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ABSTRACT

Motivation: Since database retrieval is a fundamental operation,
the measurement of retrieval efficacy is critical to progress in
bioinformatics. This article points out some issues with current
methods of measuring retrieval efficacy and suggests some
improvements. In particular, many studies have used the pooled
receiver operating characteristic for n irrelevant records (ROCn)
score, the area under the ROC curve (AUC) of a ‘pooled’ ROC curve,
truncated at n irrelevant records. Unfortunately, the pooled ROCn

score does not faithfully reflect actual usage of retrieval algorithms.
Additionally, a pooled ROCn score can be very sensitive to retrieval
results from as little as a single query.
Methods: To replace the pooled ROCn score, we propose the
Threshold Average Precision (TAP-k), a measure closely related to the
well-known average precision in information retrieval, but reflecting
the usage of E-values in bioinformatics. Furthermore, in addition to
conditions previously given in the literature, we introduce three new
criteria that an ideal measure of retrieval efficacy should satisfy.
Results: PSI-BLAST, GLOBAL, HMMER and RPS-BLAST provided
examples of using the TAP-k and pooled ROCn scores to evaluate
sequence retrieval algorithms. In particular, compelling examples
using real data highlight the drawbacks of the pooled ROCn score,
showing that it can produce evaluations skewing far from intuitive
expectations. In contrast, the TAP-k satisfies most of the criteria
desired in an ideal measure of retrieval efficacy.
Availability and Implementation: The TAP-k web server
and downloadable Perl script are freely available at
http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/tap/
Contact: spouge@ncbi.nlm.nih.gov
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
In bioinformatics, retrieval from databases is a fundamental
operation. Therefore, progress depends on being able to recognize
superior retrieval algorithms, so the measurement of retrieval
efficacy is critical in bioinformatics. Swets (1967) stated that an ideal
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measure of retrieval efficacy (or more simply, a ‘retrieval measure’)
should satisfy four conditions:

(1) It should concern itself solely with the effectiveness of
separating the relevant from the non-relevant [records] and
not with the efficiency of resource use.

(2) It should not be dependent on a [user] threshold, but should
measure the potential output of the method.

(3) It should be a single number.

(4) It should have absolute significance as a measure of a single
method and should readily allow comparisons of different
methods to decide which is best.

To fix our terms, when a user queries a database of R records, a
retrieval algorithm typically lists up to R records, ranked by some
score S indicating the probability that the corresponding record has
relevance to the query. In text retrieval (e.g. Google or PubMed
results), retrieval lists do not indicate the scores producing their
list orders. In a significant break with the traditions of information
retrieval, however, bioinformatics retrieval often explicitly presents
an E-value with the score, so users are free to choose an E-value
threshold E0 and then ignore the retrieval list beyond E0. For
concreteness, we discuss only E-values, but the methods in this
article apply to any score S. (Note that E-values and the retrieval
ranks increase together.)

In accord with the motivation behind E-values, Wilbur (1992)
modified Swets’ Condition (2):

(2′) It should be characterized by a [user] threshold, but should
reflect the quality of retrieval at every rank down to that
threshold.

Wilbur’s modification implicitly respects an overarching principle
governing retrieval measures, which we call ‘the Principle of
Fidelity’: a retrieval measure should faithfully reflect the actual
usage of the retrieval list. If not, the measure might be ‘ideal’ in
some abstract sense, but would lack a practical meaning.

The Principle of Fidelity supports Wilbur’s Condition (2′) in
bioinformatics, because an E-value threshold E0 influences the
actual usage of a retrieval algorithm. Since a user rarely examines
a retrieval list far beyond the E-value threshold E0, any practical
measure of database retrieval in bioinformatics should reflect the
user’s E0. The rest of this article, therefore, disregards Swets’
Condition (2) in favor of Wilbur’s Condition (2′), referring to the
result as the ‘Swets–Wilbur Conditions’.
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In addition to the Swets–Wilbur Conditions, the Principle of
Fidelity suggests that an ideal retrieval measure should satisfy
additional conditions. Accordingly, we introduce the following
conditions:

(5) It should be robust against results representing a small
proportion of possible user queries.

(6) When two disjoint sets of queries are considered, its value for
the union of the two sets should lie between its values for the
two sets of queries.

(7) It should reflect the choice of threshold; in particular, it should
eventually decrease as the threshold increases to include the
entire retrieval list.

Condition (5) reflects the fact that not many users are likely to
query with the proportionally small subset, so the subset should not
greatly influence conclusions about retrieval efficacy. Condition (6)
says that when combined, two disjoint sets of retrieval results should
not suggest better (or worse) efficacy than either set individually.
Condition (7) reflects the fact that presumably, an appropriate
E-value threshold E0 has practical utility: if users prefer to examine
the entire retrieval list, they have no use for an E-value threshold.

The receiver operating characteristic for n irrelevant records
(ROCn) score (Gribskov and Robinson, 1996) described in Section 2
is often used as a retrieval measure in bioinformatics. In fact, the
‘pooled ROCn score’ (Schaffer et al., 1999) (also described in
Section 2) is probably the most popular summary retrieval measure
over several different queries. However, the Principle of Fidelity
casts immediate suspicion on the pooled ROCn score as a retrieval
measure. Users do not examine the pooled retrieval list aggregated
from lists for individual queries: users see the individual retrieval
lists one at a time.

Section 3 shows that the pooled ROCn score does not always
satisfy Condition (5) or (6). Moreover, it always fails to satisfy
Condition (7). To replace the pooled ROCn score, we therefore
propose as a measure of retrieval the Threshold Average Precision at
a median of k errors per query (EPQ) (abbreviated and pronounced
‘TAP-k’). The TAP-k summarizes features of the precision–recall
(PR) curve (described in Section 2). PR curves are popular in
general information retrieval and already have found some favor
in bioinformatics (Chen, 2003; Jones et al., 2005; Krishnamurthy
et al., 2007; Raychaudhuri et al., 2002; Wass and Sternberg, 2008).

To exemplify the PR curve and TAP-k, Section 3 presents several
examples of actual database retrieval, using the programs PSI-
BLAST (Schaffer et al., 2001), GLOBAL (Kann et al., 2007),
HMMER (Eddy, 1998) and RPS-BLAST (Schaffer et al., 1999).
The section shows that unlike the TAP-k, the pooled ROCn score can
produce evaluations so misleading as to be completely contrary to
common sense (Chen, 2003; Hand, 2009; Sierk and Pearson, 2004).
Finally, Section 4 summarizes the implications of our results.

2 METHODS

2.1 Databases and query sets
We used two distinct databases in this work (see Supplementary Material).
First, Gonzalez and Pearson (2010) constructed DB_344_Pfam, 344 protein
families from the Pfam database (Finn et al., 2008). As sample queries for
DB_344_Pfam, they provided 50 randomly selected families, each with a
‘query A’, from a deserted part of each family’s phylogenetic tree; and a

‘query B’, from a heavily populated part. Gonzalez and Pearson considered
as ‘relevant’ only sequences in the same domain family or clan as the query.

Second, Kann et al. (2007) provided DB_331_CDD, the position-
specific scoring matrices (PSSMs) corresponding to 331 multiple sequence
alignments from the NCBI Conserved Domain Database (CDD; Marchler-
Bauer et al., 2007). As sample queries for DB_331_CDD, they provided
DB_8920_PDB [which Kann et al. (2007) named ‘DB_10185’, for the 10 185
PDB sequences it contained before additional filtering]. DB_8920_PDB
contains 8920 non-redundant sequences from the RCSB Protein Data Bank
(PDB; Berman et al., 2007). Kann et al. considered as ‘relevant’ only to
those sequences in DB_8920_PDB that had at least 80% overlap with a
representative in DB_331_CDD.

2.2 Retrieval programs
Retrieval with PSI-BLAST (version 2.2.21) provided our anecdotal
examples. We performed five PSI-BLAST iterations on NCBI’s NR database
with an E-value threshold of 0.005, using the final PSSM to retrieve
sequences from DB_344_Pfam. Estimates of retrieval efficacy reflected
solely the final retrieval from DB_344_Pfam, not the previous iterations
on the NR database.

Additionally, we calculated retrieval results for GLOBAL, HMMER
and RPS-BLAST with the DB_8920_PDB queries searching in the
DB_331_CDD. We utilized two variants of HMMER: HMMER_semi-global
and HMMER_local (HMMER in ‘global’ and ‘local’ modes, respectively).
The settings for HMMER, along with their rationale, have been specified
elsewhere (Kann et al., 2007).

2.3 Retrieval measures
2.3.1 The ROCn curve and score Given a particular query, assume every
database record is either relevant or irrelevant to the query. [The standard
ROC terminology refers to ‘true positives’ and ‘false positives’, but in
information retrieval, the terms ‘relevant’ and ‘irrelevant’ are pertinent.
Unlike some authors (Hand, 2009), we view information retrieval as a
problem in ranking, not a problem in classification.] Let the total number of
irrelevant records be F. In response to a query, a retrieval algorithm produces
a ranked retrieval list of all records in the database. Number each irrelevant
record in the database 1,2, ... ,f , ... ,F, according to its order in the retrieval
ranking. The ‘ROC curve’ plots the fraction of relevant records preceding
the f -th irrelevant record against the fraction f /F. The ‘ROC score’ is the
area under the ROC curve, abbreviated ‘AUC’ (Swets, 1988). The ROC
score is the probability that a random relevant record is ranked before a
random irrelevant record (Bamber, 1975). By analogy to the ROC curve, the
‘ROCn curve’ is the ROC curve truncated after the first n irrelevant records,
with the ROCn score being the area under the ROCn curve divided by n/F.
An ‘ideal retrieval’ ranks all relevant records before any irrelevant record.
The normalization by n/F ensures that ideal retrieval receives the maximum
ROCn score of 1.0. For the ROCn, a threshold of n = 50 irrelevant records
seems accepted practice (Gribskov and Robinson, 1996).

2.3.2 The pooled ROCn score To calculate the pooled ROCn score, merge
the retrieval lists for all sample queries into a ‘pooled retrieval list’, and sort
the pooled list on the E-value. Then, calculate the ROCn score for the pooled
list, as though it were a single retrieval list.

2.3.3 The PR curve and the average precision PR curves and average
precision (AP) often quantify retrieval efficacy in general information
retrieval. To calculate the AP (see Supplementary Material), fix the retrieval
algorithm A and consider a particular query q to a fixed database. Let the
database contain T (q) records relevant to the queryq, and let them be ranked
t1 < ... < tT (q) in the retrieval list for algorithm A. (Thus, for ideal retrieval,
ti = i for i = 1, ... ,T (q).) Let p(j) denote ‘precision’, defined as the fraction
j/tj of relevant records in the retrieval list up to and including the j-th relevant
record. (The precision is, therefore, one minus the false discovery rate, i.e.
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Fig. 1. An example of a PR graph and TAP curve. The E-values at each
point are represented by the colors on the bar beneath.

Fig. 2. Example retrieval list with relevant (blue ‘R’s) and irrelevant (red
‘I’s) records illustrating the j(E0)-th relevant record, TPIRs and the sentinel
record.

it is a true positive rate.) Also, let r(j) denote ‘recall’, the fraction j/T (q) of
relevant records up to and including the j-th relevant record. The PR curve
plots p(j) against r(j) (Fig. 1).

2.3.4 The TAP-k We now design a retrieval measure reflecting the usage
of E-values in bioinformatics. Let E0 be an arbitrary E-value threshold. For
the query q, define j(E0) to be the number of relevant records in the retrieval
list with an E-value less than or equal to the threshold E0. Consider the
‘terminal pre-threshold irrelevant records’ (TPIRs), the irrelevant records
retrieved after the j(E0)-th relevant record but having an E-value less than or
equal to E0 (Fig. 2). Call the last record with an E-value less than or equal to
E0 the ‘sentinel’ record. Regardless of whether or not the sentinel is relevant,
it is associated with a precision p(E0), where p(E0) is the fraction of records
preceding or including the sentinel that are relevant. (If there are no records
before the E-value threshold E0, define p(E0) = 0.) The following measure
captures the effect of both post-threshold relevant records and TPIRs:

p(E0;q)= 1

T (q)+1

⎡
⎣

j(E0)∑
m=1

p(m)+p(E0)

⎤
⎦ (1)

To summarize Equation (1), it assigns the post-threshold relevant records
a precision of 0, considers the precision at the sentinel record, and then
averages the precision of the pre-threshold relevant, sentinel and post-
threshold relevant records. (If j(E0) = 0, there are no relevant records before
the threshold, and we adopt the standard convention that empty sums equal 0,
so Equation (1) yields the value 0.)

To measure the overall retrieval efficacy for several sample queries, the
simplest and most intuitive aggregate measure is p(E0), the average of the
TAP, p(E0;q), over all queries (Chen, 2003). Query averages are easy to
interpret, and if usage favors certain types of queries, the average can be
weighted, e.g. linearly or quadratically with the number of proteins in a
family (Green and Brenner, 2002).

Now, we determine an E-value threshold E0 mirroring a user’s tolerance
for retrieval errors. Assume (as the ROCn score does) that a user tolerates
about k EPQ, k being some arbitrary integer. Section 3, e.g. gives k = 20 as
an arbitrary but not unreasonable estimate of a (maximum) tolerable EPQ.
Determine the smallest E-value Ek(A) corresponding to a median number of
k EPQ over all queries q for a given algorithm A. Thus, for any E-value
threshold larger than Ek(A), at least 50% of the queries have at least k
errors. (Section 3 explains why the median EPQ is preferable to the mean
EPQ.) Each algorithm’s E-value predicts the actual number of EPQ with
varying accuracy, so the threshold Ek(A) depends on the algorithm A. With
the same median k EPQ, all algorithms have the same specificity. With their
specificities fixed at the same value, their sensitivities are on an equal footing,
and therefore comparable.

In summary, our measure of overall retrieval efficacy is pk = pk(A), the
(query-averaged) TAP-k for a median k EPQ (the ‘TAP-k’), i.e. it is the
average over all queries of Equation (1) with E0 =Ek(A).

2.4 Software availability
We implemented Equation (1) in a Perl script and provided a web
interface to calculate the TAP-k for a set of retrieval lists. Both
are easy to use, return results quickly, and are freely available at
http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/tap/.

3 RESULTS
In this section, we compare the TAP-k to the pooled ROCn score.
First, we examine the effect of using the median EPQ versus using
the mean EPQ. Next, we show how a single query can skew the
pooled ROCn score. Then, we present an example of calculating the
E-value threshold for k median EPQ. Finally, we show how varying
the E-value threshold affects the TAP-k.

3.1 Median EPQ versus mean EPQ
To illustrate the compelling reasons why the mean EPQ is inferior
to the median EPQ when analyzing database retrieval, consider a
PSI-BLAST retrieval from DB_344_Pfam. Figure 3 displays a box-
and-whisker plot of the distribution over queries of the EPQ against
E-value. At an E-value of 0.01, only about 10% of queries produce
any retrieval errors at all (data not shown), although the mean EPQ is
already about 2. Thus, the mean EPQ of 2 reflects a definite minority
of the queries that users encounter. As an extreme hypothetical
example, if a single query out of 1×106 possible queries produced
2×106 false positives, and all other queries had perfect retrieval,
the mean EPQ would still be 2.0, although few users indeed would
encounter any retrieval errors. In contrast, the median EPQ is 0.0,
accurately representing 99.9999% of the queries. The Principle of
Fidelity, therefore, favors the median EPQ over the mean EPQ,
because it reflects a user’s typical experience more closely.
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Fig. 3. The distribution of EPQ versus E-value for PSI-BLAST retrieval
over all queries in DB_344_Pfam. The dashed green line indicates the mean
EPQ; the solid red line, the median EPQ; the top and bottom of the blue
boxes, the first and third quartiles of the EPQ distribution; and the top and
bottom whiskers, the maximum and minimum EPQ over all queries.

3.2 The pooled ROCn

To illustrate the counter-intuitive behavior of the pooled ROCn score
when measuring retrieval efficacy over several queries, consider
Figure 4a. It displays ROC50 curves corresponding to three retrieval
lists from the Pfam homoserine dehydrogenase family, two for the
single queries A and B of the homoserine dehydrogenase family in
Pfam, and one for the corresponding pooled retrieval list for A and B
together. The retrieval list for query A has a ROC50 score of 0.971,
close to ideal retrieval, ranking all but 14 out of the 481 relevant
records before any irrelevant record. On the other hand, the retrieval
list for query B has a ROC50 score of 0.195, because it ranks only
94 of the 481 relevant records ahead of the corresponding irrelevant
records. All initial n = 50 irrelevant records in the retrieval list
of query B have lower E-values than any relevant records in the
retrieval list for query A, with the 50-th record for query B having
an E-value of 1×10−134. Since query B has small E-values that
appear early in its retrieval, it dominates the values of the pooled
ROC50. Because pooling the two queries doubles the number of
relevant records, the pooled ROCn score is only 0.098, half the
minimum ROCn of the two queries.

We attempted to remedy the counter-intuitive behavior of the
ROCn score by truncating the retrieval lists for queries A and B at
the E-value threshold E20(PSI-BLAST) (data not shown). For every
n ≤ 203, however, the pooled ROCn curve still places an exaggerated
emphasis on query B and its ineffective retrieval.

3.3 The calculation of the threshold Ek( A)
To illustrate the mechanics of determining the threshold
Ek(A) for different algorithms, consider the median EPQ
at the E-value threshold E0 =Ek(A) corresponding to k =20
median EPQ. The threshold Ek(A) depends on the algorithm
A, e.g. E20(GLOBAL) = 66.5, E20(HMMER_semi-global) = 82.7,
E20(HMMER_local) = 39.7 and E20(RPS-BLAST) = 79.4. In actual
usage, if users tolerate k EPQ and limit the EPQ by learning the
E-value threshold Ek(A), the Principle of Fidelity indicates that
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Fig. 4. PSI-BLAST retrieval results for the homoserine dehydrogenase Pfam
family searching in DB_344_Pfam. (a) Individual ROC50 curves, along with
the corresponding pooled ROC50. Note that the pooled ROC curve is lower
than both of the queries. This same condition continues until 203 irrelevant
records. (b) PR curves (and their average) for the same retrieval results. The
TAP for each is the AP (with the precision of last record repeated).

different algorithms A should be compared at different E-values
Ek(A).

3.4 The query-averaged TAP-k
Figure 4b illustrates the PR curves for the Pfam homoserine
dehydrogenase family, up to the recall corresponding to the
threshold E-value E20(PSI-BLAST) = 8.1, where PSI-BLAST yields
20 median EPQ over all queries for DB_344_Pfam. On one hand,
query A yields nearly ideal retrieval, and there is little difference
between the ROCn score and the TAP-k. On the other hand, query
B yields precision 1.0 until a recall of about 0.2, when the precision
drops dramatically. It then rises and falls again before the recall
near 1 corresponding to E20(PSI-BLAST) = 8.1. Although the curve
for query B indicates that its retrieval is inferior to the retrieval for
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Table 1. Retrieval results for DB_331_CD

Algorithm TAP-20 E0*(A) Peak TAP

GLOBAL 0.164 1.034 0.227
HMMER_semi-global 0.185 0.861 0.237
HMMER_local 0.152 0.116 0.221
RPS-BLAST 0.142 0.331 0.218
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Fig. 5. TAP curves against the E-value threshold E0, for searching
DB_331_CDD with each query from DB_8920_PDB in turn. Retrieval
results for GLOBAL are represented with a solid green line; for
HMMER_semi-global, with a long-dashed blue line; for HMMER_local,
with a medium-dashed red line; and for RPS-BLAST, with a dotted black
line. The arrows indicate the maximum TAP and its E-value threshold E0*(A)
for each algorithm A.

query A, the average of the curves for queries A and B lies between
the individual curves, as one expects intuitively.

Using the threshold Ek(A) for A = {GLOBAL, HMMER_semi-
global, HMMER_local, RPS-BLAST}, we calculated the (query-
averaged) TAP-k for each algorithm’s retrieval from DB_331_CDD
(Table 1). (On one hand, because the number of errors for a single
query is unbounded, the median is better than the mean as a summary
statistic for determining a threshold E-value; on the other hand, the
TAP-k for each query is bounded, so the mean is a suitable summary
statistic for the TAP-k over all queries.) Additionally, we looked at
the average TAP versus E-value (Fig. 5), because the TAP may peak
as the EPQ increases. In contrast, all ROC curves increase (or at least
remain constant) with increasing EPQ. In Figure 5, each algorithm
A has a peak E-value, E0*(A), between 0.12 and 1.03 (Table 1).

4 DISCUSSION
This article is not the first to question the pertinence of ROC analysis
to information retrieval (Chen, 2003; Hand, 2009; Pearson and Sierk,
2005; Sierk and Pearson, 2004). In fact, many other researchers
have pointed out the superiority of PR curves over ROC curves in
information retrieval. Fawcett (2006) advises that, ‘PR graphs are
commonly used where “the number of [irrelevant records] is many
orders of magnitude greater than [the number of relevant records]” ’,
the common case for database retrieval and most of bioinformatics.

Likewise, Liu and Shriberg (2007) suggest that for ‘an imbalanced
dataset, PR curves generally provide better visualization than do
ROC curves, for viewing differences among different algorithms.’
Similarly, Davis and Goadrich (2006) warn that ‘with highly skewed
datasets, PR curves give a more informative picture of an algorithm’s
performance’and that, ‘by comparing false positives to true positives
rather than true negatives, [precision] captures the effect of the
large number of negative examples on the algorithm’s performance.’
Finally, Landgrebe et al. (2006) argue that ROC analysis effectively
ignores the ‘minority class’ of relevant records.

Several bioinformatics studies have relied on ROC analysis as
their figure of merit for automatic improvement of database retrieval
algorithms. As a figure of merit, however, the pooled ROCn score
suffers from defects so obvious that other bioinformatics studies
(wisely, in our opinion) have gone so far as to defend conclusions
drawn from the pooled ROCn score by checking individual retrieval
lists (Sierk and Pearson, 2004). Clearly, if the defects of the pooled
ROCn score require human intervention, it is inadequate to the
task of automated improvement of retrieval algorithms. To provide
explicit logical foundations for the discussion about the inadequacies
of retrieval measures, this article also articulated a Principle of
Fidelity: a retrieval measure should faithfully reflect the actual
usage of the retrieval list. In harmony with the Principle of Fidelity,
we suggested adding Conditions (5)–(7) to the Swets–Wilbur
Conditions for an ideal retrieval measure.

The Section 3 demonstrates that the pooled ROCn can violate
Conditions (5) and (6). Condition (6) is common sense, so its failure
in Figure 4 is particularly disturbing. On the other hand, since the
TAP-k is an average over all queries, Conditions (5) and (6) both
follow as rigorous mathematical truths. Moreover, consideration of
the geometry of a ROC curve shows that the ROCn always increases
with the EPQ (or equivalently, with the E-value threshold), in
violation of Condition (7). On the other hand, the TAP-k sometimes
does satisfy Condition (7): Figure 5 shows its eventual decrease
against an increasing E-value threshold E0. Interestingly, the peak
values in Figure 5 occur at values of E0*(A) not entirely outside
acceptable ranges of the E-value thresholds for the corresponding
algorithms, perhaps leading to the hope that even the selection
of threshold E-values E0 might be automated. Unfortunately, the
Supplementary Material gives an example of retrieval lists where
the TAP-k increases monotonically with the E-value threshold.
Although the TAP-k has many properties desirable to optimizing
retrieval algorithms automatically, it is currently unable to serve
as a basis for automated determination of a best E-value threshold
E0*(A).

For concreteness, this article has discussed E-values, but in fact it
is pertinent to any score S, not just to E-values. The E-value is really
just a type of score that retains theoretical meaning across different
queries as a surrogate for a record’s probability of relevance. Like
other scores, however, E-values do not predict the relevancy of
records with complete accuracy, and the accuracy depends very
much on the application (Brenner et al., 1998). Thus, if a particular
algorithm A produces a retrieval list, a user willing to tolerate
about a median k EPQ must apparently learn the corresponding
E-value threshold E0 =Ek(A) by empirical experience. Initially, it
might appear counter-intuitive that the E-value threshold E0 =Ek(A)
depends on the algorithm A, but the dependency does reflect actual
usage of the algorithm. This article approximated actual usage by
specifying a median EPQ of k =20, but the measure of tolerated
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EPQ can and should be adapted to fit individual needs, e.g. k can be
chosen differently, query-averages can be weighted, trimmed means
or a different percentile EPQ from the median for k can be used, etc.

The ROCn also depends implicitly on the algorithm A, because
it fixes the total number n of errors across all queries. Thus, where
the TAP-k fixes the median EPQ, the ROCn fixes the mean EPQ.
In general (particularly for unbounded random variables), the mean
can be much more misleading as a measure of central tendency
than the median. In particular, if it produces many errors, even a
single query could increase the mean EPQ arbitrarily. Figures 3
and 4 reinforce the superiority of choosing the median EPQ in the
TAP-k, by showing that a single query can dominate the pooled
ROCn score. By extension, coverage versus EPQ plots (Brenner
et al., 1998) could reflect typical user experience more closely by
plotting coverage against median EPQ, rather than mean EPQ.

Figure 4 illustrates the same retrieval results for both the pooled
ROCn score and a TAP-k. The pooled ROCn score and the TAP-k
agree (0.9709 versus 0.9708, respectively) for query A, but differ
for query B (0.1954 and 0.5214, respectively). The pooled ROCn
score is 0.098, whereas the TAP-k is 0.745. Thus, besides giving
some numerical comparison of the pooled ROCn and TAP-k,
Figure 4 illustrates that the TAP-k faithfully represents the relative
contribution of ‘ill-behaved’ queries to a summary measure of
retrieval over all queries.

In general, we expect that studies would usually draw the same
conclusions about relative retrieval efficacy of different algorithms,
regardless of whether they used the pooled ROCn score or the
TAP-k (although the TAP-k enforces realistic E-value thresholds by
exposing its threshold E0 =Ek(A) explicitly). Davis and Goadrich
(2006) noted similar expectations between AP and ROC scores.
In cases of striking discordance, however, this article presents
compelling arguments that the TAP-k is more likely than the pooled
ROCn score to accord with intuitive expectations, and that its use
will make measurements of retrieval efficacy reflect actual user
experience more faithfully. Most importantly, unlike the pooled
ROCn, the TAP-k always satisfies Conditions (5) and (6) for an
ideal retrieval measure, so it can provide a suitable figure of merit
when automating the evaluation of retrieval algorithms.
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