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Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are 
generated from phospholipids of natural origin, polymersomes fabricated of synthetic block 
copolymers enjoy increasing popularity, as they represent more versatile membrane build-
ing blocks that can be selected based on their specific physicochemical properties, such 
as permeability, stability, or chemical reactivity. In this review, we focus on the application 
of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction 
into the utilization of multicompartmented vesosomes as compartmentalized nanoscale 
bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the 
specific exchange of pathway intermediates across compartment boundaries represents a 
bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific 
exchange of substrates and products. This is either based on changes in permeability of 
the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific 
porin proteins into the vesicle membrane. Since the incorporation of membrane transport 
proteins into simple and nested artificial vesicles offers the potential for specific exchange 
of substances between subcompartments, it opens new vistas in the design of protocells. 
Therefore, we devote the main part of the review to summarize the technical advances in the 
use of phospholipids and block copolymers for the reconstitution of membrane proteins.

Keywords: liposomes, vesosomes, block copolymers, reconstitution techniques, porins, metabolite transporters, 
membrane transport, compartmentalized bioreactors

iNTRODUCTiON

Compartmentalization is a key feature of eukaryotic cells to spatially separate distinct biochemical 
processes from each other. Lipid bilayer membranes serve as impermeable barriers that effectively 
separate subcellular compartments. This (i) enables the simultaneous operation of metabolic pathways 
that utilize the same intermediates and (ii) allows for the adjustment of specific reaction conditions 
inside individual organelles. In order to translate this natural principle of biological organization, the 

Abbreviations: DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; 
PB-b-PEO, polybutadiene-b-poly(ethylene oxide); PEG-b-PSBA, poly(ethylene glycol)-b-poly(styrene boronic acid); 
PEO–PPO–PEO, poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide); PEtOz-PDMS-PEtOz, poly(2-ethyl-2-
oxazoline)-b-poly(dimethylsiloxane)-b-poly(2-ethyl-2-oxazoline); PMOXA–PDMS–PMOXA, poly(2-methyloxazoline)–
poly(dimethylsiloxane)–poly(2-methyl-oxazoline); PS-b-PDMAEMA, polystyrene-b-poly(N,N-dimethylaminoethyl 
methacrylate); PS-b–PIAT, polystyrene–poly(l-isocyanoalanine(2-thiophen-3-yl-ethyl)amide), aka polystyrene-b-poly(3-
(isocyano-lalanyl-amino-ethyl)-thiophene); PVFc-b-P2VP, polyvinylferrocene-b-poly(2-vinylpyridine).
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use of membranes to encapsulate chemical reactions has attracted 
interest in the design of synthetic systems. Lipids or block 
copolymers are commonly used to build membranes in synthetic 
systems, in so-called liposomes or polymersomes, respectively.

Liposomes consist of a shell of amphiphilic lipid species, such 
as phospholipids, that encapsulate an aqueous solution. The lipids 
are arranged in a bilayer with the polar head groups of the two 
leaflets facing toward the inside and the outside aqueous phase 
and the hydrophobic tails of the phospholipids facing toward 
each other (Figure  1B). Based on the number of membrane 
layers, vesicles are called unilamellar or multilamellar. For 
biotechnological applications, the use of unilamellar vesicles is 
desirable, and these vesicle species can be defined according to 
their size, ranging from small unilamellar vesicles (SUVs having 
a diameter between 25 and 100 nm) to large unilamellar vesicles 
(LUVs with a diameter between 100  nm and 1  μm) and giant 
unilamellar vesicles (GUVs being larger than 1 μm up to 100 μm 
in diameter). Polymersomes consisting of amphiphilic block 
copolymers are of rising interest for compartmentalization in 
synthetic systems due to their increased mechanical stability and 
low membrane permeability compared to liposomes. The abil-
ity to (i) encapsulate specific cargo, (ii) trigger cargo release by 
external stimuli, and (iii) the possibility to incorporate particular 
membrane transport proteins are distinct features that depend 
on liposome and polymersome composition of artificial vesicles.

THe POTeNTiAL OF LiPOSOMeS, 
POLYMeRSOMeS, AND veSOSOMeS – AN 
OveRview

Both liposomes and polymersomes have become popular as vec-
tors for targeted and tailored drug delivery and for the application 
in biochemical microreactors. Due to the amphiphilic nature of 
the lipid or polymer building blocks, a spontaneous assembly 
into vesicles occurs in aqueous environments (Discher and 
Eisenberg, 2002). The phase transition temperature represents an 
important parameter for the choice of specific lipid or polymer 
building blocks for drug delivery purposes. At the phase transi-
tion temperature, lipids and polymers are transformed from a 
liquid crystalline phase to a gel phase, which leads to maximal 
bilayer permeability (Van Hoogevest et al., 1984), and hence, to 
the release of cargo from the lumen of the vesicles. Based on the 
choice of lipid or block copolymer, the discharge of cargo from 
artificial vesicles can also be achieved by pH shifts, or redox 
potential, which we will discuss later in this article. However, the 
use of artificial vesicles for drug delivery is out of focus of this 
review, and we would like to refer the interested reader to recent 
reviews focusing on this topic (Ohya et al., 2011; Lee and Feijen, 
2012; Khan et al., 2015; Thambi et al., 2016).

For vesicle formation, a variety of lipids with different 
properties is available (Marsh, 2012), which can either be used 
separately or as mixtures. Polymersomes made of amphiphilic 
block copolymers came into focus because of their potential for 
functionalization and increased mechanical stability compared 
to liposomes (Bermudez et al., 2002). Polyethylene glycol (PEG) 
and polyesytrene (PS)-based block copolymers are widely used 

to produce polymersomes for all kinds of applications. In addi-
tion, polypeptide-based polymersomes have become increasingly 
popular for biomedical applications, which are not only due to 
their biodegradability and high tissue compatibility but also 
based on their ability to change aggregation state and permeabil-
ity in response to environmental stimuli [as recently reviewed by 
Zhao et al. (2014)]. Membrane thickness of copolymer-derived 
polymersomes predominantly depends on the length of the 
hydrophobic block (Smart et  al., 2008). However, not only the 
chain length of the individual hydrophilic and hydrophobic 
blocks in diblock and triblock copolymers but also the length 
ratio of the hydrophilic and hydrophobic segments were found 
to represent an important parameter for membrane permeability 
and stiffness (Rodríguez-García et  al., 2011). Copolymers that 
combine a low molecular weight with high hydrophobicity were 
found to preferably arrange into GUVs (Rodríguez-García et al., 
2011). For a more in depth view on the use of polymersomes as 
vesicle scaffolds in biotechnology, please see recent reviews on the 
topic (e.g., Lee and Feijen, 2012; Zhao et al., 2014).

Besides simple, single-compartment vesicles, the formation of 
multicompartmentalized vesicular systems was engineered in the 
last years to allow the encapsulation of distinct cargos in different 
vesicular compartments. Various approaches were investigated 
for this purpose, such as the encapsulation of smaller vesicles into 
larger vesicles, so-called vesosomes (Walker et al., 1997; Bolinger 
et al., 2008; Marguet et al., 2012; Paleos et al., 2012). Vesosomes 
represent nested vesicles that harbor multiple compartments 
of different sizes encapsulated in each other without a direct 
connection between the individual compartment boundaries 
(Figures 1A,B,D).

veSiCLeS AND veSOSOMeS AS 
COMPARTMeNTALiZeD NANOReACTORS

Compartmentation of enzymatic reactions represents the basic 
biochemical principle of all living systems. The compartmenta-
tion of cellular metabolism has many advantages: the cell can be 
protected against toxic intermediates formed in one compartment, 
cellular subcompartments offer optimal reaction conditions for 
subsets of enzymes, compartmentation can avoid competition 
for substrates by different metabolic pathways, and it permits 
the differential regulation of isoenzymes within distinct com-
partments. Therefore, it seems reasonable to attempt to design 
multicompartmentalized synthetic systems that are confined by 
lipid or polymer bilayers, which provide optimal reaction condi-
tions for different enzyme species. Pioneering work in the field 
was obtained when Meier and coworkers reported an enzymatic 
reaction inside a PMOXA–PDMS–PMOXA triblock copolymer 
vesicle in 2000. Passive diffusion of the substrate ampicillin into 
the polymersome was mediated by the reconstituted bacterial 
porin OmpF, the encapsulated enzyme β-lactamase subsequently 
hydrolyzed the substrate before the product ampicillinoic acid 
diffused out again through OmpF (Nardin et al., 2000, 2001).

To date, vesosomes have successfully been applied to generate 
compartmentalized biochemical systems, e.g., in the co-factor-
dependent enzymatic formation of the fluorescent dye resorufin 
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FiGURe 1 | Multicompartmented artificial vesicles as bioreactors. (A) Vesosomes consisting of inner and outer coblock polymersomes with different 
physicochemical properties [adapted from (Peters et al., 2014)]. (B) Immobilization of biotinylated lipid vesosomes via the interaction with neutravidin in nanofluidic 
reactors [adapted from (Bolinger et al., 2008)]. The release of liposome contents is triggered by specific, consecutive temperature shifts. (C) Continuous-flow 
polymersome reactor with immobilized polymersomes in hydrogel (De Hoog et al., 2010). (D) Vesosomes using the porin OmpF as shuttle system [adapted from 
(Siti et al., 2014)]. (e) Multicompartment liposomes generated by the phase transfer technique [adapted from (Elani et al., 2014)]. For explanations, please refer to 
the manuscript text.
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from a profluorescent substrate (Peters et al., 2014). To this end, the 
two different enzyme species Candida antarctica lipase B (CalB) 
and alcohol dehydrogenase (ADH) were encapsulated separately 
into intrinsically porous sub-micrometer-sized PS-b–PIAT 
polymersome subcompartments, which, in turn, were engulfed 
by PB-b-PEO GUVs (Figure 1A). In such a vesosome assembly, 
the lumen of the PB-b-PEO vesicle resembles an artificial cytosol, 
while the PS-b–PIAT vesicle lumen corresponds to artificial orga-
nelles (Figure 1A). In the initial step, the substrate was converted 
by NADPH-dependent phenylacetone monooxygenase (PAMO) 
into an ester in the artificial cytosol of the vesosomes, before the 
ester intermediate diffused into the CalB containing subcom-
partments, where it was subsequently hydrolyzed to a primary 
alcohol. After diffusion of the alcohol product out of the first 
subcompartment into the ADH containing subcompartments, 
the alcohol was oxidized in a NAD+-dependent reaction into an 
aldehyde, which then produced the fluorescent dye resorufin by 
spontaneous beta-elimination (Figure 1A). Likewise, other cas-
cade reactions have also been established in polymersomes using 
glucose oxidase (GOx), horse radish peroxidase (HRP), and CalB 
(Vriezema et al., 2007; Kuiper et al., 2008).

Even complex cellular processes, such as the synthesis of ATP, 
could be achieved by the coupled activity of bacteriorhodopsin 
and F0F1-ATP synthase in synthetic vesicles. An H+ gradient was 
built up by bacteriorhodopsin in a light-dependent manner and 
this H+ gradient was subsequently utilized by ATP synthase to 
convert ADP and Pi to ATP. These two membrane-associated 
proteins have successfully been reconstituted into amphiphilic 
triblock copolymer PEtOz-PDMS-PEtOz polymersomes leading 
to ATP synthesis (Choi and Montemagno, 2005). This example 
nicely demonstrates the potential of synthetic systems to mimic 
complex cellular functions.

The potential to immobilize vesicular systems can also be 
exploited for the application as nanoreactors in nanofluidic 
devices, since the provision of substrate to and the harvest of 
product from immobilized vesicular compartments is much 
easier compared to open reaction systems. To this end, vesosomes 
have been immobilized on neutravidin-coated glass surfaces in 
nanoreactor systems through the integration of biotin–PEG–
lipids into the outer vesosome bilayer [Figure 1B; Bolinger et al. 
(2008)]. In these systems, the inner SUVs consisted of lipids with 
different phase transition temperatures compared to the outer 
SUVs. The inner SUVs were loaded with the profluorescent dyes 
dichlorodimethylacridinone phosphate or fluorescein diphos-
phate, while the outer compartment was loaded with alkaline 
phosphatase (AP). The sequential, temperature-triggered release 
of the substrates from the encapsulated SUVs drove the conver-
sion of the substrates by AP in the outer compartment in two 
distinct, consecutive steps (Figure 1B). The produced fluorescent 
products dichlorodimethylacridinone and fluorescein, respec-
tively, were still trapped inside the outer lipid bilayer.

Alternatively, artificial vesicles have been immobilized in 
alginate capsules or hydrogels (De Hoog et  al., 2010; Ullrich 
et al., 2015). A “continuous-flow polymersome reactor” was con-
structed by the immobilization of CalB and GOx loaded polym-
ersomes in a hydrogel (Figure 1C) (De Hoog et al., 2010). The 
substrate was added on top of the reactor in this setup, while the 

product was collected at the bottom (Figure 1C). Since enzyme 
leakage from immobilized polymersomes was more than four 
times lower compared to free enzyme, the total enzyme activity 
required for nanoreactors can be decreased, once the proteins are 
encapsulated into polymersomes (De Hoog et al., 2010). These 
two examples illustrate the advantages of vesicular functional 
units in nanoreactor assemblies.

CONTROLLeD ReLeASe OF CARGO 
FROM LiPOSOMeS, POLYMeRSOMeS, 
AND veSOSOMeS BY 
PHYSiCOCHeMiCAL TRiGGeRS

An important feature in the construction of vesicle-based nano-
reactors is the design of the vesicle shell by the choice of lipids, 
polymers, or a mixture of both. Based on the chosen lipid or 
block copolymer, a specific release of cargo by external stimuli 
can be achieved following a physical or chemical trigger that 
alters membrane permeability. Before we focus on membrane 
transport proteins for the specific exchange of solutes between 
vesicle compartments, we would like to briefly summarize the 
advances in the use of block copolymers that permit a triggered 
release of solutes.

The release of ABTS2− by repeated thermal stimuli and the 
subsequent conversion to ABTS1− by laccase inside the alginate 
capsules was observed by Ullrich et al. (2015). The heat stimulus 
was applied either by heating above the phase transition tem-
perature of DPPC in a water bath or by subjecting encapsulated 
superparamagnetic iron oxide nanoparticles to radiofrequency to 
cause heat emission.

In addition, stimuli- and cargo-selective content release 
was achieved in dual stimuli-responsive polymersomes with 
two kinds of cargo (Staff et  al., 2014). On the one hand, the 
polymer vesicles consisted of the redox- and pH-responsive 
polymer polyvinylferrocene-b-poly(2-vinylpyridine) (PVFc-
b-P2VP) or the pH- and temperature-responsive polymer 
polystyrene-b-poly(N,N-dimethylaminoethyl methacrylate) 
(PS-b-PDMAEMA). On the other hand, the cargos dimethyldo-
decylamine (DDA) and diphenyl disulfide (DPDS) were selec-
tively switchable from the water-insoluble to the soluble form by 
pH change or H2O2 redox trigger, respectively. The substances 
were stored in the water-insoluble form inside the polymersomes 
and were then specifically released by an external stimulus that 
allowed the passage of DPDS (by oxidation) or DDA (by pH 
change) across the membrane.

Finally, vesosomes were composed of lipids with different 
phase transition temperatures were used to trigger the successive 
mixing of the contents inside the vesosome by a suite of specific 
temperature changes (Bolinger et al., 2004, 2008). Likewise, the 
incorporation of stimuli-responsive polymers into polymer-
somes, such as the sugar and pH-responsive PEG-b-PSBA block 
copolymer or pH-responsive non-ionic amphiphilic triblock 
copolymers such as PEO-PPO-PEO, can lead to partial permea-
bilization of these vesicles. Pore-like structures are formed upon 
applying an appropriate external stimulus, but the vesicles are not 
disrupted (Binder, 2008; Kim et al., 2009).
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THe USe OF TRANSPORT PROTeiNS FOR 
eXCHANGe OF SUBSTRATe BeTweeN 
veSiCULAR SUBCOMPARTMeNTS

While the release of cargo by triggered permeabilization of 
the bilayer is accompanied by at least partial or temporal loss 
of compartmentalization, a more controlled discharge of cargo 
from vesicles can be achieved by the integration of membrane 
proteins into the vesicle membrane. This can either be achieved 
by the reconstitution of unspecific diffusion pores, such as por-
ins, or by the integration of substrate-specific transporters. This 
strategy avoids the increase in bilayer permeability by external 
stimuli but instead enables specific substrate flow across com-
partment boundaries. A frequently used protein for this purpose 
is the Escherichia coli porin OmpF (outer membrane protein F), 
which is a trimeric integral membrane protein that enhances the 
passive diffusion of small hydrophilic molecules (Cowan et al., 
1995).

The integration of OmpF in a lipid bilayer encapsulating 
β-lactamase inside the vesicle lead to hydrolysis of the externally 
added substrate ampicillin and yielded the product ampicillinoic 
acid (Graff et  al., 2001). The product was first detected inside 
the vesicle before its accumulation in the medium occurred, 
which was also facilitated by OmpF. Since the diffusion across 
the membrane bilayer represented the bottleneck of the reac-
tion, a higher substrate concentration was necessary to achieve 
comparable activity of encapsulated enzymes compared to free 
enzymes. Recently, OmpF was also reconstituted into an ABA tri-
block copolymer bilayer that served as the inner compartment of 
vesosomes that encapsulated horseradish peroxidase (Figure 1D; 
Siti et  al., 2014). The semi-permeable outer compartment was 
built of PS-PIAT diblock copolymers and contained GOx as well 
as the inner ABA polymersomes. After glucose and Amplex Red 
were added to the outside solution, they diffused into the outer 
compartment, where glucose was oxidized by GOx to produce 
H2O2 (Figure  1D). Hydrogen peroxide then diffused into the 
inner compartment, where it subsequently oxidized Amplex Red 
in the presence of horseradish peroxidase to yield the fluorescent 
end-product Resorufin (Figure 1D). Most importantly, this study 
by Siti et al. (2014) showed an increased reaction rate in the pres-
ence of OmpF, which enhanced diffusion into the inner reaction 
compartment.

The constituents of the heptameric protein α-hemolysin can 
self-assemble in membrane bilayers to form pores, which makes 
it an attractive target for the use in artificial membranes. Elani 
et al. (2013, 2014) incorporated α-hemolysin into DOPC bilay-
ers of multicompartment vesicle networks by phase transfer of 
water-in-oil droplets (Figures 1E and 2E). To proof functionality 
of the pore protein in a two-compartment system, the Ca2+-
sensitive dye Fluo-4 was encapsulated in one compartment and 
Ca2+ in the other compartment. Only those vesicular systems 
with α-hemolysin in the internal bilayer showed an increase in 
fluorescence, while no fluorescence was detectable in vesicle 
systems that did not contain α-hemolysin (Elani et  al., 2013). 
A spatially segregated reaction setup was established in a three-
compartment system with α-hemolysin pores connecting the first 

compartment with the second and with the third compartment as 
well as with the surrounding (Figure 1E; Elani et al., 2014). Each 
reaction step was performed in a single compartment: in the first 
compartment, lactose was hydrolyzed to glucose and galactose 
by lactase, and glucose was then oxidized to gluconolactone in 
the second compartment via GOx, thereby producing hydrogen 
peroxide (Figure 1E). The diffusion of glucose from the first into 
the second compartment was conferred by α-hemolysin, while 
lipid bilayers are permeable to hydrogen peroxide to allow for 
the diffusion of hydrogen peroxide from the second into the third 
compartment (Figure 1E). Finally, hydrogen peroxide initiated 
the oxidation of Amplex Red by horseradish peroxidase in the 
third compartment to yield the fluorescent product resorufin. 
No increase in fluorescence was detectable in vesicular systems 
without α-hemolysin (Elani et al., 2014).

SPeCiFiC TRANSPORT PROTeiNS AS 
TOOLS iN ARTiFiCiAL veSiCLe SYSTeMS

The chapters above deal with the unspecific release of cargo 
and substrates from vesicles via physicochemical triggers or 
by unspecific porins such as OmpF or α-hemolysin. To enable 
specific transport of cargo and substrates, appropriate transport 
proteins can be reconstituted into liposome or polymersome 
membranes. The incorporation of specific transport proteins 
into artificial membranes of liposomes, polymersomes, or 
vesosomes allows to conceptualize much more tightly controlled 
vesicle-based bioreactors. Therefore, we devote the rest of this 
review on recent advances in the reconstitution of membrane 
proteins.

ReCONSTiTUTiON OF TRANSMeMBRANe 
PROTeiNS iN LiPiD SYSTeMS

The studies on reconstitution of transmembrane proteins into a 
membrane environment mainly focus on the work with liposomes 
(Kahya et al., 2001; Montes et al., 2007; Kaneda et al., 2009; Aimon 
et al., 2011; Dezi et al., 2013; Hansen et al., 2013; Liu et al., 2013) 
but have also been successfully applied to polymersomes (Meier 
et  al., 2000; Choi and Montemagno, 2005; Nallani et  al., 2011; 
Martino et al., 2012).

There are multiple ways to reconstitute transmembrane pro-
teins in artificial membrane systems. The basic problem behind 
transmembrane protein reconstitution is the nature of these pro-
teins. Since transport proteins are anchored in the hydrophobic 
core of the cell membrane, they have a hydrophobic nature. This 
hydrophobicity aggravates their extraction as well their insertion 
from and into membrane systems. The cell itself circumvents this 
problem employing several strategies (Wickner and Lodish, 1985; 
Gutensohn et al., 2006). One of these is the so-called Sec pathway 
found in bacteria and eukaryotes (Economou, 1999; Rapoport 
et  al., 2004). Hydrophobic protein parts are co-translationally 
recognized by a signal recognition particle, which leads to a trans-
location of the protein translation machinery to the endoplasmic 
reticulum (ER) and the co-translational insertion of the protein 
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FiGURe 2 | Overview of different transmembrane protein reconstitution methods. (A) Detergent-mediated protein reconstitution uses detergent molecules 
to trigger reconstitution (upper row) and fusion events (lower row). After successful reconstitution, the detergent molecules are removed to form stable protein-
containing vesicles. Illustration adapted from Dezi et al. (2013). (B) Protein reconstitution via spontaneous swelling of vesicles from a protein-containing agarose 
film. The solubilized proteins are added to the agarose gels and incorporate spontaneously upon lipid addition and swelling. (C) An internalized cell-free extract 
supplied with specific DNA of the transmembrane protein leads to reconstitution of the protein in the vesicle membrane. Illustration adapted from Kaneda et al. 
(2009). (D) A proteoliposome is formed with the use of antibody or protein ligand-coated beads and the subsequent addition of lipids. Illustration adapted from 
Frank et al. (2015). (e) Spontaneous protein insertion in a double-emulsion setup. A lipid monolayer forms on the border between a lipid containing oil phase and 
an aqueous phase. Upon addition of an aqueous droplet, containing the solubilized protein, a micelle forms around the droplet, enclosing the solution. When the 
micelle passes through the lipid monolayer into the aqueous phase, a vesicle forms. The solubilized protein spontaneously inserts. Illustration adapted from 
Yanagisawa et al. (2011).
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into the cell membrane via the Sec apparatus. Another strategy 
involves the post-translational insertion of membrane proteins. 
After protein translation in the cytoplasm of eukaryotic cells, the 
protein is delivered, unfolded, inserted, and refolded in the target 
membrane, i.e., the TIC TOC (Gutensohn et  al., 2006; Andrès 
et al., 2010) complex in the chloroplast envelope or the TOM TIM 
(Bauer et al., 2000) complex in mitochondria. In addition, certain 
transmembrane proteins exhibit spontaneous insertion into the 
membrane, such as predominantly cytochromes (Wickner and 
Lodish, 1985). It is debated whether helical hairpin motifs can 
mediate this spontaneous insertion of proteins into membranes 
(Engelman and Steitz, 1981). All in all there is a huge variety 
and complexity of mechanisms the cell uses to insert membrane 
proteins into the target membrane as well as the heterogeneity 
of membrane proteins involved. Similarly, there are a couple of 
methods available for the functional reconstitution of membrane 
proteins, which need to be tested for individual proteins of 
interest.

DeTeRGeNT-MeDiATeD 
ReCONSTiTUTiON

Since the solubilization process of membrane proteins, the 
removal from their natural environment, is usually performed in 
the presence of detergent, the detergent-mediated reconstitution 
is one of the most common strategies for protein reconstitution 
(Figure 2A). Here, liposomes are formed via extrusion (Torchilin 
and Weissig, 2003) or sonification (Torchilin and Weissig, 2003), 
and after a presolubilization step, the solubilized proteins are sub-
sequently added to the liposome preparation, which eventually 
leads to the incorporation of the proteins into the membranes.

After the pioneering work of Kagawa and Racker (1971), 
the detergent-mediated reconstitution has been successfully 
reported on the reconstitution of various transmembrane 
proteins in vesicles up to sizes larger than 1 μm (Rigaud et al., 
1988; Steinberg-Yfrach et  al., 1998; Seddon et  al., 2004; Dezi 
et  al., 2013). The successfully reconstituted proteins includes 
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porins, such as FhuA (Dezi et  al., 2013), transporters such as 
bacteriorhodopsin (Steinberg-Yfrach et al., 1998), the Glucose-
6-P/P antiporter (Kammerer et al., 1998), H+-ATPase (Steinberg-
Yfrach et al., 1998), Ca2+-ATPase (Steinberg-Yfrach et al., 1998), 
CFOF1-ATPase (Steinberg-Yfrach et  al., 1998), and channels, 
such as the voltage-gated potassium channel (Ruta et al., 2003), 
BmrC/BmrD, a bacterial heterodimeric ATP-binding cassette 
efflux transporter (Dezi et al., 2013), as well as receptor proteins 
such as GPCRs (Ishihara et al., 2005).

With the advantage of very low external influences on the 
membrane protein, the detergent-mediated reconstitution is 
a suitable method for many proteins. The reconstitution of the 
membrane proteins is either achieved through direct incorpora-
tion of solubilized membrane proteins or, in order to form larger 
proteoliposomes, through detergent-mediated fusion of vesicles. 
In both cases, the vesicles are often pre-solubilized by detergent 
prior to the addition of proteins. The detergent-to-lipid ratio needs 
to be meticulously adjusted to achieve a fusogenic liposome state 
that ranges between detergent saturation and solubilization of the 
vesicle. For detergents, the relationship between critical micelle 
concentration and lipid-to-detergent ratio is given by (Ollivon 
et al., 2000; Rigaud and Lévy, 2003).

D D R Ltotal water eff= + ⋅ , where Dtotal represents the total deter-
gent concentration, Dwater provides the monomeric detergent 
concentration in water, i.e., the cmc determined in the presence 
of lipids, while L represents the lipid concentration and Reff the 
lipid-to-detergent ratio specific for the solubilization state. Dwater 
and Reff are constants that need to be determined for the detergent 
of choice (Ollivon et al., 2000; Rigaud and Lévy, 2003).

With increasing detergent concentration, the amount of 
incorporated detergent molecules in the vesicles increases, lead-
ing to the fragile state of saturation (Ollivon et al., 2000; Rigaud 
and Lévy, 2003). At this stage, further addition of detergent leads 
to vesicle shrinkage until full solubilization occurs (Ollivon 
et  al., 2000; Rigaud and Lévy, 2003). The incorporation rates 
are dependent on the protein and detergent used (Rigaud and 
Lévy, 2003), and the state of solubilization also represents an 
important factor for the reconstitution rate and the orientation 
of the reconstituted protein (Rigaud et al., 1995; Rigaud and Lévy, 
2003). It was shown that some proteins incorporate better in a 
state of low detergent incorporation, while other need complete 
saturation for an efficient reconstitution (Rigaud et  al., 1995). 
The reconstitution efficiency thereby depends also on the type 
of detergent and protein used (Rigaud et  al., 1995; Dezi et  al., 
2013). The method has to be tuned for the protein of interest to 
achieve the best fusion rate; therefore, there are various protocols 
available to achieve reconstitution but no specific protocol is 
applicable to all membrane proteins (Ollivon et al., 2000; Rigaud 
and Lévy, 2003).

After protein reconstitution, the detergent molecules need 
to be removed for stable vesicles to form (Ollivon et  al., 2000; 
Rigaud and Lévy, 2003). The removal method and its efficiency 
are thereby dependent on the type of detergent (Rigaud et  al., 
1995; Rigaud and Lévy, 2003). Detergents with a high cmc, such 
as CHAPS, chapso, cholate, and octyl glucoside, generally form 
small micelles, which makes them easy to remove via dialysis 
or gel filtration (Rigaud et  al., 1995; Rigaud and Lévy, 2003). 

Detergents with a lower cmc, which form larger micelles, are 
barely removable by gel filtration or dialysis. Here, the removal 
can be done using detergent-adsorbent beads. These detergents 
include Triton-X 100 (Rigaud et al., 1995; Rigaud and Lévy, 2003). 
Since there are no general protocols available for protein solubili-
zation or reconstitution, they are still accounted for as bottle neck 
processes (Rigaud et al., 1995; Rigaud and Lévy, 2003; Yanagisawa 
et al., 2011).

The detergent-mediated reconstitution can also be combined 
with liposome fabrication methods, such as the double-emulsion 
approach (Pautot et al., 2003; Yanagisawa et al., 2011). To this end, 
the solubilized potassium channel protein KcsA was added in the 
vesicles as well in as the external aqueous phase (Yanagisawa et al., 
2011). In both cases, protein reconstitution was detected and the 
protein was functional (Yanagisawa et  al., 2011). During this 
study, it was observed that not every lipid composition favored the 
insertion of the target protein. In the case of KcsA, there was no 
reconstitution detectable when PC lipids were used (Yanagisawa 
et al., 2011). It was also observed that the reconstitution of KcsA 
was oriented with the directionality depending on the outside or 
inside configuration of the protein and the size or the intracellular 
and extracellular domains (Yanagisawa et  al., 2011). KcsA and 
alpha-hemolysin were successfully reconstituted both from the 
outer aqueous phase as well as from the inner aqueous solution 
(Takiguchi et al., 2011; Yanagisawa et al., 2011).

For the reconstitution of KcsA, the detergent DDM was used 
and due to its high dilution, the detergent concentration was far 
below the cmc. Nevertheless, detergent molecules can remain in 
the membranes after successful reconstitution. Since remaining 
detergent might alter lipid composition and consequently protein 
behavior, this approach might be unsuitable for certain studies.

DiReCT iNCORPORATiON OF 
MeMBRANe PROTeiNS iNTO veSiCLeS 
iN CeLL-FRee SYSTeMS

Another approach to reconstitute transmembrane proteins is 
to encapsulate the protein translation machinery in vesicles 
(Figure  2C). The use of cell-free extract to reconstitute trans-
membrane proteins in liposomes or polymersomes has been 
successfully reported by various groups (Kalmbach et al., 2007; 
Murtas et al., 2007; Goren and Fox, 2008; Liguori et al., 2008a,b; 
Kaneda et  al., 2009; Katzen et  al., 2009; Kuruma et  al., 2009; 
Maeda et al., 2012; Martino et al., 2012; Liu et al., 2013).

The addition of cDNA coding for the protein of interest allows 
specific protein synthesis, and it has been shown that membrane 
proteins can be functionally synthesized and incorporated in the 
surrounding compartment membrane. Synthesized membrane 
proteins include pores (Shimizu et al., 2001), channels (Liguori 
et al., 2008a,b), transporters (Liguori et al., 2008a,b), and recep-
tors (Junge et al., 2011) from eukaryotic and prokaryotic origin 
(Zanders, 2005). The reconstituted membrane proteins cover 
sizes from 15  kDa, as the mechanosensitive heptamer protein 
channel MscL (Madin et al., 2000), up to the 114-kDa transporter 
MdtB (Zanders, 2005; Liguori et al., 2008a). Also the synthesis 
of presecretory and integral membrane proteins requiring 
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SecA-dependent translocation, for example, proteins with large 
periplasmic regions, such as FtsQ, or presecretory proteins, such 
as OmpA or MtlA (Kim et al., 2006), was reported. An overview of 
the successful use of cell-free systems is given in Zanders (2005).

There are various cell-free extracts available, but the most 
commonly used extracts are the whole-wheat germ extract, the 
E. coli extract and the PURESYSTEM. The PURESYSTEM was 
developed by Kuruma et al. (2008) and includes the chaperone-
free E. coli translation machinery assembled from purified 
recombinant components. This defined environment might be 
beneficial for the functional characterization of proteins, with 
protein yields of around 6 μg/ml at relative high cost (Kuruma 
et al., 2008). The wheat germ extract shows stable protein expres-
sion for weeks (Zanders, 2005) but is considerably more labor 
intensive in preparation (Berrier et al., 2004; Sawasaki et al., 2004) 
than the production of the E. coli extract. The E. coli assay can be 
prepared in approximately 1 day (Swartz, 2006; Hovijitra et al., 
2009) and shows similar efficiencies as the wheat germ extract 
with protein yields of around 1–6 mg/ml (Ishihara et al., 2005; 
Kuruma et al., 2008). While the reaction time of the E. coli and 
the wheat germ extract take between 6 and 24 h for the latter, the 
reaction time of 2 h is considerably shorter for the PURESYSTEM 
(Kuruma et al., 2008).

All methods have been used to synthesize and reconstitute 
troublesome proteins exceeding 100  kDa in size as well as 
membrane proteins (PURESYSTEM: Kim et  al., 2006, wheat 
germ: Schwarz et al., 2010, and E. coli: Madin et al., 2000). Post-
translational modifications (Kaiser et al., 2008), such as phospho-
rylation, prenylation, and glycosylation, as well as the formation 
of disulfide bonds can be achieved by adding the corresponding 
enzymes (Kalmbach et al., 2007).

The general workflow to achieve protein synthesis in cell-
free systems can be summarized as follows: (i) identify the best 
expression vector compatible with the cell-free expression system 
(Kuruma et al., 2008). (ii) If immunological detection or fusion 
with reporter proteins is desired, N-terminal tags showed to 
generate a higher yield. (iii) After a small-scale optimization step 
to identify the best expression conditions in expression tests and 
(iv) a scale-up step, (v) the proteoliposomes can be purified. The 
estimated time scale from vector design to protein synthesis is 
around 15 days to 1 month.

An interesting feature of the cell-free systems is the compat-
ibility of the expression systems with some detergents (Madin 
et  al., 2000; Goren and Fox, 2008). A wide range of non-ionic 
or zwitterionic detergents, Triton X-100, Tween 20, Brij 58p, 
n-dodecyl β-d-maltoside, and CHAPS, were compatible with 
cell-free synthesis, allowing the expression of proteins in the pres-
ence of detergents, while n-octyl β-d-glucoside and deoxycholate 
had an inhibitory effect on protein yield (Madin et al., 2000).

The incorporation of cell-free extract expression systems into 
vesicles can be achieved using various liposome formation tech-
niques, including natural swelling (Nomura et al., 2003; Kaneda 
et  al., 2009), double-emulsion (Noireaux and Libchaber, 2004; 
Maeda et al., 2012; Liu et al., 2013), and microfluidic (Martino 
et al., 2012) approaches.

A drawback of this reconstitution method is the introduction 
of the complete translation machinery into the lumen of vesicles, 

which might introduce unwanted complexity to the synthetic 
system. Also necessary post-translational modifications which 
might be necessary for the formation of a fully functional protein 
may not occur, unless the responsible enzymes, if known, are 
added to the cell-free extract.

ReHYDRATiON OF PROTeiN-
CONTAiNiNG AGAROSe

For their reconstitution, solubilized membrane proteins can be 
dissolved in warm, molten agarose gels (Figure  2B) (Hansen 
et al., 2013, 2015; Gutierrez and Malmstadt, 2014). In this tech-
nique, precipitation of the detergents is prevented at a dilution 
below the cmc. The gel is spread on a coverslip and partially 
dehydrated. Since agarose retains a high water content (Horger 
et al., 2009), it is hypothesized that the proteins do not denature 
(Hansen et al., 2013). Subsequently, lipid droplets are deposited 
on top of the gel. Under a stream of nitrogen, the solvent of the 
droplets is evaporated and the gel can be rehydrated using a pro-
tein compatible buffer (Hansen et al., 2013). Upon rehydration of 
the lipids, protein-containing liposomes form from the surface of 
the protein-containing agarose. The proteins successfully used in 
this approach so far were aquaporin-Z, bacteriorhodopsin, and 
SoPIP2 (Hansen et al., 2013), as well as the glucose transporter 
GLUT1 (Hansen et al., 2015) and the human serotonin receptor 
5-HT1A (Gutierrez and Malmstadt, 2014).

This method is relatively easy but requires a comparably large 
amount of protein. Moreover, it has been reported that liposomes 
grown on agarose gels contain agarose in the membrane as well 
as in the interior (Horger et al., 2009). This introduces a change 
in the mechanical properties (Lira et  al., 2014) of the vesicles, 
which might introduce artifacts in protein diffusion as well as in 
enzyme kinetics.

USiNG PROTeOLiPOBeADS FOR THe 
ReCONSTiTUTiON OF MeMBRANe 
PROTeiNS

Transmembrane protein-coated beads can be applied for 
the reconstitution of membrane proteins into lipid bilayers 
(Mirzabekov et al., 2000; Frank et al., 2015). The beads are coated 
with streptavidin together with a tag or antibody (Figure 2D). The 
tag allows the purification of the target proteins from detergent-
containing cell lysates (Mirzabekov et  al., 2000) as well as the 
coating of the bead with the solubilized transmembrane protein. 
After addition of detergent-solubilized lipids, the lipids cluster 
around the protein. The addition of biotinylated lipids, which bind 
to the streptavidin on the bead, supports the stable and saturated 
formation of a lipid bilayer around the bead (Mirzabekov et al., 
2000). This approach was successfully applied to reconstitute 
the G-coupled receptor protein CCR5, a seven transmembrane 
helix protein, into liposomes in the native confirmation and in a 
uniformly oriented fahion. The detergent is then removed via a 
dialysis step. Here, the non-ionic maltoside detergent cymal was 
used (Mirzabekov et al., 2000). Throughout the process, the use of 
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paramagnetic beads facilitates buffer changes and the fabrication 
process (Mirzabekov et al., 2000). A disadvantage of the method 
is the fixed position of the transmembrane proteins since they 
are anchored on the bead surface. This reconstitution method is 
therefore not universally applicable.

PARTiAL DRYiNG OF LiPOSOMeS

Another method to achieve protein reconstitution into cell-sized 
scale vesicles of 1 μm diameter is based on protein-containing 
bilayers (Girard et al., 2004; Aimon et al., 2011; Fenz et al., 2014). 
These layers are created by partially drying protein-containing 
small liposomes. Then, various methods can be employed to form 
liposomes, including electroformation or swelling (Girard et al., 
2004; Aimon et al., 2011; Fenz et al., 2014). A drawback of these 
techniques is the inevitable rupture and partial drying of the 
protein-containing vesicles. This is accompanied by the risk of 
protein denaturation as well as the need for vesicle formation in 
protein compatible buffers, since mostly high-salt conditions are 
still required. Electroformation offers a wide range of parameters 
to fine-tune the vesicle formation process, with a number of 
protocols available for the use of physiological buffers (Pott et al., 
2008). Changes in the electric field (amplitude and frequency), 
the duration of the protocol, and the swelling buffer can be 
applied to influence vesicle formation. However, the process of 
vesicle formation is not yet fully understood (Pott et al., 2008) 
and side effects, such as lipid-peroxidation (Zhou et al., 2007), or 
impact of the electric field on the proteins are often not assessable.

Gel-assisted swelling techniques offer a comparably limited 
range of parameters to improve vesicle production. The use 
of buffers and lipids involved, as well as the substrate, PVA 
(Weinberger et al., 2013), agarose (Horger et al., 2009), or others, 
dominate vesicle size and yield. The processes of vesicle formation 
in physiological buffers are still not fully understood and require 
further investigation. The method of proteoliposome formation 
in the size range greater than one micron is therefore still limited 
by the available protocols.

PePTiDe-iNDUCeD FUSiON

Membrane protein incorporation into larger vesicles can also be 
achieved by the fusion of vesicles. Besides detergent-mediated 
fusion (as already discussed above), other, non-detergent-
mediated fusion techniques have been elaborated, including the 
work of Kahya et al. (2001). Here, the fusogenic peptide WAE has 
been used to initiate vesicle fusion. Liposomes were formed out 
of DOPC:chol/PE-PDP (3.5:1.5:0.25), and the WAE peptide was 
subsequently covalently attached to the vesicles (Pécheur et al., 
1997, 1999; Kahya et  al., 2001). Larger vesicles, with positively 
charged lipids, a mixture of DOPC:DOPE:SAINT-2 (10:3:1.3), 
were used as peptide target. Under these conditions, fusion events 
were observed and the method was successfully used to reconsti-
tute bacteriorhodopsin (Kahya et al., 2001) as well as a complex of 
the seven-helix photoreceptor NpSRII and its cognate transducer 
NpHtrII, with the latter containing two transmembrane α-helices 
and a large cytoplasmic domain (Kriegsmann et al., 2009).

MeCHANiCAL AND SPONTANeOUS 
iNSeRTiON OF MeMBRANe PROTeiNS

In other reconstitution techniques, solubilized proteins are 
added to the already formed liposomes. Defects in the liposome 
membrane are either induced by sonification pulses (Rigaud and 
Lévy, 2003), electrical pulses (Rigaud and Lévy, 2003), or freeze-
thawing steps (Kammerer et al., 1998; Rigaud and Lévy, 2003). 
The drawback of these techniques is that mechanical stress is 
imposed on the solubilized proteins, which can lead to denatura-
tion or low reconstitution rates (Rigaud and Lévy, 2003).

Some classes of proteins, e.g., cytochromes, bacteriorhodopsin 
and F0F1-ATPases, and porins (Elani et  al., 2013, 2014), show 
spontaneous incorporation into lipid bilayers without the addi-
tion of any detergent. Nevertheless, a certain lipid composition 
of mostly acidic lipids (Eytan and Broza, 1978), as well as vesicles 
of small size (Eytan and Broza, 1978; Eytan, 1982), is required 
for spontaneous insertion of these transmembrane proteins. This 
process has been examined more closely. Jain and Zakim (1987) 
have revealed that defects in the membrane associated with 
amphiphilic contaminants as cholesterols, short-chain lipids, and 
others are facilitating spontaneous insertion.

CONCLUSiON

Artificial vesicles are a versatile resource to establish compart-
mentation in synthetic biochemical nanoreactors. To this end, 
compartmentation can either be achieved by immobilizing 
artificial liposome or polymersome vesicles to the matrix of 
microfluidic reactors or by generating nested or concatenated 
vesicular systems such as vesosomes.

In order to maximize yield of biochemical processes inside 
vesicular nanoreactors, it is indispensable to control the 
exchange of substrates and products across the membranes 
between the reactor compartments. Technically, it is possible to 
reconstitute entire metabolic pathways into liposomes or poly-
mersomes, and by the use of vesosomes or immobilized vesicles, 
it seems even feasible to mimic the natural compartmentation 
of these pathways in synthetic systems. However, the exchange 
of substances across membrane boundaries needs to be highly 
specific to make compartmented reconstituted biochemical 
pathways work.

Exchange of substances across membranes can either be 
accomplished by utilizing lipid and coblock polymers that change 
permeability in response to physicochemical triggers such as 
heat, redox potential, or pH. However, only unspecific mixing 
of contents can be achieved by altering the permeability of the 
membrane boundary. The incorporation of unspecific protein 
pores into the membranes of vesicle compartmented reactors, 
e.g., porins or α-hemolysin, allows for a more selective exchange 
of low molecular weight substances but still permits the passage 
of a variety of intermediates that are similar in charge and/or 
structure. Ultimately, the reconstitution of specific membrane 
transporters that only allow the passage of individual substrates 
is necessary for the functional reconstitution of compartmented 
biochemical pathways. As outlined in this review, diverse 
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approaches can be undertaken to achieve successful reconstitu-
tion of membrane transport proteins into artificial membranes. 
Since the optimal conditions for successful reconstitution are 
quite specific for each individual transport protein and can 
hardly be transferred to other candidates, we have taken care to 
summarize the available techniques for membrane transporter 
reconstitution. We believe that the integration of metabolite 
transporters into vesicle-based nanoreactors will largely advance 
bottom-up approaches in the development of compartmented 
protocells in the future.
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