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Myeloid cells are critically involved in the pathophysiology of cancers. In the tumor 
microenvironment (TME), they comprise tumor-associated macrophages (TAMs), neu-
trophils (TANs), dendritic cells, and myeloid-derived suppressor cells, which are further 
subdivided into a monocytic subset and a granulocytic subset. Some of these myeloid 
cells, in particular TAMs and TANs, are divided into type 1 or type 2 cells, according 
to the paradigm of T helper type 1 or type 2 cells. Type 1-activated cells are generally 
characterized as cells that aid tumor rejection, while all other myeloid cells are shown 
to favor tumor progression. Moreover, these cells are often at the basis of resistance 
to various therapies. Much research has been devoted to study the biology of myeloid 
cells. This endeavor has proven to be challenging, as the markers used to categorize 
myeloid cells in the TME are not restricted to particular subsets. Also from a functional 
and metabolic point of view, myeloid cells share many features. Finally, myeloid cells 
are endowed with a certain level of plasticity, which further complicates studying them 
outside their environment. In this article, we challenge the exclusive use of cell markers 
to unambiguously identify myeloid cell subsets in the TME. We further propose to divide 
myeloid cells into myeloid regulatory or stimulatory cells according to their pro- or anti-
tumor function, because we contend that for therapeutic purposes it is not targeting the 
cell subsets but rather targeting their protumor traits; hence, myeloid regulatory cells will 
push antitumor immunotherapy to the next level.

Keywords: cancer, tumor microenvironment, myeloid cells, monocyte, macrophage, dendritic cell, neutrophil, 
myeloid-derived suppressor cell

iNtrODUctiON

The immune system’s role in malignancies appears to be more complex than originally anticipated 
(1–5). Several immune mechanisms can support antitumor immunity; however, they are often 
counteracted due to immunosuppressive mechanisms exerted by the tumor and its environment (6). 
For many cancers, including ovarian, renal cell, colorectal, and breast cancer, prognosis, metastatic 
burden, and therapeutic response rates have been linked to immune cell populations that infiltrate the 
tumor (7–10). Consequently, the focus in antitumor immunotherapy started to shift from exclusive 
stimulation of innate and adaptive immunity to combinations with intratumoral modifications (11).

The tumor microenvironment (TME) comprises a complex milieu of non-malignant cells, such as 
cells from endothelial, mesenchymal, and immunological origin (5). Among the tumor-infiltrating 
immune cells, myeloid cells represent a prominent component both in terms of quantity and func-
tion (12–14). They consist of a heterogeneous mixture of monocytes, tumor-associated granulocytes 
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(mainly neutrophils or TANs), myeloid-derived suppressor cells 
(MDSCs), tumor-associated macrophages (TAMs), and tumor-
associated dendritic cells (TADCs). To complicate matters, these 
different cell types are characterized by different polarization states 
with both stimulatory and tolerogenic functions, often referred to 
as type 1 and type 2 states, respectively. It is well described that 
mature TADCs, type 1 TAMs and TANs can counteract tumor 
growth by stimulating T-cell-mediated antitumor immunity (15). 
By contrast, type 2 TAMs and TANs, immature TADCs, a subset 
of mast cells and MDSCs mainly promote tumor progression via 
immunosuppression, stimulation of angiogenesis, and secretion 
of growth factors. Consequently tumor-infiltrating myeloid 
cells are critical contributors to the “never-healing-wound” that 
characterizes most solid tumors and as such they are an attractive 
target for novel therapies (16–20). However, interpreting relevant 
literature is currently challenging since the same cell type is often 
given another name based on the use of the so-called “unique” 
markers and functions. In reality, these markers and functions are 
shared between different cell types as they are driven by tumor-
derived factors that trigger transcriptional programs and as such 
determine the cell’s phenotype and activity.

iDeNtitY crisis

Under physiological conditions, myeloid cells can be distin-
guished by their ontogenic transcription factors. Monocytes, 

macrophages, and DCs are derived from the monocyte/mac-
rophage and DC precursor, while granulocytes originate from 
the granulocyte precursor. Both precursors arise from the granu-
locyte/macrophage progenitor, which in turn is derived from the 
common myeloid progenitor stemming from the hematopoietic 
stem cell (21–23).

Myeloid cells arising in cancer patients fail to display nor-
mal features of myeloid differentiation resulting in atypical 
myelopoiesis in the bone marrow, periphery, and within the 
TME (10). In general, modulatory signals originating from the 
TME, such as transforming growth factor (TGF)-β, colony-
stimulating factor-1 (CSF-1), CSF-2, and various others, induce 
the attraction and expansion of bone marrow and blood-derived 
immature myeloid cells. Once in the tumor, they are classified as 
monocytes, TAMs, MDSCs, TADCs, and TANs, based on their 
surface marker expression, which can differ depending on the 
tumor type, the location within the tumor as well as the stage 
of tumor progression (24). Consequently, markers that are often 
used to distinguish murine myeloid cell subsets, such as CD11c, 
F4/80, CD11b, and Gr1, appear to be shared among subsets as 
illustrated in Figure 1.

Perhaps one of the most striking examples of shared markers 
that are often used to define myeloid cell subsets is the expression 
of the prototypical DC and macrophage markers CD11c and 
F4/80, which are both expressed by TADCs and TAMs (15, 25, 26). 
The same holds true for human tumor-infiltrating myeloid cells, 
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as, for example, human TAMs are often characterized by CD68, 
a receptor that is also expressed by other stromal tumor popula-
tions (27). It is clear that myeloid cells within the TME are not 
only hard to distinguish from each other but they can moreover 
trans-differentiate into one another. In the case of MDSCs, for 
example, it has been shown that they could trans-differentiate 
into macrophages, granulocytes, or DCs (28–35). Furthermore, it 
was also suggested that TADCs can converse into morphological, 
phenotypical, and functional TAMs (36). However, we must be 
careful to draw decisive conclusions from this study as they made 
use of CD11c, CD11b, and F4/80 as discriminating phenotypic 
markers. As mentioned above, these are expressed on both TAMs 
and TADCs, albeit at different levels.

The above examples suggest that it seems more appropriate 
to state that the formerly applied terms to characterize tumor-
infiltrating myeloid cell subpopulations represent extremes of a 
continuum in a universe of activation states, including classically 
and alternatively activated immature, mature, type 1 and type 2 
tumor-infiltrating myeloid cells (37, 38).

tHe tYPe 1/tYPe 2 PArADiGM

Although myeloid cells can be subdivided based on specific onto-
genic, functional, and phenotypic features, they are all subjected 
to the same “ground rules” present within the TME in a stratified 
way (39). This results in the adoption of two main polarization 
states that mirror the T helper 1/2 paradigm of CD4+ T cells.

Myeloid cells with a type 1 phenotype function as inflam-
matory, tissue (matrix)-destructive and immune-stimulating 
cells. These cells perform their immune stimulatory function 
by secretion of pro-inflammatory cytokines, such as tumor 
necrosis factor (TNF)-α, interleukin-1 (IL-1), IL-6, and 
IL-12 combined with a strong capacity to process and present 
tumor antigens. Furthermore, they are able to kill tumor 
cells by the production of inducible nitric oxide synthase 
(iNOS) (40). These functions are metabolically supported by 
increased glycolysis and pentose phosphate pathway, which 
provide rapid ATP production and biosynthetic intermediates 
required for the generation of pro-inflammatory proteins (41, 
42). Alternatively activated type 2 tumor-infiltrating myeloid 
cells are characterized as cells mediating tissue repair and 
immune suppression. To exert their suppressive function, 
type 2 tumor-infiltrating myeloid cells secrete among others 
IL-10 and TGF-β, and express enzymes, such as arginase-1 
and indoleamine 2,3-dioxygenase (IDO), which deplete the 
TME from nutrients essential for T cells. Moreover, type 2 
tumor-infiltrating myeloid cells produce factors involved in 
tissue repair and angiogenesis, such as vascular endothelial 
growth factor (VEGF) (43). Finally, they tend to rely on oxida-
tive phosphorylation, which is important for their long-term 
activation and subsequent return to homeostasis (41).

In the case of TANs and TAMs, this is reflected in the N1/
N2 and M1/M2 paradigm. Of note, it is described that TAMs 
have a transcriptional profile distinct from the classically 
activated M1 or alternatively activated M2 macrophages found 
under tumor-free steady-state conditions. However, due to a 
certain “overlap” of transcriptional molecules present in the 

classically and alternatively activated macrophages and the 
TAMs, it has been suggested that TAMs can adapt an M1, M2, 
or shared M1/M2 signature (44). For example, human TAMs 
co-expressing HLA-DR, a typical M1 marker as well as CD163, 
a typical M2 marker have been observed as well; again reflect-
ing that also the type 1/type 2 paradigm reflects two extremes 
of a continuum (45, 46). Likewise, TADCs and MDSCs seem 
to preserve their original division. Tumor-associated DCs, 
similar to peripheral DCs, are subdivided into plasmacytoid 
DCs (pDC), two conventional DC subsets (cDC1 and cDC2), 
and monocyte-derived DCs (47). MDSCs are subdivided into 
a monocytic subset and a granulocytic subset. While MDSCs 
are intrinsically characterized by suppressive type 2 functions, 
TADCs can display Janus-like features. When activated, they 
can initiate potent tumor antigen-specific immune responses. 
However, when immature, they contribute to genomic damage, 
angiogenesis, stimulation of tumor cell growth, and spreading. 
Moreover, immature TADCs induce antigen-specific T-cell 
unresponsiveness through direct and indirect mechanisms 
(48). The knowledge that TADCs present tumor antigen-
derived peptides, however, fail to provide co-stimulation has 
instigated attempts to activate TADCs for immunotherapeutic 
purposes (49). Indeed, targeted delivery of DC potentiating 
stimuli, as exemplified by the delivery of TriMix mRNA, ena-
bles TADCs to migrate to draining lymph nodes and activate 
tumor antigen-specific T cells, which in turn migrate to the 
tumor to mediate tumor cell rejection (50).

It has been suggested to redefine MDSCs as “myeloid 
regulatory cells” based on their ability to suppress host antitu-
mor immunity (51). However, since their functional, metabolic, 
and phenotypic features are not unique to MDSCs but shared 
between the suppressive “type 2” myeloid cells, we question the 
confinement of the term myeloid regulatory cells to MDSCs (52). 
In accordance with the type 1/type 2 paradigm, we propose to 
redevise tumor-infiltrating myeloid cells into tumoricidal mye-
loid stimulatory and tumor-promoting myeloid regulatory cells. 
Myeloid stimulatory cells would include polarization states with 
an M1, mature TADC, and N1 phenotype, while myeloid regula-
tory cells would include their type 2 counterparts: M2, immature 
TADCs, and N2, respectively, together with the monocytic and 
granulocytic MDSCs. Different tumor-infiltrating myeloid cell 
subsets amplify tolerance by cross-talk with each other and other 
stromal cells from the TME. For example, MDSCs induce type 
2 TAMs via IL-10, which in turn enhance the IL-10 production 
by MDSCs, resulting in a positive feedback mechanism for sus-
tained type 2 TAM generation (53). The myeloid regulatory cells 
and myeloid stimulatory cells represent a classification system 
based on shared functional hallmarks that result from common 
intratumoral incentives.

The functional skewing of myeloid cell populations in anti-
tumor or myeloid stimulatory cells, and protumor or myeloid 
regulatory cells is possible due to myeloid cell plasticity. Myeloid 
cells adapt to environmental signals, which govern their tran-
scriptional profile and consequently their phenotypical and func-
tional traits. It is becoming clear that transcriptional pathways 
promoting polarized functions of different myeloid cell subsets 
share common constituents. Key signaling networks cooperate, 
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tABLe 1 | Overview of strategies studied to manipulate murine and human tumor-infiltrating myeloid cells.

target Moiety cancer model effect reference

tumor-infiltrating myeloid cell-related receptors
CSF-1R/CSF-1 
signaling

Small molecules, monoclonal Ab, 
siRNA

Mouse (melanoma, glioblastoma, breast, 
pancreas, and colorectal cancer)

↓TAM, Mo-MDSC recruitment (25, 56–61)
TAM, M-DCs depletion
↑TAM repolarization

Human (neuro- and glioblastoma, giant cell 
tumor, and lung cancer) 

↓TAM recruitment (62–66)
↓CD14dim/CD16+ monocytes in plasma
TAM depletion

CCL2/MCP-1 Small molecules and monoclonal Ab Human (melanoma and prostate cancer) ↓TAM recruitment (67)

CD11b Monoclonal Ab Mouse (ovarian cancer) TAM, TADC, and MDSC depletion (68)

IL12R/IL18R Adenovirus Mouse (sarcoma) ↑TADC repolarization (69)

CD40 Monoclonal Ab Mouse (bladder cancer) ↑DC activation (70)

Human (several cancers) ↑DC maturation (71)

Retinoic acid receptor Vit. A derivate Mouse (cervical cancer) ↑Maturation of iMC (72)

Human (lung, renal cancer) MDSC depletion (73, 74)

TLR3,5 or 9 Agonists, siRNA, and TLR ligands Mouse (breast, ovarian, and renal cancer) ↓MDSC (75–78)

↑TADC repolarization/maturation

Gr1 Monoclonal Ab Mouse (fibrosarcoma) MDSC depletion (79)

G-CSF Monoclonal Ab Mouse (several cancers) ↓Tumor-associated circulating myeloid 
cells 

(80)

GM-CSF Monoclonal Ab Mouse (pancreas cancer) ↓Recruitment of Gr1+/CD11b+ (81)

IL6-R Monoclonal Ab Mouse (skin squamous cell cancer) ↓MDSC (82)

cKIT/SCF Monoclonal Ab Mouse (colon carcinoma) ↓MDSC recruitment (83)

Bv8 Monoclonal Ab Mouse/human (several cancers) ↓MDSC recruitment and Expansion (84)

Carboxy-N-glycan Monoclonal Ab Mouse (blood, breast cancer) ↓MDSC (85)

DR3 Cytokine Mouse (immature DC) ↑DC maturation (86)

intracellular tumor-infiltrating myeloid cell regulators
Several miRNAs Nanoparticles Mouse (ovarian, breast, and lung cancer) ↑TADC, TAM repolarization (87–90)

STAT3 Small molecules and siRNA Mouse (melanoma and breast cancer) ↑TADC, TAM/MDSC repolarization (91, 92)

Human (peripheral blood and several tumors) ↓im. suppr. of MDSC (93, 94)

Small Rho GTPases Cytostatic drug Mouse (lung cancer) ↓TADC formation (95)

Tyrosine Kinase Small molecule Human (renal cell carcinoma) ↓MDSC (96–99)

Legumain Cytostatic prodrug Mouse (breast, lung cancer) TAM depletion (100)

Human (breast cancer) ↓im. suppr. of MDSC

PDE5 Small molecule Mouse (colon and breast cancer) ↓im. suppr. of MDSC (101)

IRF8 Overexpression Mouse (breast cancer) ↓MDSC accumulation (102)

p50 NF-κB  siRNA Mouse (melanoma, and pancreas cancer) TAM repolarization (103)

extracellular suppressive molecules
Lactate dehydrogenase Small molecule Human (melanoma, and prostate cancer) ↑TADC repolarization/maturation (104)

VEGF Monoclonal Ab Human (colon, lung, and breast cancer) ↓Immature DCs (105)

COX2 Small molecule Mouse (breast cancer) TAM repolarization (106, 107)
Human (blood samples)

Fatty acid oxidation Small molecule Mouse (lung cancer) ↓ im. suppr. of MDSC (94)

Phosphatidylserine Monoclonal Ab Human (prostate cancer) TAM, MDSC depletion (108)
↑TAM, DC maturation

ROS Small molecule Mouse (colon and lung cancer) ↓im. suppr. of MDSC (109)

Undefined targets
Cytostatic drugs Mouse (bone marrow-derived MDSC, lung, 

breast, and ovarian cancer)
↑MDSC diff. into DC (110–112)
↓MDSC

Peptibodies Mouse (thymoma) MDSC depletion (113)

T. Gondii Mouse (ovarian cancer) ↑immune stimulatory DC (114)

Histidine-rich glycoprotein Mouse (fibrosarcoma, breast, and pancreas 
cancer)

TAM repolarization (115)

CSF, colony-stimulating factor; Ab, antibody; siRNA, small interfering RNA; CCL2/MCP-1, chemokine (C-C motif) ligand 2, monocyte chemotactic protein 1; Vit A, Vitamin A; TLR, 
toll-like receptor; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; cKIT/SCF, stem cell factor; DR3, death domain-
containing receptor-3; STAT3, signal transducer and activator of transcription 3; GTP, guanosine triphosphate; PDE5, phosphodiesterase type 5; IRF8, interferon regulatory factor 8; 
NF-κB, nuclear factor κB; VEGF, vascular endothelial growth factor; COX2, cyclo-oxygenase 2; ROS, reactive oxygen species.
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integrate, and finally converge into a few pathways, such as that of 
the signal transducer and activator of transcription (STAT) family 
and nuclear factor-κB (NF-κB) to promote the protumor traits of 
different myeloid cell populations (54). Therefore, the plasticity 
of myeloid cells also challenges their categorization in subtypes 
based on phenotypic features. The observation that transcrip-
tion factors and signature genes dictate their polarization and, 
therefore, function favors classifications based on stimulatory 
versus regulatory properties (26, 55). We believe that a simplified 
functional subdivision into myeloid stimulatory or regulatory 
cells gives a more perspicuous view on tumor-infiltrating myeloid 
cells. The scenario of shared phenotypical and functional traits 
driven by common transcriptional programs suggests that it 
is feasible to develop strategies to target different myeloid cell 
populations simultaneously and consequently therapeutically 
affect the protumor network established by cancer-associated 
myeloid cells.

iMPLicAtiONs FOr cANcer reseArcH 
AND tHerAPY

One of the joint hallmarks of myeloid cells is their plasticity. This 
not only makes them susceptible to tumor-derived cues but also 
enables their manipulation and repolarization. Subsequently 
numerous studies have been conducted to either block their 
recruitment, deplete one or more suppressive myeloid cell sub-
sets, and/or repolarize type 2 subsets to more tumoricidal type 1 
myeloid cells (Table 1). From the studies listed in Table 1, we can 
draw some general conclusions.

First, therapeutics are administered systemically in most 
studies. However, for most if not all targets, this can result in 
major immunological deficits in the long run as the myeloid cell 
compartment is of paramount importance for maintenance of 
immunological homeostasis outside the tumor tissue. Therefore, 
we propose to focus on the development of therapeutic delivery 
systems that can restrict depletion and/or modulation of myeloid 
cells to the tumor niche.

Second, it is remarkable to see how most studies tend to focus 
on the modulation of “one particular subset” while most often 
“shared” receptors and regulators are targeted, such as CD11b 
and CSF-1 (68). Therefore, we believe that it would be more 
interesting to evaluate the behavior of the general intratumoral 
myeloid regulatory cells’ state after therapy. For example, several 
groups that focus on TAMs have targeted CSF-1 and demon-
strated a decrease in TAM recruitment, depletion, and/or M2 
to M1 repolarization. Nevertheless, it would be more alluring to 
evaluate what CSF-1 blockage does with the shape of the general 
intratumoral myeloid regulatory cell population since CSF-1 is 
seen as one of the major attractants of “all” immature myeloid 
cells to the TME.

Third, instead of targeting “shared” phenotypic markers to 
block the recruitment or deplete a presumed tumor-infiltrating 
myeloid cell subset, we believe that targeting shared functional 
mechanisms can result in a higher chance that the whole TME 
can repolarize toward a myeloid stimulatory cell comprising 
milieu. Blockade of myeloid suppressive mechanisms can, 

therefore, be seen as a more “general” way to “target” the type 2  
cancer-associate myeloid cell population without focusing on 
one particular subset. To that end, several strategies can be 
envisaged, such as blocking the VEGF and/or TGF-β path-
ways (19, 96). Blocking the TGF-β pathway is, to our current 
knowledge, one of the most appealing strategies to prevent 
polarization of type 2 tumor-infiltrating myeloid cells. This may 
have profound impact on the balance of M1–M2 TAMs and 
N1–N2 neutrophils and allow DC maturation. Blocking may 
also regulate the excessive recruitment of tumor-infiltrating 
myeloid cells and as such also decrease the amount of myeloid 
regulatory cells (19). Based on the lack of a unique definition for 
the tumor-infiltrating myeloid cell subset of interest, together 
with the observation that tumor-infiltrating myeloid cells play 
a multifaceted role and can exhibit tumoricidal capacities, it 
is reasonable to propose that re-polarization rather than their 
depletion will be substantially more beneficial (116). This is 
exemplified by a study where TGF-β blockade resulted in a ther-
apeutic antitumor response caused by an influx of repolarized 
oncolytic TANs that expressed high levels of pro-inflammatory 
cytokines, while neutrophil depletion significantly blunted 
these antitumor effects (29). Also CSF-1R inhibitors, TLR9 
ligands combined with anti-IL10R antibodies or histidine-
rich glycoproteins resulted in an antitumor immune response 
caused by repolarization of the intratumoral myeloid regulatory 
cell population (56, 75, 115).

Fourth, also non-tumoral, non-immunologic stromal cell 
populations, such as endothelial cells and fibroblasts, can have 
a major impact on the composition of the tumor-infiltrating 
myeloid cells, implicating that also these cell types are important 
to consider when envisaging modulation of the tumor-infiltrating 
myeloid cell composition (5). For example, targeting endothelial 
cells using a VEGF inhibitor resulted in decreased numbers of 
intratumoral MDSCs, while the depletion of cancer-associated 
fibroblasts, which express many immunosuppressive molecules, 
showed impaired tumor growth (96, 117).

Finally, although murine in vivo and human in vitro studies 
show great promise for tumor-infiltrating myeloid cell combating 
therapeutics, there is a current lack of clinical data regarding the 
effects of such treatments on the tumor-infiltrating myeloid cells 
and more specifically the regulatory myeloid cell versus stimula-
tory myeloid cell ratio in cancer patients (118).

Important to keep in mind is that everything in biology 
depends on homeostasis. Repolarizing myeloid regulatory cells to 
type 1 tumor-infiltrating myeloid cells will also lead to imbalance, 
probably increased antitumor immunity but most likely also an 
enhanced state of chronic inflammation that in turn can induce 
the recruitment of MDSCs again (118). However, it is presumed 
that also antitumor immunity is allowed to take course and as 
such elimination of tumor cells is promoted. Therefore, one can 
postulate that the inflammation will resolve as soon as all tumor 
cells are rejected and tissue repair is complete.

cONcLUDiNG reMArKs

In this perspective paper, we suggest that different myeloid 
cell populations evolve along with tumor progression, and that 
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their phenotype and function is not as distinct as previously 
anticipated. This is supported by the plethora of papers on the 
subject of TAMs, TADCs, TANs, MDSCs, and how the plasticity 
of these cells allows them to acquire different activation states, 
even trans-differentiate into another cell subset, depending on 
the encountered factors. In the TME, a number of suppressive 
molecules trigger transcriptional programs that govern pheno-
typical and functional changes, endowing myeloid cells within the 
TME with a type 2 or immunosuppressive phenotype irrespective 
of the myeloid cell subset. We argue that the commonalities in 
phenotype and function provide an opportunity for therapeutic 

interventions that may concomitantly skew the myeloid cells to a 
type 1 state or as proposed to myeloid stimulatory cells.
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