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Abstract: Central nervous serotonin (5-HT) can influence behaviour and neuropsychiatric disorders.
Evidence from animal models suggest that lowered levels of neuropeptide Y (NPY) may have
similar effects, although it is currently unknown whether decreased central nervous 5-HT impact
NPY concentrations. Given that the production of NPY is dependent on the essential amino acid
methionine (MET), it is imperative to account for the presence of MET in such investigations. Hence,
this study sought to examine the effects of acute tryptophan depletion (ATD; a dietary procedure
that temporarily lowers central nervous 5-HT synthesis) on serum concentrations of NPY, whilst
using the potential renal acid load indicator (PRAL) to control for levels of MET. In a double-blind
repeated measures design, 24 adult humans randomly received an AA-load lacking in TRP (ATD)
on one occasion, and a balanced control mixture with TRP (BAL) on a second occasion, both with a
PRAL of nearly 47.3 mEq of MET. Blood samples were obtained at 90, 180, and 240 min after each of
the AA challenges. ATD, and therefore, diminished substrate availability for brain 5-HT synthesis
did not lead to significant changes in serum NPY concentrations over time, compared to BAL, under
an acute acidotic stimulus.
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1. Introduction

Central nervous serotonin (5-HT) plays an important role in modulating behaviours. Impairments
and changes within this particular neurotransmitter system have been associated with a number of
neuropsychiatric disorders, and in particular anxiety and depression [1], and have been documented
to impact on behaviours related to hunger and satiety, reproduction and attentional processes [2].
The impact of temporarily lowered central nervous synthesis of 5-HT on human behaviours has
been studied in both adults as well as children and adolescents [3] through neurochemical challenge
techniques such as acute tryptophan depletion (ATD). ATD is based on the premise that central nervous
5-HT is generated from the amino acid (AA), tryptophan (TRP), which is an essential AA and can only
be made available to the body via food intake. Hence, as TRP is only replenished by dietary means,
availability of 5-HT in the body (including the central nervous system), diminishes if TRP intake and
thus substrate availability for central nervous 5-HT synthesis is reduced. Findings relating to the
impact of a diminished central nervous 5-HT synthesis rate on mood and anxiety [1], in particular,
have also been in line with the development of selective serotonin reuptake inhibitors (SSRIs) as a
pharmacological treatment for patients with mood and anxiety disorders.

Notably, evidence from animal research, pharmacological studies, and trials with humans have
suggested that the availability of neuropeptide Y (NPY) may also play an important role in a number of
psychiatric disorders, in addition to modulating different aspects of behaviours, such as reproductive
behavior and hunger and satiety [4,5]. NPY is a c-terminal amidated peptide and is the most expressed
hormone in the arcuate nucleus, but it is also represented in a number of other brain areas, as well
as the periphery [6,7]. In humans, NPY contains 36 AAs, including the essential AA methionine
(MET) [8]. Importantly, levels of MET in the body are influenced by dietary means. As such, an
important implication is that levels of NPY are also reliant on the amount of MET that has been
ingested (via protein). There is an abundance of literature suggesting that NPY may be inversely
associated with levels of stress, hunger, anxiety, depressed mood [9], alcoholism, and epilepsy [4].

Whilst strong evidence has been described for the relationship between NPY and several
neuropsychiatric disorders that are also related to central nervous 5-HT [4], the relationship between
NPY and central nervous 5-HT appears to be less clear. Studies relating to eating disorders have
shown that 5-HT may regulate appetite and induce satiety in humans [10]. Based on these findings,
pharmacological treatments of human obesity have begun targeting the 5-HT system to regulate
appetite [11,12]. Other research findings relating to humans have suggested that acute central nervous
serotonergic dysfunction (e.g., a short-term decrease in 5-HT synthesis) may impact plasma NPY
concentrations, in particular because the release of NPY from sympathetic nerve terminals may
be regulated by serotonergic functions [13]. In rodent studies, hypothalamic NPY concentrations
were found to increase following an injection of a 5-HT antagonist [14]. In a separate study, two
separate groups of mice were administered the SSRI fluoxetine and NPY, and both administrations
were associated with decreased immobility times in the forced swim test (FST; often considered as
a potential marker of depression-related behaviours in rodent models) compared to a third group
that received saline [15]. However, duration of immobility in the FST was not impacted upon in
groups of mice that were administered a central nervous 5-HT depletion prior to the administration
of either fluoxetine or NPY. With regards to the NPY group, findings suggests that the availability of
central nervous 5-HT impacts on the processing of subsequent administration of NPY. Other studies
investigating the relationship between central nervous 5-HT and peripheral NPY in humans have
examined how the administration of antidepressants may impact on subsequent peripheral NPY
concentrations [16]. Another study found a decreased level of plasma NPY concentrations in patients
with a major depressive disorder [9]. As the review by Wu et al. suggests, findings have been mixed [4].

Levels of NPY in the human body can be measured whilst controlling for availability of MET,
as MET is a core component of the neuropeptide and is also considered to be acidifying. Hence, it is
important that MET levels are accounted for when assessing NPY because MET levels are influenced
by dietary means. Controlling for levels of MET may ensure a consistent baseline from which NPY may
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be generated by the body. The potential renal acid load (PRAL) indicator [17] measures the amount of
consumed minerals and sulfur-containing proteins [18], and therefore acid–base status can serve as
an important parameter to ensure that consistent levels of MET can be determined. Given that MET
contains sulfur, it has acidifying properties [19].

To date, investigations into the relationship between central nervous 5-HT and NPY in humans
have not accounted for levels of MET. Consequently, this study aimed to investigate whether ATD,
a neurochemical challenge procedure that decreases central nervous 5-HT synthesis, was associated
with the reduction in peripheral NPY concentrations. To account for levels of MET, an initial body
weight adjusted level of MET for all participants was provided as part of the challenge procedure.
A reduction in peripheral NPY would be indicated by a smaller release of NPY in the sympathetic nerve
terminals. As there is some evidence to suggest that plasma NPY decreases following ATD [13,20],
it was hypothesised that ATD would be associated with decreased concentrations of peripheral NPY.
In addition, very little is known regarding gender-specific responses to ATD. As such, a secondary aim
of the study was to explore the relationship between reduced central nervous 5-HT synthesis (from
ATD) and plasma NPY concentrations between genders. As this was an exploratory aim, no explicit
hypotheses were formulated. Potential findings in NPY synthesis between genders may be relevant to
stress-mediated processes and psychiatric disorders.

2. Materials and Methods

2.1. Participants

Participants included adults who were in good physical and mental health. The exclusion
criteria included: IQ under 85, lacking knowledge of the German language, developmental disorders,
schizophrenia, affective disorders, any psycho-organic syndromes, substance abuse, somatic disorders,
any regular use of medication (except for hormonal contraceptive intake), and pregnancy. All
participants were first screened by an experienced clinician via interview to ensure that participants did
not meet the exclusion criteria. The presence of psychiatric disorders were also screened for through
the use of the SKIDPIT-light, which is a standardised interview [21]. All the participants provided
oral and written informed consent to participate in the study, and were financially compensated after
participation in the study [3].

2.2. Ethical Approval

The study protocol was approved by the Ethics Committee of the Faculty of Medicine, RWTH
Aachen University (Germany), the ethics internal reference number is EK 225/09, and was carried out
in accordance with the Helsinki Declaration [3].

2.3. Study Design

This study utilised a randomized double-blind, within subject repeated measures design.
Specifically, the administration of the ATD challenge condition and a control condition served
as the within-subject repeated measures factor, and participants were randomized to receive the
ATD (Moja-De protocol) [22–28] and a TRP balanced control mixture (BAL) on two different study
days separated by a period of at least seven days. Administration of the AA beverages were also
double-blinded, whereby the ATD and BAL AA beverage pairs were indicated by a random number
and were provided in brown wide-neck bottles that were non-distinguishable.

2.4. Procedures

Participants had an overnight protein fast from 8:00 p.m. the night prior to each of the two study
days. Participants were also required to provide confirmation that they had a TRP-free breakfast prior
to attending the study day. As mentioned above, the two study days were spaced at least seven days



Nutrients 2018, 10, 594 4 of 12

apart. The two study days started between 8 and 9 a.m., where either the ATD or BAL beverages were
randomly administered. Total duration of each study day was approximately 4.5 h.

2.5. Biochemical Assessments

On each study day, four blood samples were taken for the assessment of NPY and relevant AA
(see [3]). Times points of blood draw were: before the administration of the ATD/BAL beverage at
baseline (T0), the second sample was taken after 90 min (T1), the third sample taken after 180 min (T2)
and the last sample taken after 270 min (T3). Also at T0, participants undertook drug screening via a
urine test. Female participants were additionally required to complete a pregnancy test at this time.
T0–T4 also represent the specific time points in which information relating to dependent variables
(NPY) were collected. The dependent variables are further described below.

2.6. Depletion Procedure

For this study, ATD was the chosen procedure for the following reasons. Past research has
shown that the Moja-De modification of the ATD-test is generally well tolerated, despite a significant
reduction in the TRP influx over the blood brain barrier into the central nervous system [22,23,29].
This Moja-De protocol has additional advantages, such as consisting of 7 AA rather than 15, therefore
resulting in a reduced AA load, the use of body-weight to determine the dosage of AA, meaning that
this protocol can be used in young people and adults, the ability to use this protocol in both human
and rodent studies [30], and because this protocol has a validated control AA load (containing TRP),
which has not resulted in increased central nervous 5-HT. The overnight protein fast is part of the
protocol in order to allow for more standardized conditions for challenge (ATD/BAL) intake. The
short-term nature of this protocol is also a benefit, as participants in this study were monitored for the
duration in which decreased central nervous 5-HT was most likely to have occurred. The amount of
relevant AAs that was contained in the ATD Moja-De beverage was administered in accordance with
body weight, in an aqueous suspension. All AAs were provided by the pharmacy of the Faculty of
Medicine, RWTH Aachen University. The AA quantities in the ATD Moja-De beverage were as follows
(dosage per 10 kg body weight): L-phenylalanine (PHE 1.32 g), L-leucine (LEU 1.32 g), L-isoleucine
(ILE 0.84 g), L-methionine (MET 0.5 g), L-valine (VAL 0.96 g), L-threonine (THR 0.6 g), and L-lysine
(LYS 0.96 g). The BAL condition/beverage contained the same AA quantities with an additional 0.7 g
of TRP per 10 kg of body weight. After each study day, participants were offered a vitamin tablet that
is commercially available containing niacin, as niacin is a TRP-derived vitamin.

2.7. Laboratory Assessment

Following blood draw, samples were kept at room temperature for 30 minand were then
centrifuged at 3500× g for 10 min. For this study, serum was collected in a non-heparinised tube for
the assessment of the AAs. The plasma was collected from a heparinized tube, and was used to assess
all other parameters. Following the preprocessing procedure, the serum and plasma were stored at
−80 ◦C until transportation to the laboratory for analysis.

We used high-pressure liquid chromatography (HPLC) after precolumn derivatization using
orthophthaldialdehyde (OPA) to determine the concentrations of the AAs. In order to separate
albumin-bound TRP from free TPR, we used an Amicon Ultra-0.5 centrifugal filter set at 14,000× g for
30 min (Merck-Millipore, Darmstadt, Germany). This filter retains compounds larger than 10 kDa [3].

The concentration of NPY was assessed by a competitive radio immunoassay (IBL International
GmbH, Hamburg, Germany). This process utilized an antiserum with antibodies tagging synthetically
to produced NPY which was conjugated to bovine thyroglobulin. The NPY of the test and control
samples competed with the 125I-NPY for the binding to these antibodies. NPY concentrations were
assessed by the inversely proportional binding of 125I-NPY and the NPY concentration in the test and
control samples.
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2.8. Calculation of TRP Influx

In order to calculate the influx rates for the AA uptake from the plasma into the brain, the
Michaelis–Menten equation with a correction for multiple substrate competition was used [31,32]. The
rationale behind the use of this equation is evidence-based and builds on the premise that TRP influx
across the blood brain barrier is unidirectional in nature, reliant on TRP concentrations and competing
LNAAs. Notably, the brain capillary LNAA carrier L-1 is the main transport mechanism for LNAAs,
and these cannot be synthesized in the central nervous system (CNS) [31,33,34]. The Michaelis–Menten
equation accounts for availability and concentration of a particular substrate, and also provides an
approximate reaction rate. As such, the net uptake of TRP across the blood brain barrier is dependent
on: first, the passive transport of AAs at L-1 that can be facilitated by integral proteins, and second,
a proportion that follows passive diffusion [29]. The Michaelis–Menten formula that was used to
calculate the influx-rate of TRP over the blood brain barrier is as follows

TRP in f lux = VmaxC/
(

Km
[
1 + ∑(Ci/Ki )

]
+ C

)
+ KdC

with C = plasma concentration of TRP, Vmax = maximum rate of conversion, Km = affinity constant
for TRP (Michaelis constant), Ci = plasma concentration of CAAs, Ki = affinity constants of CAAs,
Kd = diffusion constant [3,30].

Note that the Km (also known as the Michaelis constant) equates to 50% of the Vmax for the
relevant AA. Additionally, transport constants for different AA from the literature [3,32,34] were used
in this mathematical model.

2.9. Data Analysis

The data were analysed using SPSS (IBM Software Group, Armonk, NY, USA) and Graph Pad
Prism (GraphPad, La Jolla, CA, USA). The influx of TRP was calculated with Excel (Microsoft Corp.,
Washington, DC, USA).

There were a total of 24 adult participants in this study (aged 21–30 years, mean age 25.3 years,
12 male). Mean weight was 70.54 ± 11.86 kg; the mean BMI was 23.04 ± 1.86 kg/m2. The complete
characteristics of the study sample relating to the two genders are provided via the supplementary
online materials in the paper by Dingerkus et al., (2012) [3]. With regards to the order of AA beverage
administration, 9 participants (37.5%, 6 females and 3 males) received the ATD beverage on their first
study day, and 15 participants (62.5%, 6 females and 9 males) received ATD on their second day of
participation [3].

Data were first tested for normality using the Kolmogrov–Smirnov goodness of fit test. This test
was applied to the total sample and the male and female groups separately. Separate repeated-measures
analyses of variance (RMANOVAs) explored the influence of ATD on NPY concentration, whilst
providing an initial body weight adjusted level of MET for all participants. Challenge (ATD vs.
BAL) and time after intake (T1–T3) were the within-participant factors, whereas gender was a
between-participants factor. The level of statistical significance was set and kept at p < 0.05. Because
of the exploratory nature of the present investigation, significant p-values were not subjected to
alpha-adjustment. Tests of normality revealed that all variables were normally distributed except
for THR, and VAL concentrations for the female subgroup. Data screening also showed extremely
high NPY values for one male participant, leading to exclusion at the data analysis phase. This
particular participant was instructed to seek further medical advice because high values of NPY can
be associated with phaeochromocytoma, neuroblastoma, or b-cell leukaemia [35–37]. As a result of
this exclusion, the final analyzed study sample as regards NPY-related data yielded included N = 23
healthy adult participants.



Nutrients 2018, 10, 594 6 of 12

3. Results

3.1. Potential Renal Acid Load (PRAL)

As specified above, individuals consumed AA beverages that were dosed per 10 kg body weight.
Given that the mean body weight was 70.54 ± 11.86 kg, the mean amount of MET consumed was
3.527 ± 0.593 g in both the ATD and the BAL conditions. As the AA beverages that were utilised
were not part of a natural diet, the 100% absorption rate was applied in the calculation of PRAL.
Consequently, the consumption of this level of MET acutely increased the absorbed acid load by a
mean amount of 47.3 ± 7.95 mEq across participants.

3.2. NPY Concentrations

Table 1 shows the mean values of the serum NPY concentrations. Overall, on a descriptive level
a decreasing trend was observed relating to NPY serum over time, after both ATD and BAL intake
and for both male and female participants. Identical results were detected when each gender was
considered separately.

Table 1. Mean serum NPY levels over four time points.

Challenge Condition (ATD/BAL) Gender
Time Point NPY Concentration (ρg/L)

(T) (M) (SD)

ATD

Total

0 80.06 20.23
1 75.51 19.89
2 70.58 17.4
3 67.26 16.67

Men

0 78.89 25.7
1 74.82 21.8
2 71.25 20.47
3 68.58 17.97

Women

0 81.13 14.68
1 76.14 18.93
2 69.98 14.96
3 66.05 16.08

BAL

Total

0 71.69 14.67
1 70.86 17.74
2 65.1 15.26
3 64.17 15.42

Men

0 71.41 18.27
1 71.19 20.53
2 63.85 18.98
3 66.67 17.07

Women

0 71.95 11.26
1 70.55 15.69
2 66.24 11.64
3 61.88 14.08

Means (M) ± standard deviation (SD) for serum NPY concentration (ρg/L) at different time point T0 (Baseline),
T1 (90 min), T2 (180 min), and T3 (270 min) after intake of the acute tryptophan depletion (ATD) and the balanced
amino acid load (BAL, control condition) challenge.

3.2.1. Effects of Time and Neurochemical Conditions on NPY Concentrations

For the factor ‘time’ there was a highly significant effect for peripheral NPY concentrations
(F [2,44] = 11.671; p < 0.001), with mean levels of NPY concentration decreasing over time.
Concentrations of NPY were not significantly different between neuro-chemical challenge conditions
(ATD/BAL). However, significant differences were detected from concentrations of NPY serum
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concentrations at baseline (T0 = just before ATD/BAL intake) between the two neurochemical challenge
conditions (ATD/BAL), with higher mean levels recorded for the day of ATD condition administration.
A further RMANOVA was conducted to investigate whether there were any differences between
concentrations of NPY after the intake of the respective ATD/BAL AA beverages (T1–T3 time points
only). Results of this RMANOVA indicated that there were no significant differences between NPY
concentrations following ATD/BAL consumption (F [1,88] = 2.423; p = 0.135). This suggests that an
effect of ATD/BAL on NPY serum concentrations could not be immediately detected, and that the
significant differences found in the course of NPY concentrations over time were independent of the
ATD/BAL intake.

3.2.2. Interactions

There was no significant interaction between gender and neurochemical condition (ATD/BAL;
F [1,88] = 0.003; p = 0.959). Interactions were also non-significant between gender and time
(F [2,88] = 0.680; p = 0.512), and between gender, time, and condition (F [2,88] = 1.169; p = 0.321).
Combined, these findings suggest that NPY concentrations were not substantially different between
neurochemical challenge (ATD/BAL) and genders.

3.3. Effects of the Challenge Procedure

The results relating to the effects of the challenge procedure on TRP-influx into the brain have
been reported elsewhere [3]. As shown in the paper by Dingerkus et al. (2012), ATD challenge
administration led to a significant reduction in TRP-influx over the blood brain barrier into the central
nervous system (decreased substrate availability for brain 5-HT synthesis) in a safe and effective
manner and was overall well tolerated [3].

4. Discussion

The current study aimed to investigate the impact of ATD and subsequently diminished central
nervous 5-HT synthesis on peripheral NPY concentrations whilst providing an initial body weight
adjusted level of MET for all participants. Having a consistent baseline level of MET was of interest,
as generation of NPY is reliant on the essential AA, MET. The rationale for this study was the
significant overlap in behaviors that appear to be modulated by both central nervous 5-HT and NPY as
demonstrated by evidence from rodent models and human studies. Therefore, it was hypothesized that
ATD and the subsequent short-term decrease in central nervous 5-HT synthesis would be associated
with decreased peripheral concentrations of NPY in healthy adult humans, compared to the BAL
condition. Understanding the relationship between central nervous 5-HT availability and peripheral
NPY concentrations is of particular importance with regards to the neurobiology of stress-associated
neuropsychiatric disorders, for example anxiety and depressive disorders [38].

Contrary to our expectation, peripheral concentrations of NPY were not significantly different
between ATD and BAL, suggesting that levels of NPY were not impacted by a short-term decrease in
central nervous 5-HT synthesis (in the ATD condition). However, there may be a number of possible
reasons for this finding. For example, it is important to note that a substantial proportion of NPY is
produced in the human periphery, and the NPY samples that were used in this study may serve as
detection for NPY levels in the periphery, rather than in the central nervous system. Specifically, NPY
concentration has been found to be regulated through NPY release from the sympathetic perivascular
nerve endings modulated by serotonergic functions [7,20]. Based on the present findings, it could be
suggested that an acute central nervous 5-HT depletion may not directly influence the release of NPY
from the sympathetic perivascular terminals in healthy participants.

For this particular study, it may also be possible that the NPY that was analyzed is not entirely
referent to NPY that is expressed with neurotransmitters. Specifically, NPY has been shown to
have a number of functions in addition to having an impact on mood, stress, and appetite. NPY
additionally has anticonvulsant and anti-nociceptive functions [39,40], as well as playing a prominent
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role in innervating the muscular system and the mucosa [40]. As such, it is co-expressed with other
neurotransmitters as well as existing in the mammalian intestines [39,40]. This therefore provides a
possible explanation for the lack of differences in NPY levels observed between the ATD and BAL
conditions. However, whilst the hypothesized differences were not found, the present study is of value,
as it aimed to disentangle the relationship between central nervous 5-HT synthesis and peripheral
NPY concentrations in humans, whereas most previous research on this subject was done using animal
models [14,15]. In particular, this is the first study that used a body weight adapted ATD protocol to
study the impact of decreased central nervous 5-HT synthesis on peripheral NPY concentrations.

Another possible reason for the present findings may be that human NPY serum was assessed in
the current study, whilst a large proportion of studies relating to the interactions between 5-HT and
NPY have been conducted with animal models. A few human based studies have used cerebrospinal
fluid probes to collect NPY data, rather than serum. However, a study by Czermak et al. (2008) [13]
utilized plasma NPY concentrations from humans under ATD and BAL conditions. This particular
study found no significant differences between healthy control subjects and individuals in remission
from depression after ATD/BAL intake. However, this particular study contained a number of
limitations, including a significant delay in time between taking NPY samples (i.e., between T0 and 5,
7, and 24 h following ATD/BAL intake). This is notable as the maximum reduction of plasma TRP
concentrations is expected to take place between three and five hours after intake [41,42]. As the latter
samples of NPY did not correspond with the most significant reduction of plasma TRP concentrations,
the relationship between ATD administration and peripheral NPY concentration becomes difficult to
evaluate, particularly because longer time periods for obtaining NPY concentrations may allow for
repletion and other compensatory effects.

The present study also explored the relationship between an acute decrease of central nervous
5-HT synthesis as impacted by ATD and plasma NPY concentration between genders. The current
findings did not show a significant difference in peripheral NPY concentration after ATD or BAL
challenge between male and female participants over time. This is of particular importance as literature
has suggested that women may be more vulnerable to stress than men [43], and a protective role of
NPY in stress-related psychiatric disorders, such as post-traumatic stress disorder (PTSD), has been
proposed [38]. Whilst these preliminary findings suggest that there is no difference between genders in
peripheral NPY release under acute 5-HT depletion in healthy subjects, further research and replication
studies are required.

Several limitations may have impacted on the findings of the study. For example, this study
consisted of a relatively small sample that was further reduced following the exclusion of a participant.
Future studies with larger samples will be required to further explore the relationship between central
nervous 5-HT and NPY in humans. Literature also suggests that the AA Leucine might also be involved
in the regulation of appetite [44]; however, its relationship with NPY remains poorly understood.
Given that Leucine was a compound of the ATD challenge, further investigation of how Leucine may
impact on NPY levels may also benefit the current investigation of how central nervous 5-HT may be
related to levels of NPY through the use of the ATD/BAL method. Future studies may also benefit
from measuring NPY through the use of cerebrospinal fluid to obtain central nervous NPY, rather
than peripheral NPY, although this method is more invasive. Additionally, examining whether ATD
impacts NPY under a more alkalized condition may be of interest. Last but not least, there was no
investigation of the diet of each participant in the present study (for example a detailed diet history).
Given that some diets (e.g., vegan diet) are low in methionine [45], a particular diet may influence the
baseline methionine concentration in healthy participants. Therefore, a careful investigation of the
nutritional background of each participant seems essential in future studies.

Notably, the present study only assessed the impact of acute depletion of tryptophan on NPY.
It is unclear whether chronic depletion of tryptophan will have a different effect either on central or
peripheral NPY. There is evidence to suggest that acute and chronic tryptophan depletion differentially
affect central 5-HT1A and 5-HT2A receptor binding in rats [46]. Chronic TRP depletion leading to
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a dysfunctional serotonergic system has also been shown to affect the pattern of circadian rhythm
in rats [47]. Chronic depletion of TRP has also shown to significantly alter serotonin turnover and
behaviour in rats [48]. However, to our knowledge, there are no studies that assess the effect of chronic
TRP depletion on concentrations of NPY in humans. Further understanding of this relationship may
be considered for future research.

5. Conclusions

This study investigated how ATD, and hence, lowered synthesis of central nervous 5-HT, may
impact on peripheral concentrations of NPY after providing healthy adult participants with body
weight adjusted levels of MET. Even after the controlling for the proportion of MET ingested by
participants (equating to an average PRAL of 47.3 mEq, and hence, the availability from which NPY
could be naturally generated by the body), concentrations of NPY did not differ between the ATD or
BAL conditions. Whilst initial interpretation of these findings may suggest that short-term decreases
in central-nervous 5-HT are not related to peripheral concentrations of NPY, several notable points
must be also considered. This includes the possibility that levels of peripheral NPY may not represent
central nervous NPY. A number of limitations may also be noted, such as small sample size, sampling
interval, as well as the absence of data obtained under prolonged depletion and which could be the
subject of future studies but which also has some methodological limitations. However, accounting
for MET availability is important in the consideration of this relationship and provides merit in the
neurochemical challenge method that was utilized.

Although the present study may be considered as an initial investigation into how diminished
central nervous 5-HT synthesis may impact on concentrations of peripheral NPY, future studies
investigating this interaction in humans is important for several reasons. First, a large proportion
of the studies investigating interactions between central nervous 5-HT and peripheral NPY have
been conducted with animal models. Second, if the relationship between central nervous 5-HT
and peripheral NPY can be established and replicated in humans, novel treatment strategies for
neuropsychiatric disorders in which NPY is implicated may be derived. These disorders may include
depression, anxiety related disorders, and post-traumatic stress disorder. Essentially, findings showing
the contribution of NPY to neuropsychiatric disorders that are also related to disorders modulated by
central-nervous 5-HT may give rise to alternate pharmacological treatments. This may be a benefit
due to the limitations of SSRIs.
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