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Hepatitis C virus (HCV) infection is probably the most common chronic viral infection and affects an estimated 180 million people
worldwide, accounting for 3% of the global population. Although the liver is considered to be the primary target, extrahepatic
manifestations are well recognized among patients with chronic HCV infection. Epidemiological studies have clearly demonstrated
a correlation between chronic HCV infection and occurrence of B-cell non-Hodgkin’s lymphomas (B-NHL). The clinical evidence
that antiviral therapy has a significant role in the treatment at least of some HCV-associated lymphoproliferative disorders,
especially indolent B-NHL, further supports the existence of an etiopathogenetic link. However, the mechanisms exploited by HCV
to induce B-cell lymphoproliferation have so far not completely clarified. It is conceivable that different biological mechanisms,
namely, chronic antigen stimulation, high-affinity interaction between HCV-E2 protein and its cellular receptors, direct HCV
infection of B-cells, and “hit and run” transforming events, may be combined themselves and cooperate in a multifactorial model
of HCV-associated lymphomagenesis.

1. Introduction

Hepatitis C virus (HCV) is an enveloped positive, single-
stranded RNA virus, belonging to the Flaviviridae fam-
ily [1]. During its replicative cycle it goes through a
negative-stranded RNA, but not DNA, intermediate, so
that integration of HCV nucleic acid sequences into the
host genome seems unlikely. The HCV genome encodes a
single polyprotein precursor of approximately 3000 amino
acids, which is proteolytically processed by viral and cellular
proteases to produce structural (nucleocapsid, E1, and E2)
and nonstructural (NS) proteins (NS2, NS3, NS4A, NS4B,
NS5A, and NS5B). The HCV envelope proteins consist of
two heavily glycosylated proteins, E1 and E2, which act as
the ligands for cellular receptors [1, 2].

Human CD81 is the first identified necessary receptor
for HCV cell entry, which can directly bind with HCV E2
protein [3, 4]. CD81 is a widely distributed cell-surface

tetraspanin that participates in different molecular com-
plexes on various cell types, including hepatocytes, B-lymp-
hocytes, T-lymphocytes, and natural killer cells. It has been
proposed that HCV exploits CD81 not only to invade
hepatocytes but also to modulate the host immune responses
[5].

Infection with HCV affects an estimated 180 million
people, accounting for 3% of the global population [6,
7]. HCV is a well-recognized etiologic agent of chronic
hepatitis. Although the natural history of HCV infection
is highly variable, an estimated 15% to 30% of patients
in whom chronic infection develops have progression to
cirrhosis over the ensuing three decades, and these latter
patients warrant surveillance for complications, including
hepatocellular carcinoma (HCC), which develops in 1%–3%
of such patients per year [6, 7]. Indeed, the risk of HCC in
the HCV-infected population is 23–35 times higher than in
noninfected healthy individuals [8, 9].
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Although the liver is considered to be the primary
target of HCV infection, extrahepatic manifestations, such as
mixed cryoglobulinemia (MC), which is a systemic immune
complex-mediated disorder characterized by B-cell prolifer-
ation that may evolve into overt B-cell non-Hodgkin’s lym-
phoma (B-NHL) in about 10%–20% of patients several years
after diagnosis, are often recognized among patients with
chronic HCV infection [10–12]. Moreover, epidemiological
evidences strongly suggest a close link between chronic HCV
infection and de novo B-NHL, not complicating the course
of MC [13–16]. The possible pathogenetic mechanisms of
HCV-induced B-cell lymphomagenesis are reviewed.

2. Epidemiologic Association of
HCV and B-NHL

Evans and Mueller proposed that either epidemiologic or
virologic guidelines need to be fulfilled to support an
etiologic role for a virus in a given human cancer [17].
Suggested epidemiologic guidelines included the following:
(a) the geographic distribution of viral infection should
coincide with that of the tumor; (b) the presence of viral
markers should be higher in case subjects than in matched
control subjects; (c) viral markers should precede the tumor,
with a higher incidence of tumors in persons with the marker
than in those without; (d) prevention of viral infection
should decrease tumor incidence [17]. Suggested virologic
guidelines included the following: (a) the virus should be
able to transform human cells in vitro; (b) the viral genome
should be demonstrated in tumor cells and not in normal
cells; (c) the virus should be able to induce the tumor in an
experimental animal [17].

As far as the association between HCV infection and
occurrence of B-NHL is concerned, most of the epidemi-
ologic guidelines for causality from Evans and Mueller are
met. HCV is associated with certain B-NHL types, especially
in geographic areas with HCV endemicity, like Italy, Japan,
and Egypt, where prevalence rates range from 20% to 40%
[14, 15, 18–21], whereas in nonendemic areas, as Northern
Europe, North America and United Kingdom, the prevalence
of HCV infection in B-NHL is far less than 5% [22–24].
The possibility is raised that in these latter geographic areas
where HCV prevalence among subjects not affected with B-
NHL is low, the spread of the virus may be recent, thus not
allowing the full consequences on B-NHL development to
be observed. Moreover, studies from areas with low HCV
prevalence may not have included sufficient numbers of
patients to detect a significant association between HCV
and B-NHL [16]. Taken together, the epidemiologic analyses
demonstrated that the prevalence of HCV infection in
patients with B-NHL is approximately 15% [25]. The preva-
lence of anti-HCV antibodies and/or HCV RNA sequences is
significantly higher in patients with B-NHL than in patients
with other lymphoid malignancies or in age matched healthy
subjects. Furthermore, HCV infection often precedes by
years the occurrence of lymphomas [26]. In a recent meta-
analysis focusing on 15 studies, the pooled relative risk (RR)
of all B-NHL among HCV-positive persons was found to be

2.5 (95% confidence interval (CI), 2.1–3.1) in case-control
studies and 2.0 (95% CI, 1.8–2.2) in cohort studies [27].
Another meta-analysis reviewed data from 23 studies (4,049
NHL patients and 1,813,480 controls) and found a stronger
association (odds ratio 5.70) [28]. It should be noted that RR,
although moderate (2-3 on average) in comparison to HCV
and HCC association, were similarly increased for all major
B-NHL subtypes and primary sites of presentation [16, 29].
Only slightly higher RR for extranodal compared with nodal
B-NHL were reported for HCV-positive patients, but this
difference was largely due to the early studies. Moreover,
extensive studies did not demonstrate clear differences on
the association between HCV and major histologic B-
NHL subtypes, either indolent, namely, follicular, marginal
zone (MZL), lymphoplasmacytic, and chronic lymphocytic
leukemia/small lymphocytic lymphoma, or aggressive diffuse
large B-cell (DLBCL) and Burkitt lymphoma [16, 29, 30].
In fact, earliest studies suggesting a stronger association
of HCV with certain subtypes, such as lymphoplasma-
cytic/Waldenstrom lymphomas, were performed mainly in
HCV-infected subjects with MC, a subset of patients in
which these lymphoma subtypes have been reported to be
highly prevalent [16, 29]. Conversely, one of the largest case-
control studies to date found a higher OR (3.5 versus 2.3)
for aggressive versus indolent lymphomas, respectively, and
suggested that previous data may have also been influenced
by the relatively poorer prognosis associated with aggressive
lymphomas [14]. Patients with HCV-related DLBCL may
have more aggressive clinical features at presentation in
comparison to HCV-negative patients [31, 32].

The possible association between specific viral geno-
types and malignant lymphoproliferative disorders remains
a controversial issue. There are at least six major HCV
genotypes whose prevalence varies geographically. Genotype
1 accounts for the majority of infections in North America,
South America, and Europe [7]. Various clinical studies
failed to demonstrate a link between specific viral genotypes
and B-NHL, but it should also be noted that this issue
was not specifically addressed in several other series. Luppi
et al. documented an unexpectedly lower prevalence of
HCV genotype 1b/II in patients with B-NHL. Conversely,
the prevalence of genotypes 2a/III and 2b/IV was higher
in patients with B-NHL than in either hemodialysis or
chronic liver disease patients, thus suggesting that different
HCV variants may show greater lymphotropism [33]. Recent
epidemiologic evidence from a multicenter retrospective
study also suggested that genotype 2 may be more prevalent
and carcinogenic in lymphoma patients [34]. In details,
HCV-positive patients were classified as cancer patients (129
patients, including 53 hematologic malignancies and 76
solid tumors), immunocompetent (333 subjects) and HCV-
HIV coinfected (102 patients). Genotype 1 predominated
(84%) in immunocompetent as compared to patients with
HCC (74%, P = .08) or lymphoma (59%, P = .001).
By contrast, genotype 2 was more prevalent in patients
with lymphoma (24%), compared to immunocompetent
(8%, P = .003), yielding a 3-fold increase in cancer
risk among HCV-infected patients than other genotypes
[34]. Interestingly, Pellicelli et al. [19] observed that DLBCL
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patients had a higher prevalence of genotype 1 and a shorter
duration of HCV infection, as compared to patients with
indolent, low-grade B-NHL, who showed a higher prevalence
of genotype 2 and longer duration of HCV infection. Because
HCV genotype 2 is associated with a longer duration of
viral infection, it has been speculated that over time it
may induce a persistent chronic immunostimulation of B-
cells. On the contrary, direct lymphocyte transformation
could be hypothesized for HCV genotype 1 in aggressive
lymphomas, on the basis of the shorter duration of viral
exposure [19]. Future perspective studies enrolling a large
number of patients are warranted to further investigate the
different distribution and carcinogenic potential of different
HCV genotypes.

The regression of HCV-related B-NHL following antivi-
ral therapy probably represents the strongest argument in
favor of an etiologic link between HCV infection and certain
human lymphomas [16, 26]. Several clinical trials showed
that antiviral therapy, mostly based on peg-interferon and
ribavirin, resulted in either complete or partial remissions
of lymphoma in HCV-positive but not HCV-negative B-
NHL patients [29, 35–37]. A systematic review has shown
that complete responses were achieved in 75% of the
HCV-positive cases [38]. Lymphoma regression was usu-
ally positively correlated with viral load reduction [29].
These trials have been conducted in asymptomatic indolent
lymphomas during a phase in which no other therapeutic
intervention was administered. For aggressive lymphoma or
symptomatic indolent lymphoma, HCV eradication alone
is not an option. These patients require systemic therapy
with rituximab and chemotherapy-based regimens as first
treatment. Nevertheless, antiviral therapy to eradicate HCV
may be an option after successful lymphoma therapy.
Whether HCV eradication after-chemoimmunotherapy may
impact future survival outcome remains uncertain [29].
Regarding this topic, La Mura et al. retrospectively analyzed
343 patients affected with NHL [39]. Twenty-five of the 69
HCV-positive subjects received antiviral therapy (interferon
and ribavirin) following antineoplastic treatment, in order
to eradicate HCV infection. Overall survival (OS) was
slightly better in HCV-infected NHL patients treated with
antiviral therapy compared with untreated, even if without
statistically significance. Conversely, disease-free survival
(DFS) was significantly improved in treated versus untreated
patients. A sustained virologic response was obtained in
8/25 (32%) HCV-positive NHL patients who underwent
antiviral treatment. None of the patients who eradicated
HCV infection had a lymphoma relapse at followup, whereas
5/17 of those who did not respond to antiviral therapy expe-
rienced relapses. At multivariate analysis, the independent
factors related to a better DFS in this series were antiviral
therapy and indolent histology at the onset of lymphoma
[39]. Antiviral treatment may be a strategy to reinforce the
results of successful chemoimmunotherapy regimens, but
future prospective studies are needed to further investigate
this clinical issue. Of interest, a recent study has shown that
HCV-infected patients who had received interferon therapy
and had experienced a sustained virologic response had a
hazard ratio of lymphomagenesis that was significantly lower

than patients who had not received antiviral treatment [40].
These data suggest that antiviral treatment may also be
efficacious in preventing lymphomagenesis in HCV-infected
patients. Moreover, it should be of interest to investigate
the impact of newer directly acting antiviral agents, such
as protease inhibitors telaprevir and boceprevir [11, 41–43],
on the future prevalence and clinical outcome of B-NHL
in patients with chronic HCV infection. While reactivation
risk of hepatitis B virus (HBV) after chemoimmunotherapy
is well recognized and prophylactic antiviral therapy to
suppress HBV-DNA is widely recommended, the issue of
HCV reactivation in lymphoma patients undergoing anti-
neoplastic treatments is lesser understood [29, 44]. However,
a significant proportion of patients with HCV-positive NHL,
when treated with conventional chemoimmunotherapy, may
develop liver toxicity due to either direct cytotoxicity or
increased drug toxicity from suboptimal drug metabolism
[29, 45]. The addition of rituximab to chemotherapy does
not seem to impact significantly on liver toxicity [45]. HCV-
RNA levels appear to increase during chemoimmunotherapy
as a result of viral reactivation, but HCV-RNA levels
subsequently decrease at 6 months posttreatment, often
without major clinical consequences to most patients [44].
Nevertheless, it should also be noted that massive liver
necrosis may occur in HCV-positive lymphoma patients on
withdrawal of chemotherapy or reduction of corticosteroids,
suggesting an immune-mediated mechanism of hepatic
damage [44, 46]. Without initial liver dysfunction, HCV-
positive patients with NHL could experience a similar
outcome compared with their HCV-negative counterparts,
when treated with conventional chemoimmunotherapy [44,
47]. A protective role of antiviral prophylaxis to suppress
HCV replication during antineoplastic treatments has not
yet been defined [29, 44]. Prospective studies and longer
followups are necessary to ascertain whether HCV-positive
B-NHL patients have inferior outcome or whether there
would be long term consequences of chemoimmunotherapy
on the progression of liver disease [47]. Patients with HCV
infection and lymphoma are recommended to be carefully
monitored for hepatotoxicity and HCV-RNA levels. Further-
more, hematologists and hepatologists should work closely
together in order to optimize the management of HCV
infection throughout lymphoma treatment and improve
clinical outcome [29].

3. Mechanisms of HCV-Induced
Lymphoproliferation

The biological rational for investigating a causal association
between HCV infection and the occurrence of B-NHL is
based on epidemiological and clinical observations. Never-
theless, limited information are so far available about the bio-
logical mechanisms of HCV-induced lymphoproliferation.
Evidences from experimental studies suggest that several
different mechanisms may be involved in HCV-mediated B-
cell transformation [16, 29, 48].

Similarly to the association of Helicobacter pylori infec-
tion and gastric MALT lymphoma, the concept of chronic
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Figure 1: (A–D) The different oncogenetic mechanisms are not mutually exclusive, but they may be integrated and cooperate in a
multifactorial pathogenetic model of HCV-associated B-cell lymphoproliferation.

antigen stimulation leading to a monoclonal malignant
proliferation may also be applied to HCV (Figure 1(A))
[49, 50]. Interestingly, HCV-associated B-NHL generally
originate from germinal center (GC) or post-GC B-cells,
suggesting that lymphomagenesis occurs when B-cells expe-
rience somatic hypermutation and proliferate in response
to an antigen [51, 52]. Further evidence comes from the
antibody response and immunoglobulin variable (Ig VH)
gene usage in patients with chronic HCV infection and
HCV-associated B-NHL. In three out of five HCV-positive
nodal MZLs, Marasca et al. revealed the usage of the VH1-
69 gene with similar CDR3, indicating a highly biased and
nonrandom use of the VH segments in this subtype of
tumors [53]. These data indicated the role of a common
antigenic epitope involved in the selection and in the
expansion of the B-cell clone at the origin of neoplastic
cells. The VH1-69 immunoglobulin segment is expressed in
the restricted repertoire of fetal liver B lymphocytes and is
thought to be involved in natural immunity. A productive
VH1-69 rearrangement is present in 1.6% of normal B
lymphocytes in adults. VH1-69 is rearranged in 10% to
20% of B-cell chronic lymphocytic leukemia and a VH1-69
monoclonal rearrangement is also present in the majority
of patients with type II MC, a typical HCV-related disorder
[53]. Further experimental sequencing of clonal Ig variable
regions from both MC and HCV-associated B-NHL patients
documented restricted IgV gene repertoire, with expression
of VH and VL genes (VH1-69 and Vκ3-A27), suggesting
exposure and response to a common antigen [54–56]. Of
note, HCV-E2 protein is the primary target of antibody
responses against HCV [57]. Quinn et al. obtained the
cloning of the B-cell receptor from one HCV-positive DLBCL

and its expression as a soluble immunoglobulin [58]. The
immunoglobulin rescued was shown to bind the HCV-E2
glycoprotein in a manner identical to a bona fide human
anti-E2 antibody, suggesting that some HCV-associated B-
NHL may originate from B-cells that were initially activated
by HCV-E2 protein [58]. Similarly, in a reported case of
an HCV-associated plasma cell leukemia, immunoblotting
showed that the monoclonal IgG-kappa detected in the
serum was directed against a viral protein, namely, the
HCV core protein [59]. These and other studies suggest an
indirect, antigen-driven lymphomagenetic role of HCV, with
HCV-E2 protein recognized as one of the most important
antigens involved in chronic B-lymphocyte stimulation [16,
26, 29].

A second mechanism, potentially involved in HCV-
associated lymphomagenesis, derives from the high-affinity
binding between HCV-E2 and one of its receptors, the
tetraspanin CD81, expressed on B-cells (Figure 1(B)) [16].
CD81 is known to form B-cell costimulatory complex with
CD19, CD21, and interferon-inducible Leu-13 (CD225)
proteins. This complex reduces the threshold for B-cell
activation via the B-cell receptor by bridging antigen specific
recognition and CD21-mediated complement recognition
[60, 61]. It was reported that engagement of CD81 on human
B-cells by a combination of HCV E2 protein and anti-CD81
mAb leads to the proliferation of naive B-cells, and E2-
CD81 interaction induces protein tyrosine phosphorylation
and hypermutation of the immunoglobulin genes in B-
cell lines [62]. In addition to direct effects on B-cells,
engagement of CD81 on T-cells lowered the threshold for
interleukin-2 production, resulting in strongly increased T-
cell proliferation. This could lead to T-cell activation in
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response to suboptimal stimuli and bystander activation
of B-cells [63]. Taken together, these results suggest that
CD81 engagement on B- and T-cells may lead to direct
or indirect activation [16]. Chronic B-cell proliferation, in
response to antigenic stimulation or polyclonal activation,
may predispose to genetic lesions such as translocation
and/or overexpression of the antiapoptotic protein Bcl-2
[64]. In a recent study, human Burkitt’s lymphoma cell line
(Raji cells) and primary human B lymphocytes (PHB) were
treated with HCV-E2 protein and HCV particles produced
by cell culture (HCVcc) [65]. The results showed that both
E2 and HCVcc triggered phosphorylation of IkBα, with
subsequent increased expression of NF-kB and NF-kB target
genes, such as antiapoptotic Bcl-2 family proteins (Bcl-2
and Bcl-xL). Either Raji cells or PHB cells were protected
from FAS-mediated death. In addition, both E2 protein and
HCVcc increased the expression of costimulatory molecules
CD80, CD86, and CD81 itself, and decreased the expression
of complement receptor CD21. The effects were dependent
on E2-CD81 interaction on the cell surface, since CD81-
silenced Raji cells did not respond to both treatments.
Moreover, an E2 mutant that loses the CD81 binding activity
could not trigger the responses of both Raji cells and PHB
cells. Of note, the effects were not associated with HCV
replication in cells [65]. Hence, E2-CD81 engagement plays a
role in activating B-cells, protecting B-cells from activation-
induced cell death, and regulating immunological function.
These latter mechanisms may contribute to the pathogenesis
of HCV-associated B-cell lymphoproliferative disorders [65].
Moreover, the interaction between HCV-E2 and CD81 on B-
cells has been shown to stimulate the enhanced expression of
activation-induced cytidine deaminase (AID) and to induce
double-strand DNA breaks in the IgVH gene locus, thereby
contributing to a mutator phenotype that increases the risk
of B-cell malignant transformation [66].

Another oncogenetic mechanism that has been proposed
is the direct infection of B-cells by HCV (Figure 1(C))
[16, 29, 67]. In the early 1990s, the presence of HCV-
RNA was demonstrated by PCR not only in serum/plasma
and liver tissues but also in peripheral blood mononuclear
cells (PBMCs), especially in B-cells, of patients infected
with HCV [68–71]. Nevertheless, although HCV has been
detected in lymphocytes from HCV infected patients and
patients with MC, only in a minority of cases RNA-negative
strands, the HCV replicative intermediates suggestive of
viral replication, were also detected in the cells [72–74].
Detection of negative-strands HCV-RNA in PBMCs by
polymerase chain reaction, may also be due to either
contamination or passive absorption of circulating HCV,
thus potentially leading to false positive results [75, 76].
Marukian et al. showed that culture-grown HCV replicated
in hepatoma cells, but no HCV replication was detected
in B- or T-cells, monocytes, macrophages, or dendritic
cells from healthy donors [77]. Furthermore, Stamataki et
al. have provided experimental evidence that HCV might
infect B-cells, but B-cells were not able to support active
viral replication [78]. Overall, these results should indicate
that PBMC may not be permissive to HCV replication
[16].

However, it has been reported that HCV may infect
and replicate only in a relatively rare subset of B-cells, such
as CD5+ B-cells. These cells have been shown to express
high levels of CD81 and to expand in HCV-infected liver
[79]. Alternatively, B-cells may need another event, such
as coinfection with another virus, namely, Epstein-Barr
virus (EBV), to become permissive for HCV infection and
replication [16, 80]. Neither HCV-RNA nor viral proteins
have generally been detected in lymphomatous cells in vivo,
with a few exceptions, for example a primary DLBCL of
the liver, found to harbor viral nucleic acids by in situ
hybridization and a mantle cell lymphoma case, from which
a lymphoma cell line could be established in vitro [26, 81,
82]. Moreover, Sung et al. established a B-cell line (SB)
from an HCV-infected B-NHL, whose virions could infect
primary human hepatocytes, PBMCs, and an established B-
cell line (Raji cells) in vitro [83]. Further studies provided
evidence that HCV replicates in various hematopoietic cell
types, including peripheral dendritic cells, monocytes, and
macrophages [84–86]. Overall, despite the evidence that
HCV can infect B-cells, the results about its capacity to
replicate in B-cells and other blood mononuclear cells and
to induce direct malignant lymphoproliferation still appear
highly conflicting [16, 29].

A Japanese group recently established HCV trans-
genic mice that expressed the full HCV genome in B-
cells (RzCD19Cre mice) [87]. Interestingly, RzCD19Cre
mice with substantially elevated serum-soluble interleukin-
2 receptor α-subunit (sIL-2Rα) levels developed B-NHL.
Another mouse model of lymphoproliferative disorder was
established by persistent expression of HCV structural
proteins through disruption of interferon regulatory factor-1
(irf-1 −/−/CN2 mice). Irf-1 −/−/CN2 mice showed extremely
high incidences of lymphomas and lymphoproliferative
disorders. Moreover, these mice showed increased levels
of interleukin (IL)-2 and IL-10, as well as increased Bcl-
2 expression, which promoted oncogenic transformation
of lymphocytes. In this mouse model, the overexpres-
sion of apoptosis-related proteins and/or aberrant cytokine
production were the primary events involved in inducing
lymphoproliferation [87].

A recent study found that peripheral blood B-cells
from patients with chronic HCV infection were infected
and also had enhanced gene expression associated with B-
NHL development when compared to healthy controls [88].
Furthermore, HCV has been found to induce high mutation
frequency of cellular genes (immunoglobulin heavy chain,
Bcl-6, p53 and beta-catenin genes), in B-cell lines and
PBMCs in vitro, by inducing double strand breaks and
by activating error-prone-polymerases and AID [89]. These
mutations of cellular genes are amplified in HCV-associated
B-NHL in vivo, suggesting that HCV-induced mutations
in proto-oncogenes and tumor suppressor genes may lead
to oncogenetic transformation of the infected B-cells. The
so-called mutator phenotype induced by HCV acute and
chronic infection in B-cells may be considered a “hit and
run” mechanism of cell transformation (Figure 1(D)) [89].

It has been proposed that HCV uses B-cells as reservoirs
for persistent infection, which could result in the enhanced
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expression of lymphomagenesis-related genes, particularly
AID, which is thought to be crucial for the initiation and
progression of B-NHL [67]. Other studies suggested that
the evolution from lymphoproliferation to malignancy may
require a second transforming event such as the antiapop-
totic Bcl-2 rearrangement. The t(14;18) translocation is
indeed significantly associated with chronic HCV infection
and particularly with MC [90, 91]. Although the role of virus
penetration and replication in B-cells has still to be fully
clarified, several evidences suggest that the presence of HCV
virus or HCV proteins in these cells represents an oncogenic
stimulus [16, 29].

4. Conclusion

Epidemiological studies have clearly demonstrated a cor-
relation between chronic HCV infection and occurrence
of B-NHL. The clinical evidence that antiviral therapy
has a significant role in the treatment and prevention of
some HCV-associated lymphoproliferative disorders, espe-
cially indolent B-NHL, further supports the existence of an
etiopathogenetic link. The mechanisms exploited by HCV
to induce B-cell lymphoproliferation differ from the clas-
sical mechanisms of herpesviral-induced lymphomagenesis,
which require the maintenance of either EBV or human
herpesvirus-8 genomes in the transformed B-cells as clonal
episomes, together with the expression of an array of latent
and, to a lesser extent, of lytic proteins [92]. It is conceivable
that the different mechanisms proposed, namely, chronic
antigen stimulation, high-affinity interaction between HCV-
E2 protein, and its cellular receptors, direct HCV infection
of B-cells and “hit and run” transforming events, are not
mutually exclusive, but they may be combined themselves in
a multifactorial model of HCV-associated lymphomagenesis
(Figure 1(A–D)) [16, 26, 29, 67].
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