). Many of 
them, if not all, are mediated by interactions between HSPs 
and pattern recognition receptors (PRRs) such as toll-like 
receptors (TLRs) recognizing pathogen-derived conserved 
microbial signatures called pathogen-associated molecular 
patterns (PAMPs) (Chisholm et al., 2006). In addition, it 
has been proposed that their presence serves as a ‘danger’ 
signal to the host immune system at sites of tissue injury or 
stress where HSPs are released extracellularly (Chen et al., 
1999; Williams and Ireland, 2008). For example, HSP60 is 
shown to be recognized by PRRs such as TLR2 and TLR4 
as an endogenous ‘danger’ signal in the immune system, 
stimulating rapid inflammatory cytokine release (Ohashi et 
al., 2000; Vabulas et al., 2001).

Recently, HSPs in plants have received considerable at-
tention due to their novel function in innate immunity (Li 
et al., 2009; Liu and Howell, 2010; Nekrasov et al., 2009). 
Plants respond to pathogen invasion using a two-branched 
innate immune system consisting of PAMP-triggered 
immunity (PTI) and effector-triggered immunity (ETI). 
Plant PRRs transducing PTI constitute the first mode of 
defense against pathogen infection, like in animals (Dodds 
and Rathjen, 2010). Most PRRs, characterized as either 
receptor-like kinases (RLKs) or receptor-like proteins 
(RLPs), are located at the plasma membrane (Monaghan 
and Zipfel, 2012). Plasma membrane-resident PRRs are 
synthesized in the endoplasmic reticulum (ER), where they 
are subject to ER quality control (ER QC) (Li et al., 2009; 
Nekrasov et al., 2009; Park et al., 2010; Saijo, 2010). ER 
QC is a conserved process in eukaryotic cells that is re-
sponsible for monitoring correct folding and processing of 
membrane and secretory proteins (Kleizen and Braakman, 
2004). Many ER proteins, including HSP70 luminal-bind-
ing protein (BiP), HSP40 ERdj3B, stromal-derived factor 2 
(SDF2), calreticulin3, UDP-glucose glycoprotein glucosyl 
transferase, and ER retention defective 2B (ERD2B), par-
ticipate in the ER QC machinery for PRR accumulation (Li 
et al., 2009; Liu and Howell, 2010; Nekrasov et al., 2009). 
The second defense system, ETI, provides a remarkable 
level of disease resistance (Chisholm et al., 2006; Dodds 
and Rathjen, 2010). ETI is triggered by R proteins acting 
as receptors for highly variable pathogen-derived effectors 
in the cytoplasm, either directly or indirectly. Most R genes 

encode intracellular proteins belonging to the nucleotide-
binding domain and leucine-rich repeat (NB-LRR)-
containing protein family. Interaction of HSP90 with either 
SGT1 (suppressor of G2 allele kinetochore protein) or 
RAR1 (required for Mla12 resistance) or both confers sta-
bility to R proteins, contributing to recognition of pathogen 
effectors (Kadota and Shirasu, 2012; Shirasu and Schulze-
Lefert, 2003). HSP90 physically interacts with various R 
proteins such as N, RPM1 (resistance to Pseudomonas 
maculicola 1), RPS2 (resistance to P. syringae 2), and 
RPS4 (resistance to Pseudomonas syringae 4) (Hubert et 
al., 2003; Liu et al., 2004). HSP90 also interacts with the 
cysteine- and histidine-rich zinc-binding domain (CHORD) 
of RAR1 as well as the CHORD domain and SGT1 motif 
of SGT1 (Boter et al., 2007; Catlett and Kaplan, 2006).

In this review, we concisely discuss major recent find-
ings regarding major plant HSPs/chaperones in relation 
to the immune response, particularly focusing on quality 
control of intracellular R proteins and plasma membrane-
resident PRRs. We also cover how HSPs contribute to vari-
ous types of plant immunity as well as other molecular ER 
chaperones.

Cytosolic HSPs involved in plant immunity

HSPs are mainly located in the cytoplasm but involved 
in transferring cellular signals to the nucleus under stress 
conditions. Many cytosolic HSPs respond under not only 
abiotic stresses such as heat, drought, and salinity but 
also biotic stresses such as pathogen infection and insect 
attacks (Bhattarai et al., 2007; Breiman, 2014; Boston et 
al., 1996). Among HSP families, the functions of HSP90 
in plant immunity are the most well characterized to date. 
HSP90 physically interacts with many co-chaperones, 
including different HSP families, to recruit and interact 
with diverse substrate proteins, leading to alteration of cel-
lular processes. As a positive regulator of plant immunity, 
HSP90 can directly interact with R proteins, and many 
of its substrates are kinases and transcription factors that 
activate defense responses (Breiman, 2014; Sangster and 
Queitsch, 2005; Xu et al., 2012b). However, other HSP 
families such as HSP70, HSP40, and sHSPs are functional 
in microbial pathogenesis, in particular, during viral infec-
tions (Boevink and Oparka, 2005; Hafren et al., 2010; 
Soellick et al., 2000). Recently, these HSP families were 
reported to be involved in stability of R proteins, cell death, 
and positive regulation of immunity (Kim et al., 2007; Liu 
and Whitham, 2013; Van Ooijen et al., 2010).

HSP100. HSPs with molecular weights of 100 to 104 
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kDa are classified into the HSP100 family. Under severe 
thermal stress conditions, HSP100 proteins maintain the 
functional integrity of certain key polypeptides by enabling 
resolubilization of non-functional protein aggregates as 
well as helping to degrade irreversibly damaged poly-
peptides (Gupta et al., 2010; Kim et al., 2007). In plants, 
HSP100 proteins are also widely studied for their role in 
heat tolerance in plants (Hong and Vierling, 2001; Lin et 
al., 2014; Queitsch et al., 2000). Among the various types 
of Arabidopsis HSP100 proteins, the cytosolic form is 
crucial for heat tolerance but not normal growth (Hong 
and Vierling, 2001). In accordance with the results of a 
previous study (Queitsch et al., 2000), yeast cells carrying 
an hsp100 deletion can be rescued by transformation with 
wild-type of plant hsp100 homologs from Arabidopsis, 
soybean, wheat, and tobacco. Further, HSP100 plays an 
important role in re-solubilizing protein aggregates via 
interactions with the sHSP chaperone system (Bosl et al., 
2006). A positive feedback loop between HSP100 and heat 
stress-associated 32-KD protein (HSA32) is known to pro-
long the effects of heat acclimation in rice seedlings (Lin et 
al., 2014). 

On the other hand, the function of HSP100 in plant 
immunity has been rarely investigated. Clavibacter michi-
ganensis ssp. sepedonicus is the causal agent of bacterial 
ring rot in potato and causes a hypersensitive response 
(HR) in non-host plants such as tobacco. Overexpression of 
HSP100 in tobacco cells is known to increase survival rates 
compared to wild-type cells after C. michiganensis infec-
tion (Shafikova et al., 2013). 

HSP90. HSP90 is the most abundant in cytosolic heat 
shock protein family in both eukaryotic and prokaryotic 
cells and is rapidly induced in response to various stress 
conditions. Under physiological conditions, HSP90 associ-
ates with various intracellular proteins, including calmodu-
lin, actin, tubulin, kinases, and receptor proteins (Gupta et 
al., 2010; Matsumiya et al., 2009; Nguyen et al., 2009; Te 
et al., 2007). Plant HSP90 has been well-characterized as 
a core component of various protein complexes that as-
sociate with co-chaperones such as tetratricopeptide repeat 
(TPR)-type or non-TPR-type co-chaperones (Takahashi et 
al., 2003). HSP90 has been reported as a key regulator of 
normal growth and development in Nicotiana benthami-
ana and Arabidopsis (Liu et al., 2004; Queitsch et al., 
2002; Sangster and Queitsch, 2005; Sangster et al., 2007). 
HSP90-silenced N. benthamiana plants show meristem 
death as well as a severely stunted growth phenotype with 
chlorotic leaves (Liu et al., 2004). HSP90-dependent phe-
notypes have also been extensively studied in Arabidopsis 

with inhibited HSP90 functions (Queitsch et al., 2002; 
Sangster and Queitsch, 2005; Sangster et al., 2007). In 
these studies, lack of HSP90 caused a variety of pheno-
types such as altered flowering time and morphological 
features. HSP90s also play essential roles in plant immuni-
ty (Kadota and Shirasu, 2012; Shirasu, 2009). The HSP90, 
SGT1 (suppressor of G-two allele of Skp1) containing a 
TPR domain, and RAR1 (required for Mla12 resistance) 
containing two zinc-binding modules termed cysteine- and 
histidine-rich domain (CHORD) form a molecular chap-
erone complex that is involved in plant immunity (Kadota 
and Shirasu, 2012; Shirasu and Schulze-Lefert, 2003; Seo 
et al., 2008). HSP90 activates cytosolic R proteins contain-
ing nucleotide-binding domain and leucine-rich repeat, 
which mediates defense against many microbial pathogens. 
Together with the co-chaperones RAR1 and SGT1, HSP90 
modulates many cytosolic R proteins such as MLA, RPM1, 
RPS2, RPS4, and N by interacting directly with cytosolic 
R proteins (Hubert et al., 2003; Liu et al., 2004; Shirasu, 
2009; Takahashi et al., 2003; Zhang et al., 2004). For 
example, HSP90 interacts with the LRR domain of N in to-
bacco (Liu et al., 2004). A co-immunoprecipitation experi-
ment demonstrated interactions between HSP90 and RPM1 
(Hubert et al., 2003). Previous studies on cytosolic HSP90s 
in Arabidopsis disclosed their ability to regulate the activ-
ity and stability of R proteins (Shirasu, 2009). Alternation 
of HSP90s is known to reduce accumulation of R proteins 
such as RPM1, RPS5, and RPS4 (Hubert et al., 2003; 
Hubert et al., 2009; Lu et al., 2003) or compromise RPM1-, 
RPS4-, and RPP4 (recognition of Peronospora parasitica 
4)-mediated immune responses (Bao et al., 2014). In rice, a 
chaperone complex consisting of cytosolic HSP90 and its 
co-chaperone Hop/Sti1 participates in chitin responses and 
anti-fungal immunity (Chen et al., 2010). Specifically, the 
chaperone complex promotes delivery of OsCERK1 from 
the ER to the plasma membrane and mediates its matura-
tion in a transgenic protoplast system.

HSP70. The HSP70 family represents one of the most 
highly conserved classes of heat shock proteins. In animals 
and plants, HSP70 functions as a chaperone for newly 
synthesized proteins to prevent their accumulation as ag-
gregates as well as to ensure proper protein folding during 
their transfer to their final location. HSP70 has various 
functions in microbial pathogenesis. In particular, HSP70 
appears to regulate viral reproduction and movement, 
which ultimately promotes viral infection (Boevink and 
Oparka, 2005; Hafren et al., 2010). Cytoplasmic HSP70 
enhances infection of N. benthamiana by Tobacco mosaic 
virus, Potato virus X, and Watermelon mosaic virus (Chen 
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et al., 2008). Recently, the coat protein (CP) of Potato 
virus A was shown to interact with N. tabacum HSP70, 
which is important for viral infection (Hafren et al., 2010), 
whereas CP of Tomato yellow leaf curl virus was shown 
to be involved in recruiting host plant HSP70 during vi-
ral infection (Gorovits et al., 2013). However, HSP70 is 
also an important molecular chaperone that plays critical 
roles in biotic stress responses. The cytosolic/nuclear heat 
shock cognate 70 (HSC70) chaperone, a highly homolo-
gous to HSP70, regulates Arabidopsis immune responses 
together with SGT1. Cytoplasmic HSP70 is required for 
the Phytophthora infestans INF1-mediated hypersensitive 
response (HR) and non-host resistance to Pseudomonas 
cichorii in N. benthamiana (Kanzaki et al., 2003). In addi-
tion, cytoplasmic Capsicum annuum HSP70 (CaHSP70) 
significantly accumulates in pepper leaves, inducing the 
HR by Xanthomonas campestris pv. vesicatoria (Xcv) in-
fection. CaHSP70 silencing in pepper was recently shown 
to increase susceptibility to Xcv as well as alter the cell 
death response to Xcv infection (Kim and Hwang, 2015). 

HSP40. HSP40/DnaJ, also termed J-domain-containing 
protein (J-protein) is a co-chaperone component of the 
HSP70 system known to increase HSP70 affinity for clients 
(Kampinga and Craig, 2010). HSP40 contains a conserved 
70-amino acid J-domain that interacts with the nucleotide-
binding domain (NBD) of HSP70. Similar to HSP70, the 
function of HSP40 in viral pathogenesis has been well 
studied in various virus-plant interactions. For examples, 
the CP of Potato virus Y interacts with DnaJ-like protein 
(HSP40), which is important for cell-to-cell movement 
(Hofius et al., 2007). Similarly, the movement protein (MP) 
of Tomato spotted wilt virus interacts with DnaJ-like pro-
tein (Soellick et al., 2000). Recently, HSP40 was demon-
strated to function in plant immunity, as overexpression of 
HSP40 causes HR-like cell death and silencing of HSP40 
enhances susceptibility to Soybean mosaic virus in soybean 
(Liu and Whitham, 2013). The functions of HSP70 and 
HSP40 in plant immunity have been generally identified as 
chaperones in microbial pathogenesis, particularly, in viral 
movement. Both HSP chaperones interact with viral MP 
or CP that binds viral nucleic acids or virions and facilitate 
viral movement from cytosol (or nucleus) to membrane or 
plasmodesmata between two plant cells, leading to more 
rapid or severe symptom development (Chen et al., 2008; 
Hafren et al., 2010; Hofius et al., 2007). In these days, 
several HSP70 and HSP40 was demonstrated as positive 
regulators in plant immunity. Although overexpression or 
knockdown of these HSPs enhance resistance and suscep-
tibility to pathogen infections, respectively, most of fine 

mechanisms remains unclear.

Small HSP (sHSP). Similar to other HSPs, sHSPs function 
as molecular chaperones, preventing undesired protein–
protein interactions and assisting refolding of denatured 
proteins (Gupta et al., 2010). sHSP confers a protective 
function by preventing thermal aggregation of proteins 
through binding to non-native forms (van Montfort et al., 
2001). HSP20, a representative sHSP, maintains denatured 
proteins in a folding-competent state and allows subsequent 
ATP-dependent disaggregation through the HSP70/90 
chaperone system (Kotak et al., 2007; Liberek et al., 2008). 
Similar to HSP70/HSP40, a number of sHSPs are associat-
ed with viral infection (Verchot, 2012), whereas there have 
been several reports on their role in plant disease resis-
tance. An HSP20 member is known to specifically interact 
with I-2, which confers resistance to Fusarium oxysporum 
(Simons et al., 1998) by accumulation of I-2. Another 
HSP20 from Nicotiana tabacum (NtsHSP) was shown 
to be involved in disease resistance in plants (Maimbo et 
al., 2007). Disease symptoms caused by Ralstonia sola-
nacearum are enhanced in NtsHsp-silenced plants.

Endoplasmic reticulum (ER) HSPs involved in 
plant immunity

The ER is a cellular organelle with important functions in 
eukaryotic cells. It connects to other cellular compartments 
such as the nucleus, Golgi, mitochondria, and plasma 
membrane and is therefore a major site of protein passage 
from other organelles to the plasma membrane and extra-
cellular space. Importantly, the ER has numerous quality 
control (ER QC) mechanisms to assure that properly folded 
proteins exit the ER and reach their final destinations, such 
as the plasma membrane, vacuoles, or apoplast. The ER 
operates the ER QC that identifies permanently misfolded 
proteins and retranslocates them to the cytoplasm for 
proteasomal degradation. These pathways that orchestrate 
destruction of aberrant proteins are collectively termed 
ER–associated degradation (ERAD) (Huttner and Strasser, 
2012; Liu and Howell, 2010; Vitale and Boston, 2008). 
Many proteins within the ER, including HSPs and chaper-
ones, are critical to ER function, including protein folding 
modes or extracellular release and cell-surface localization 
of proteins. In plants, recent genetic evidence indicates that 
HSPs/chaperones play critical roles in biogenesis, matura-
tion, and stabilization of PRRs through ER QC pathways 
(Haweker et al., 2010; Li et al., 2009; Liu and Howell, 
2010; Lu et al., 2009; Nekrasov et al., 2009; Saijo et al., 
2009, 2010). We will further discuss how such HSPs/chap-
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erones contribute to accumulation of PRRs at the plasma 
membrane and regulate plant immunity. 

Binding protein (BiP). The immunoglobulin binding 
protein (BiP) was discovered as one of glucose-regulated 
proteins (Grps). In 1977, Ira Pastan and his colleagues 
observed that two proteins with molecular sizes of 78 and 
94 kDa were strongly induced in chicken embryo fibro-
blasts cultured in glucose-free medium (Lee, 2001; Shiu et 
al., 1977). These proteins were subsequently identified as 
Grp78 (also referred to as BiP) and Grp94 (also known as 
gp96). 

BiP, an abundant HSP70 in the ER, has diverse functions 
but is best known for its central role in ER stress and the 
‘unfolded protein response (UPR)’, which are essential to 
the development and health of mammalian cells (Gupta 
and Tuteja, 2011; Kleizen and Braakman, 2004). The in-
trinsic adenosine triphosphatase (ATPase) activity of BiPs 
regulates binding and release from their substrates. In pre-
vious reports, BiP was shown to interact with the growing 
nascent chain of substrates containing N-linked glycans, 
promoting their translocation into the ER (Molinari and 
Helenius, 2000). BiP is also involved in ER QC, in which 
unassembled and/or misfolded proteins are selectively 
retained in the ER (Gupta and Tuteja, 2011; Kleizen and 
Braakman, 2004). In addition, BiP targets permanently 
misfolded proteins for ERAD, a complex process through 
which the misfolded proteins are selected and ultimately 
degraded by the ubiquitin-proteasome system (Gupta and 
Tuteja, 2011; Kleizen and Braakman, 2004).

As a chaperone that monitors folding conditions in the 
ER lumen, BiP interacts with a wide range of plasma 
membrane-resident proteins, particularly PRRs. In ani-
mals, BiPs have been shown to interact with various cell 
surface receptors such as nicotinic acetylcholine receptor, 
γ-aminobutyric acid type A receptor, α-amino-3-hydroxy-
5-methyl-4-isoxazolepropoinate (AMPA) receptor, and 
epidermal growth factor receptor (EGFR) (Cai et al., 1998; 
Fleck, 2006). Whereas overexpression of human BiP 
inhibits translocation of EGFR to the cell surface (Cai et 
al., 1998), it has no effect on AMPA receptor expression 
(Vandenberghe et al., 2005). It has also been shown that 
Arabidopsis BiP physically interacts with a mutant form of 
cell surface brassinosteroid (BR) receptor for steroid hor-
mones but not wild-type BR receptor (Hong et al., 2008; 
Jin et al., 2007). Consistent with mammalian BiPs, these 
results suggest that plant BiPs also prevent export of struc-
turally perturbed cell surface receptors. 

BiP has also been demonstrated to participate in plant 
immunity as a central regulator. The ER participates in at 

least three different processes in plant immunity, and com-
pelling evidence has linked BiP to all three ER-supported 
immunity functions (Carvalho et al., 2014; Eichmann and 
Schafer, 2012). First, the ER functions as a surveillance 
system for proper glycosylation and folding of membrane-
resident PRRs (Li et al., 2009; Liebrand et al., 2012; 
Nekrasov et al., 2009; Saijo et al., 2009). The involvement 
of ER QC and ERAD in XA21-mediated immunity has 
been demonstrated through isolation of an in vivo XA21 
protein complex (Park et al., 2010). An approximately 75-
kDa protein co-immunoprecipiated with XA21 was previ-
ously identified as OsBiP3 through LC-MS/MS sequenc-
ing. Accordingly, overexpression of rice BiP3 regulates 
XA21 PRR-mediated innate immunity, but not NB-LRR 
protein Pi5-mediated innate immunity, by specifically 
controlling the processing and stability of XA21 (Park et 
al., 2010, 2014). A BiP-containing ER protein complex 
is indispensable for proper biogenesis of EF-Tu receptor 
(EFR) PRR, demonstrating conserved involvement of ER 
QC and PRR function in the monocotyledon as well as 
dicotyledon (Nekrasov et al., 2009). Secondly, plant im-
munity depends on the efficient production and secretion 
of defense-related proteins (Moreno et al., 2012; Wang et 
al., 2005). BiP2-silencing Arabidopsis attenuates patho-
genesis-related protein 1 (PR1) secretion, a valid marker 
of salicylic acid (SA)-regulated immunity, upon treatment 
with SA analogs and impairs resistance against bacterial 
pathogens (Wang et al., 2005). Thirdly, BiP plays a role in 
pathogen-induced hypersensitive cell death, although with 
contrasting results (Xu et al., 2012a; Ye et al., 2011). BiP2 
silencing is associated with delay of non-host hypersensi-
tive cell death caused by Xanthomonas oryzae pv. oryzae 
(Xu et al., 2012a), whereas BiP overexpression alleviates 
cell death induced by ectopic expression of TGBp3, an 
8-kDa membrane-embedded protein from Potato virus X 
(Ye et al., 2011). These conflicting results could be due to 
versatile functions of BiP in ER stress response. Recently, 
dual function of BiP was reported in modulating cell deaths 
(Carvalho et al., 2014). BiP positively regulates the cell 
death signaling through a yet undefined mechanism that is 
activated by SA signaling and related to ER functioning. 
By contrast, BiP’s negative regulation of cell death may be 
linked to its ability to attenuate the UPR activation caused 
by overexpression of viral protein.

Grp94 (gp96). The 94-kDa glucose-regulated protein 
(Grp94) is an HSP90 protein family member found in 
the ER (Shiu et al., 1977). Grp94 has approximately 50% 
homology with its cytosolic counterpart, HSP90. Grp94 is 
known to be expressed in all cell types and is transcription-
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ally co-regulated with another important ER resident chap-
erone, BiP (also known as Grp78), in HeLa cells (Liu and 
Lee, 1991). Expression of Grp94 is induced under various 
stress conditions, including interferon (Anderson et al., 
1994), glucose starvation (Shiu et al., 1977), overexpres-
sion of misfolded proteins (Ramakrishnan et al., 1995) and 
ER stress connected with inflammatory diseases (Guo and 
Li, 2014). 

Recently, the functional relationship between Grp94 and 
PRR has been intensively studied in animals (Liu, 2014). 
Toll-like receptors (TLRs) are a major family of PRRs 
mainly expressed by cells of the innate immune system. 
Currently, more than 13 TLRs have been cloned in mam-
mals, and each TLR is involved in the recognition of a 
unique set of PAMPs (Kawai and Akira, 2010). Grp94 
is now considered to be a master molecular chaperone of 
TLRs in the ER, and the function of most TLRs is depen-
dent on the integrity of Grp94 in the ER (Liu and Li, 2008; 
Yang et al., 2007). In the absence of Grp94, TLRs fail to 
translocate to the cell surface or endosomes and are instead 
retained in the ER. Furthermore, macrophage-specific 
Grp94-deficient mice are highly susceptible to acute in-
fection by the Gram-positive bacterial pathogen Listeria 
monocytogenes, indicating that the functions of macro-
phages based on TLR signaling are mediated by Grp96 
(Yang et al., 2007). The functional involvement of Grp94 
in plant immunity remains unclear. However, highly con-
served ER QC in plants and mammals (Hong et al., 2008; 
Nekrasov et al., 2009; Sitia and Braakman, 2003; Saijo et 
al., 2009) suggests that plant Grp94 as a molecular chap-
erone also participates in the translocation of membrane-
resident PRRs.

HSP40. Similar to their cytosolic counterparts, ER-resident 
HSP40s function as molecular co-chaperones defined by 
the presence of a highly conserved J-domain of about 70 
amino acids, which regulates the activity of HSP70 pro-
teins (Rug and Maier, 2011). ER-resident HSP40 is often 
denoted as ERdj (or ERj) in mammalian systems. In mam-
mals, seven ERdjs (ERdj1 to 7) have been identified with 
widely different concentrations (Qiu et al., 2006). ERdjs 
appear to play dual roles of increasing BiP affinity for 
clients as well as regulating delivery of clients to BiP (Guo 
and Snapp, 2013). ERdjs all belong to the HSP40 family 
and bind to BiP via their conserved J-domains, particularly 
the HPD amino acid motif (Shen and Hendershot, 2005). 
Among these seven members, ERdj3B is likely involved 
in immunity. Mammalian ERdj3 forms a complex with un-
folded proteins and multiple chaperones, including Grp94 
(Meunier et al., 2002), which is the unique and obligatory 

master chaperone for TLRs (Yang et al., 2007). 
In contrast to animal systems, there is little information 

on the function of ERdjs in plants. Five types of ERdjs (P58, 
ERdj2, ERdj2A, ERdj3B, and ERdj7) have been identified 
(Ohta and Takaiwa, 2014). In Arabidopsis, ERdj3B forms 
a complex with SDF2 (Nekrasov et al., 2009). SDF2 pro-
teins are conserved throughout plants and animals. Upon 
UPR activation and ER stress, transcription of SDF2 genes 
is significantly enhanced in humans and Arabidopsis, sug-
gesting an evolutionarily conserved role (Fukuda et al., 
2001; Schott et al., 2010). The precise molecular functions 
of ERdj3B and SDF2 proteins still need to be established. 
However, recent reports in plants suggest that SDF2 play 
an important role in the immune response with co-chap-
erones. SDF2 acts in a multi-protein complex with ERdj3 
and BiP in the ER (Meunier et al., 2002). Aterdj3b mutants 
are susceptible to the bacterial pathogen Pseudomonas 
syringae (Nekrasov et al., 2009). Mutation of sdf2-2 causes 
retention and degradation of EFR in the ER. These previ-
ous reports suggest that AtERdj3B forms a complex with 
BiP and SDF2 to mediate proper accumulation of EFR at 
the plasma membrane. 

In rice, SDF2 is co-purified with XA21, suggesting its 
role in biogenesis and functionality of XA21 receptor 
(Park et al., 2013). SDF2 silencing lowers XA21-mediated 
resistance, indicating a critical role for ER homeostasis in 
the PRR pathway (Park et al., 2010; Park et al., 2013; Park 
et al., 2014). These results suggest that rice ERdj3b is also 
involved in resistance against pathogens directly and/or 
indirectly. 

Conclusions and perspectives 

The involvement of cytosolic and ER-resident HSPs in 
protein folding processes might have general significance 
in plants. HSPs also play an essential and regulatory role in 
the innate immune response in plant cells. Genetic and pro-
teomic research has led to the isolation of various subcellu-
lar HSPs, which are critical for innate immunity in different 
plant species. However, we are still far from understanding 
exactly how HSPs/chaperones participate in PAMP sens-
ing, translocation of immune receptors, signal transduction, 
and transcriptional activation of stress genes. Increasing 
evidence points that fine control of both the quantity and 
quality of membrane-resident PRRs and cytosolic R pro-
teins occurs. In addition to their critical role in cellular ho-
meostasis, HSPs/chaperones should perform an active role 
in the fine control through yet undefined mechanisms that 
is regulated by cellular stress responses. It was proposed 
that evolution of new recognition specificities for emerging 
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pathogens may result in proteins that detect novel ligands 
but have not been selected for high stability, thus requiring 
extra “buffering” (Nekrasov et al., 2009; Queitsch et al., 
2002). In support of this hypothesis, recent reports demon-
strated the client-specific affinity of HSPs/chaperones for 
receptor proteins. For example, Arabidopsis ER QC com-
ponents such as calreticulin3, UDP-glucose:glycoprotein 
glycosyltransferase, SDF2, BiP, and ERdj3b are essential 
for EFR but not (or at least less) FLS2 biogenesis (Li et 
al., 2009; Nekrasov et al., 2009; Saijo, 2010). Although 
EFR and FLS2 are structurally similar and carry numer-
ous putative glycosylation sites, they may have different 
glycosylation states that could impact their dependence on 
the ER-QC machinery (Nekrasov et al., 2009). Similarly, 
although rice brassinosteroid insensitive 1 (OsBRI1), a 
brassinosteroids receptor, shows overall structural similar-
ity with XA21, BiP3-overexpressing rice does not show ac-
cumulation of XA21, which compromises XA21-mediated 
immunity but not OsBRI1-mediated signaling (Park et al., 
2010). Therefore, future research identifying which client 
immune receptors are matched with which HSPs/chaper-
ones for their biogenesis/glycosylation and signal transduc-
tion will help our understanding of plant innate immunity. 

In animals, HSPs such as HSP60, HSP70, HSP90, and 
Grp94 are able to induce the innate immune response 
directly and are thus considered as danger- or damage-
associated molecular patterns (DAMPs) (Wallin et al., 
2002). However, there is some evidence against HSPs 
as DAMPs. It was proposed that HSP should be called 
DAMPERs rather than DAMPs, as HSPs have a dampen-
ing effect on immune activation as well as the capacity to 
promote immune homeostasis (van Eden et al., 2012). In 

plants, receptors involved in recognizing DAMPs include 
plasma membrane-resident RLKs. For example, syste-
min, an 18-amino-acid peptide released from tomato, and 
AtPep1, a 23-amino-acid peptide from Arabidopsis, are 
recognized by the RLK-encoding BRI1/SR160 and PEPR1 
genes, respectively. Although it is clear that HSPs are key 
components for quality control of PRRs and R proteins in 
the innate immune response, none have been reported in 
plant cells as DAMPs/DAMPERs so far. Future studies 
will be needed to reveal the possible interactions between 
HSPs and receptors that trigger innate immunity. 
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