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Abstract

Dynamic functional network connectivity (dFNC) analysis is a widely used approach

for capturing brain activation patterns, connectivity states, and network organization.

However, a typical sliding window plus clustering (SWC) approach for analyzing

dFNC models the system through a fixed sequence of connectivity states. SWC

assumes connectivity patterns span throughout the brain, but they are relatively spa-

tially constrained and temporally short-lived in practice. Thus, SWC is neither

designed to capture transient dynamic changes nor heterogeneity across subjects/

time. We propose a state-space time series summarization framework called

“statelets” to address these shortcomings. It models functional connectivity dynamics

at fine-grained timescales, adapting time series motifs to changes in connectivity

strength, and constructs a concise yet informative representation of the original data

that conveys easily comprehensible information about the phenotypes. We leverage

the earth mover distance in a nonstandard way to handle scale differences and utilize

kernel density estimation to build a probability density profile for local motifs. We

apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy

control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their

brain network organization relative to HC. Statelets in the HC group show an

increased recurrence across the dFNC time-course compared to the SZ. Analyzing

the consistency of the connections across time reveals significant differences within

visual, sensorimotor, and default mode regions where HC subjects show higher con-

sistency than SZ. The introduced approach also enables handling dynamic informa-

tion in cross-modal and multimodal applications to study healthy and disordered

brains.
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1 | INTRODUCTION

Schizophrenia (SZ) is a neuropsychiatric disorder characterized by

diverse cognitive impairments and a decline in personal and social

functioning. The decomposition of brain images into meaningful inde-

pendent components (ICs) and generating biomarkers helps analyze

SZ to a greater extent (Calhoun, Liu, & Adalı, 2009; Du et al., 2019;

Erhardt et al., 2011; Liang et al., 2006; Rahaman et al., 2019; Zhou

et al., 2008). Nevertheless, to reason about the neuropsychiatric dis-

orders and studying the brain remains challenging because of the het-

erogeneous nature of these diseases (Alnæs et al., 2019; Tsuang,

Lyons, & Faraone, 1990). Thus, studies employ subgrouping/clustering

of the subjects to minimize the dissimilarity in the population and

make the investigation more viable (Luchins, Weinberger, &

Wyatt, 1979; Rahaman et al., 2020; Scarr et al., 2009). The human

brain is considered an interconnected dynamical system with real-time

interaction between different nodes of the brain network (Bassett &

Sporns, 2017; Betzel & Bassett, 2017). These dependencies among

the neuronal populations or brain regions are described as functional

connectivity (FC) and generally computed using Pearson correlation of

time courses (TCs) in task-based or resting-state functional magnetic

resonance Imaging (fMRI) (Buckner, Krienen, & Yeo, 2013; Power

et al., 2011). Recent empirical evidence has suggested that this

dynamic spatiotemporal configuration better models brain activities

and network organization (Liu et al., 2017; Ma et al., 2014; Sako�glu

et al., 2010; Vergara et al., 2018; Zhi et al., 2018). Studies have

hypothesized that SZ is a disorder of disrupted cognition, network

dysconnectivity, and lack of functional integration (Friston &

Frith, 1995; Lynall et al., 2010; Stephan, Baldeweg, & Friston, 2006).

Moreover, not all cognitive processes occur within a single brain com-

ponent, instead of requiring dynamic reconfiguration of neural

resources such as the brain network's nodes and connections

(Alavash, Tune, & Obleser, 2019; Petersen & Sporns, 2015). As such,

research into the brain's static and dynamic functional network con-

nectivity (dFNC), in which nodes are distributed maps, for example, IC

maps, may provide crucial insights into functional integration and its

disorder due to a heterogeneous neuropsychiatric disorder

such as SZ.

dFNC is defined as the temporal interdependence among intrinsic

connectivity networks (ICNs) extracted from independent component

analysis (ICA) (Allen et al., 2014; Jafri et al., 2008; Rashid et al., 2014).

dFNC study provides an ability to track time-varying transitions in

connectivity strength, thus moving beyond the limiting assumption of

a single static connectivity pattern (Rashid et al., 2014; Vergara

et al., 2018). However, a typical dFNC analysis assumes fixed discrete

states with varying occupancy over time and does not capture contin-

uous transient information. Studies often analyze dFNC through con-

nectivity states and estimate those states via clustering the windowed

FNC sliding across time (Miller et al., 2016; Rashid et al., 2014; Saha

et al., 2019a). The obtained states essentially fuse all homogenous

connectivity patterns ignoring their order and timing. Additionally,

these states explore connectivity patterns that span throughout the

brain and prevail for a longer timescale. In practice, connectivity

signatures are more spatially constrained and exist at a shorter time-

scale (Grandjean et al., 2017; Hilger et al., 2020; Liao et al., 2017;

Miller et al., 2016). That is, transformations manifest over a slower

timescale, and dynamics can adjust functional network topology

accordingly (Aine et al., 2017; Bullmore & Sporns, 2009). So, these

methods are less suitable for capturing dynamic changes in the dFNC

TC. Specially, those which manifest over a short and continuous time-

scale. Consequently, the methods also incompetent to analyze

dynamic properties of dFNC, such as synchronizability and intermit-

tent connectivity, which are also affected by neuropsychiatric disor-

ders like SZ (Siebenhühner et al., 2013; Yu et al., 2012).

Addressing the shortcomings of the existing methods, an increas-

ing number of recent studies have started to investigate connectivity

time series in a reformed timescale through bipartitions (Sporns

et al., 2020) or network dynamics (Esfahlani et al., 2020; Faskowitz

et al., 2020; Morioka, Calhoun, & Hyvärinen, 2020; Sporns

et al., 2020). We further advance this agenda by introducing a robust

approach to decompose FC into a more granular scale by tracking the

most recurring patterns of the dFNC TC. To capture brief, repetitive

co-fluctuations, we focus on the time-series “motif”—a previously

unknown but recurring time-series pattern (Lin et al., 2002). In data

mining, time series motifs as such signatures are deemed powerful

tools for modeling and analyzing dynamical systems (Mueen, 2014;

Torkamani & Lohweg, 2017). The dFNC TC represents the link

between a pair of nodes during a time interval; intuitively, we are

interested in the frequently occurring behavior of the signal rather

than a few sporadic episodes. Motif extraction from each connection

of FC can easily yield an extensive collection of variable-length shapes

even for a moderate connectivity dataset. A comprehensive collection

of samples dramatically complicates the task of summarizing the tran-

sient dynamics into a few interpretable trends; thus, predicting the

overall dynamical system's behaviors is still similar to looking for a

needle in a haystack.

This article addresses the tradeoff between the desire to model

transient dynamics and the need to constrain the set of extracted fea-

tures to a reasonable size. Summarization helps to distill useful infor-

mation and general trends from the data making them interpretable.

Studies that propose summarizing time series are mostly domain-

specific and lack generalization (S. Ahmad, Taskaya-Temizel, &

Ahmad, 2004; Kacprzyk, Wilbik, & Zadrożny, 2008; Sripada

et al., 2003). This article offers a novel probabilistic pattern summari-

zation framework called “statelets,” highlighting the dynamics of cap-

turing FC of the brain. Statelets are driven by the desire to build a

general summarization method and rely on an efficient earth mover

distance (EMD) (Rüschendorf, 1985) implementation supporting ker-

nel density estimation (KDE) in motif space. We demonstrate how the

EMD may be an effective similarity metric for motif comparison. EMD

provides a scale-independent comparison between signatures that

can handle variable-length substructures and account for partial

matching (Rubner, Tomasi, & Guibas, 2000).

Results present the summary prototypes of both connectivity

dynamics. The statelets from both groups pose substantial group dif-

ferences in multiple dynamic properties of the brain's functional
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system. The connection rank computed based on the probability den-

sity (PD) within the groups reveals unique co-fluctuations among

functional brain networks and their corresponding dynamic interplay

(Figure 7). Connections identified in SZ patients show reduced modu-

larity relative to healthy controls (HCs) (Figure 9), and in addition, HC

statelets are significantly more recurring than in SZ (Figure 10). An

experiment of the transitivity of time decay (TD) graphs indicates that

HC networks are more often in sync and for more extended periods,

consistent with increased inter-communication to SZ (Figure 11).

Finally, statelet-wise subgrouping of the dynamics reports salient and

stable group differences in sensorimotor (SM), cognitive control (CC),

and cerebellar (CB) domains, which are not observed in earlier studies.

The main contributions of our article can be highlighted as follows:

• Propose a new statelet approach to address the limitations of

current sliding window plus clustering (SWC) methods for dFNC

analysis.

• Adapt the EMD as a distance metric for comparing time series

motifs.

• Use time-series motifs for capturing transient recurring co-

fluctuation of neuronal populations and unwarp the FC in a finer

time scale.

• Develop a novel probabilistic motifs summarization framework

for providing the synopsis of the dynamic through a subset of

connectivity prototypes.

• Use PD of motifs to assess spatial consistency across a group.

• Introduce a TD metric to investigate the summary signatures'

temporal consistency.

• Enable measurement of the brain's dynamic properties: an inher-

ent dynamical system.

• Show significant differences in SZ patients who generally show

less frequent and shorter statelets.

2 | DEFINITIONS AND BACKGROUND

2.1 | Definition 1: Dynamic functional network
connectivity

dFNC is a time-varying correlation typically computed using a sliding

window (block of time points, for example, 30–60 s) technique among

ICs of the brain. The correlation value at each window also quantifies

the FC strength between a pair of brain networks within the time

frame.

2.2 | Definition 2: dFNC time course

A dFNC time series, T = w1, w2, w3, …, wn is a sequential set of n real

values, where wi represents the correlation between a pair of ICs of

the brain for a certain period. w stands for a sliding window of a cer-

tain size. There is one such TC for each pair of components

(connections).

2.3 | Definition 3: Connections/pair

A connection is a functional association between a pair of indepen-

dent neural components. We use “connection” and “pair” inter-

changeably in our writing.

2.4 | Definition 4: Subsequence

Given a time series T of length n, a subsequence S is a subset of length

m ≤ n contiguous indices of T.

2.5 | Definitions 5: Motif

Given a time series T of length n, a motif Hi,m is a subsequence of

T with length m having the minimum average distance from nCm � 1

other m-length subsequences of T. Hi,m is the most recurring shape in

T of length m.

2.6 | Definition 6: Statelets

Given a collection (constant/variable-lengths) of time series motifs

G and a positive real number d (size parameter), Statelets S is a subset

of size d of state-shape prototypes evaluated using the proposed

summarization framework.

3 | DATA COLLECTION AND
PREPROCESSING

We used an existing SZ dataset for generating the dFNC TCs in this

project (Keator et al., 2016). The data repository has resting-state

functional magnetic resonance imaging data collected from 163 HCs

(117 males, 46 females; mean age 36.9) and 151 age- and gender-

matched patients with SZ (114 males, 37 females; mean age 37.8)

during the eyes-closed condition. Collected data pass-through data

quality control (explained in Allen et al., 2014; Damaraju et al., 2014).

The participant's consent was obtained before scanning following the

Internal Review Boards of affiliated institutions. Data were collected

with a repetition time (TR) of 2 s on 3T scanners. Imaging data for six

of the seven sites were collected on a 3T Siemens Tim Trio System

and a 3rGeneral Electric Discovery MR750 scanner at one site.

Resting-state fMRI scans were acquired using a standard gradient-

echo echo-planar imaging paradigm: Field of view of 220 � 220 mm

(64 � 64 matrices), TR = 2 s, Echo time = 30 ms, Fractional anisot-

ropy = 770, 162 volumes, 32 sequential ascending axial slices of

4 mm thickness and 1 mm skip. Subjects had their eyes closed during

the resting state scan.

Data preprocessing, quality control, and dFNC approximation fol-

low the standard pipeline described in (Rashid et al., 2014). The

preprocessing follows a standard pipeline that has been adapted in
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several previous studies (Agcaoglu et al., 2020; Damaraju et al., 2014;

Espinoza et al., 2019; Rashid et al., 2014, 2016). The preprocessing

steps include image alignment (motion correction), slice timing correc-

tion, spatial normalization, despiking, and smoothing, which are com-

monly used for fMRI preprocessing. Depending on the MRI scanning

protocols and collected data, the preprocessing parameters were

selected and described in these studies and their supplementary

(Allen et al., 2011, 2014; Damaraju et al., 2014). First, rigid body

motion correction has been done using the INRIAlign toolbox in SPM

to correct for subject head motion, followed by a slice-timing correc-

tion to account for timing differences in slice acquisition (Freire &

Mangin, 2001). Then, the scans went through a 3dDespike algorithm

to regress out the outlier effect and warped to a Montreal Neurologi-

cal Institute (MNI) template and resampled to 3 mm3 isotropic voxels.

Instead of Gaussian smoothing, we smoothed the data to 6 mm full

width at half maximum (FWHM) using the BlurToFWHM algorithm,

which performs smoothing by a conservative finite difference approxi-

mation to the diffusion equation. Additionally, the voxel TC was vari-

ance normalized before performing the ICA (Hyvärinen & Oja, 2000),

as this has shown better to decompose subcortical (SB) sources in

addition to cortical networks. Group ICA (Calhoun et al., 2001) was

performed on the preprocessed data and identified 100 ICNs.

Subject-specific spatial maps (SMs) and TCs were obtained using the

spatiotemporal regression back reconstruction approach implemented

in GIFT software (Calhoun et al., 2001). To ensure estimation stability,

we repeated the ICA algorithm 20 times in ICASSO, and aggregate

SMs were estimated as the modes of component clusters. Subject-

specific SMs and TCs were obtained using the spatiotemporal regres-

sion back reconstruction (Calhoun et al., 2001; Erhardt et al., 2011)

implemented in GIFT. Following ICA, we obtained one sample t-test

map for each SM across all subjects and threshold these maps to

obtain regions of peak activation clusters for each component; we

also computed the mean power spectra of the corresponding TCs.

These heuristics curated a group of components as ICNs if their peak

activation clusters fell on gray matter and showed less overlap with

known vascular, susceptibility, ventricular, and edge regions

corresponding to head motion. We also ensured that the mean power

spectra of the selected ICN TCs showed higher low-frequency spec-

tral power. This selection procedure resulted in 47 ICNs out of the

100 ICs obtained. The cluster stability/quality (Iq) index for these ICNs

over 20 ICASSO runs was very high (Iq > 0.9) for all of the compo-

nents, except an ICN that resembles a language network (Iq = 0.74).

The subject-specific TCs corresponding to the ICNs selected were

detrended, orthogonalized with respect to estimated subject motion

parameters, and then despiked. The despiking procedure involved

detecting spikes as determined by AFNI's 3dDespike algorithm and

replacing spikes by values obtained from the third-order spline fit to

neighboring clean portions of the data. The despiking process reduces

the impact/bias of outliers on subsequent FNC measures. The 47 com-

ponents are organized into modular partitions using the Louvain algo-

rithm of the brain connectivity toolbox. We computed functional

network connectivity (FNC), defined as pairwise correlation between

ICN TCs. To compute the time varying FNC between the ICN TCs

defined as pairwise correlation dFNC between two ICA TCs referred

to dFNC was evaluated using a sliding window correlation approach

with a window size of 22 TR (44 s) in steps of 1 TR (Allen et al., 2014;

Calhoun et al., 2001). The window constituted a rectangular window

of 22 time points convolved with Gaussian of sigma 3 TRs to obtain

tapering along the edges (Allen et al., 2014). We compute the time-

varying FNC for each connection between a pair of nodes (ICNs) and

generate a time series. We estimated covariance from the regularized

inverse covariance matrix (Smith et al., 2011; Varoquaux et al., 2010)

using the graphical LASSO framework (Friedman, Hastie, &

Tibshirani, 2008). The regularization parameter was optimized for

each subject by evaluating the log-likelihood of the subject's unseen

data in a cross-validation framework. Consistent for all post-hoc steps

for extracting and validating. Subject-wise dFNC values were Fisher-Z

transformed and residualized with respect to age, gender, and site.

After computing dFNC values for each subject, covariance values

were Fisher-Z transformed and residualized with respect to age, gen-

der, and site using the reduced model determined from our static FNC

(sFNC) analysis. The mean dFNC matrix was computed over all sub-

jects. This connectivity represents the association/relation between

two parts of the brain and how this relation evolves with time. In

other words, we can interpret this connection as an abstraction of

communication between different brain hubs to process information.

As such, both highly positive and negative correlations are informative

to characterize the relations in two distinct directions. The hypothesis

is the presence of these connections make the neural system process

information and generate response in a healthy manner. Likewise,

having disruption in those connections can cause symptoms present

in several mental disorder like SZ. Our study aims to extract most

dominant repetitive patterns of these connections by decomposing

the time series in a granular scale. Then, summarize these patterns as

a global representative set (Statelets) that helps leveraging this knowl-

edge to measure different dynamic features of brain in post hoc study.

More details about the components and the dFNC computation is

available in this study and its supplementary (Damaraju et al., 2014).

4 | EARTH MOVER DISTANCE

We implement the EMD for computing distances between motifs.

EMD usually measures the dissimilarity between two probability dis-

tributions (Levina & Bickel, 2001; Vallender, 1974). Also, EMD is

effectively adaptable for time series subsequence comparison. It cor-

responds to the minimum amount of work required to make two sub-

sequences look-alike (Champion, De Pascale, & Juutinen, 2008). For

p and q, two given signatures, F(p, q) represents the set of all possible

flow between p and q. Then, the work is defined as follows,

Work F, p, qð Þ¼
Xm
I¼1

Xn
j¼1

fijdij ð1Þ

here dij is some measure of dissimilarity (e.g., Euclidean distance),

fij is the optimal flow that minimizes the cost between pi and qj (ith
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time points). The terms m and n denote the length of the signatures,

respectively. The heuristic minimizes the amount of work done to

compute the EMD between p and q given by the following equation

(Andoni, Indyk, & Krauthgamer, 2008; Champion et al., 2008).

EMD p, qð Þ¼
minF¼ fijð Þ � F p,qð ÞWork F, p, qð Þ

Total flow
ð2Þ

The above equations provide the canonical formulation for com-

puting EMD between signatures of any dimensions; however, we opt

to compare shapes from one-dimensional time series. Hence, we pro-

pose a more straightforward implementation in the next paragraph

where we are not required to use an off-the-shelf distance measure.

4.1 | Implementation in our study

We use a particular case of EMD for a one-dimensional time series,

which parses through the vectors and keeps track of how much flow

occurs between consecutive time points. Here, flow is the difference

between the amplitudes of two-time series at a given time point. The

method recursively accumulates the absolute work done at each time

point, and finally, the summation over the time points corresponds to

the EMD distance (see Equations 5 and 6). Equations 3 and 4 normal-

ize shapes p and q, respectively.

Ai ¼bpi –min pð Þ, where bpi ¼ piP length pð Þ
j¼1 pj

ð3Þ

Bi ¼bqi –min qð Þ, where bqi ¼ qiP length qð Þ
j¼1 qj

ð4Þ

EMDiþ1 ¼EMDiþ Ai�Bið Þ, where EMD0¼0 ð5Þ

Distance P,Qð Þ¼
X

EMDij j ð6Þ

5 | OUR PROPOSED FRAMEWORK

Our architecture performs two fundamental steps to estimate state-

shape prototypes (statelets) from time-series dataset, (A) motif discov-

ery and (B) summarization. Figure 3 depicts the subprocesses required

to perform these steps.

5.1 | Step 1: Motif discovery

Each dFNC time series represents the FC between two distinct brain

networks. Therefore, it is not feasible to impose a common motif

length for all the time series in the dataset, like most other motif dis-

covery methods. The proposed heuristic takes a range [R1 R2] and

suggests the perfect length to explore the time series within that

boundary. In our case, dFNC is collected using a window size of

22 time points. So, the lower bound for R1 > 22. The upper bound for

R2 should be confined within half of the signal length for a sensible

parcellation of dFNC. Since the study aims to observe transient signa-

tures in the data, we select the range [30 50] in our analysis. Figure 1a

demonstrates the step for performing motif discovery. At first, the

process creates all the subsequences of different lengths and then

passes these candidates through the following subroutines (Matlab

scripts).

5.1.1 | EMD layer

For a given candidate of length li, the algorithm searches through the

timepoints by taking all other candidates of that length and computing

the EMD between them. We can consider the selected candidate as a

kernel here, and the idea is to apply that kernel on the input signal to

compute distances.

5.1.2 | Pooling local minima

The module pools a subset of top matches (minimum distance) instead

of just one across the signal. Since motifs are repeating signatures,

intuitively, we scrutinize the top matches only. It decomposes the

input TC into several subsections and pools the minimum from each

subsection.

5.1.3 | Mean of LM's and global minimum

This layer computes the mean of those local minima, representing the

overall performance by that specific candidate. After finishing compu-

tation for all the candidates of li , the method selects the global mini-

mum, which corresponds to the best acquirable matching (BAM)

score.

5.1.4 | The best length selection

To extract most recurring transient patterns, a recommender unit

optimizes two objectives using the BAM scores considering all differ-

ent lengths (i) minimizing the motif's length and (ii) maximizing the

similarity score. The recommender unit returns the best length for

decomposing a time series.

5.1.5 | Motif extraction

We have already collected information from the length selection pro-

cess, that is, distance, occurrences required for motifs extraction. So,

using the leading candidate as the benchmark, the subroutine collects

similar nonoverlapping occurrences of local motifs across the TC and
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stores these motifs for creating global dominants across the subjects

for a given pair.

This analysis compares the dFNC time-series datasets across the

two groups, HC and SZ. After discovering the motifs from all the

dFNC time series, we have a large population of variable length pat-

terns. Next, a group-wise summarization is performed on these

motifs.

5.2 | Step 2: Summarization

The decomposition technique (motif discovery) transforms the FC into

a diverse connectivity signatures manifold. Each pair of components

(connection) discovers a group of shapes from all the subjects. Sum-

marization aims to fetch the representatives of the motif's collection.

The intuition is to find highly persistent patterns from all the distinc-

tive subgroups of the population to ensure that statelets approxi-

mately capture all the diversities in the given stack of motifs. The

persistence is measured from the shape's PD across the given trajec-

tory, and the subgrouping is unveiled through the t-distributed sto-

chastic neighbor embedding (tSNE). Our summarization scheme

weighs the tSNE points using the corresponding PD. Then, an off-the-

shelf peak technique locates the expected prototypes with standard

smoothing and proximity parameters. To run the subprocesses, the

probabilistic summarization runs a module called “FindDominants”: a
suite of Matlab and Python scripts consisting of four steps (a, b, c, and

d) mentioned in Figure 1b to identify pairwise dominant motifs. We

replicate the same analysis for both subject groups SZ and HC.

5.2.1 | EMD matrix

We need the distance from each motif to all others to measure the

density and to subgroup them using tSNE. Here, we use EMD again

for computing the distance matrix. First, we normalize the TCs to

make our distance invariant to scale and offset. Then, calculate cross

EMD across the motifs, which creates a square matrix of n � n dimen-

sion where n is the number of shapes in the given collection.

5.2.2 | Kernel density estimator

Our method applies KDE to calculate the PD of data instances (motifs)

in the population. We incorporate a Gaussian kernel with optimal

bandwidth (Sheather & Jones, 1991; Silverman, 1986) in KDE. In this

setting, kernel density at a point x is given by Equation 7,

p xð Þ¼1
n

Xn
i¼1

Kh x�xið Þ ð7Þ

For ‘D’ dimensions, the formulation becomes,

p xð Þ¼1
n

Xn
i¼1

1

hD
K

x�xi
h

� �
ð8Þ

where n is the number of samples, kh is the kernel with a smoothing

parameter, h is called the bandwidth. The kernel is a non-negative

function and h>0. The common practice uses the Gaussian kernel for

F IGURE 1 Our proposed methodology for time series motifs discovery and summarization. (a) Step 1: Motif extraction using EMD as a
similarity metric. The subroutine takes out the most repetitive pattern (possibly with multiple occurrences) of a given time course, (b) Step 2:
Summarization of motifs using their probability density computed by a kernel density estimator (KDE). It takes a bag of varying length motifs and
generates a concise smaller collection of the most frequent shapes/patterns representing the functional system (SZ/HC). We defined these
prototypes as the statelets. The EMD distance matrix is used for both performing the tSNE and computing probability density (PD) of the motifs.
The relevant processing blocks and their intuitions in Step 2 are described elaborately in Section 5.2
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a smoother density model, simplifying the following kernel density

model.

p xð Þ¼1
n

Xn
i¼1

1

2πh2
� �D

2

e�
x�xij j2
2h2 ð9Þ

here h is the SD of the Gaussian components. Another crucial part of

the process is to select an appropriate bandwidth (h) for the density,

and several strategies for selecting h (I. A. Ahmad & Amezziane, 2007;

Turlach, 1993). Our approach incorporates the rule-of-thumb band-

width estimator for Gaussian (Scott, 2012). The optimal choice for h is

following,

h¼ 4bσ5
3n

 !1
5

≈1:06bσn�1
5 ð10Þ

here bσ is the SD of the samples, and n is the number of total samples.

The term x�xið Þ in the equation corresponds to the distance between

the sample x and xi � n. So, we assign EMD distances between the

shapes computed in Section 5.2.1 to assign the value of the term

x�xið Þ in the equation. Using Equation (9), KDE generates PD for all

motifs in the collection.

5.2.3 | tSNE using EMD

tSNE is a powerful and flexible visualization tool for high-dimensional

data by giving each datapoint a location in a two- or three-

dimensional map (Gisbrecht, Schulz, & Hammer, 2015; Maaten &

Hinton, 2008). Decentralized stochastic neighbor embedding (dSNE)

separates the data subgroups using their distance metrics (Saha

et al., 2017, 2019b). In our case, tSNE considers each motif as a data

point and uses the EMD matrix (computed in Section 5.2.1) to select

the neighbors for the embeddings. Next, the method weighs all the

points using their corresponding PD. Figure 2 presents an example of

how tSNE reveals intrinsic subgroups of data collection. The color

indicates the PD. The brighter, the higher. The visualizations in the

subsequent steps are generated using this same plot.

5.2.4 | Two-dimensional mapping

Although the above tSNE map unveils the subgroups, we still need to

mechanistically locate the summary prototypes. To employ the peak

finder, we need to map the tSNE plot (Figure 2) to a standard discrete

two-dimensional (2D) coordinate system, for example, a 2D grid. This

subroutine assigns all tSNE points to a two-dimensional discrete sys-

tem and accumulates the PD of all closely neighboring shapes onto a

single cell. The strive is to make dominant points more distinguishable

by increasing the frequency in the corresponding vicinity. This

approach discretizes the range of coordinates into a set of integer

intervals. As a result, multiple points from the tSNE plot are stacked

together into a single cell, as shown in Figure 3 to summarize the PD

of a close neighborhood.

5.2.5 | Gaussian blur and peak finding

Defocusing noise helps identify significant features/data points rep-

resenting the subgroup. We apply a Gaussian blur to the tSNE image

to facilitate the estimation of the peaks. Figure 4 displays how the

blurring effect changes the focus toward relevant loci of the image.

Then, we use a two-dimensional peak finder to compute the high-

density data points. The peak finder extracts a characteristic shape

from each subgroup with a higher PD. The spikes in Figure 5 indicate

the representative motifs (statelets) from the whole population. It

F IGURE 2 An example of tSNE using EMD distance on a
collection of real motifs. Data points represent the motifs weighted
by their probability density computed using KDE. X and Y axis stand
for the horizontal and vertical coordinates of each point, respectively

F IGURE 3 Mapping tSNE points to a 2D matrix for accumulating
PD's of close neighbors. Therefore, we observe the higher density
data with a brighter color in the figure
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visualizes one spike per high-density subspace. It visualizes how the

summarization scheme covers the whole state-shape trajectory and

approximates the synopsis. For more clarity, the method restricts the

peak finding subroutine by calibrating the smoothing parameter to

avoid creating a pile of similar patterns. The objective is to find a

diversified set of shapes that reasonably approximates the overall

dynamics.

6 | EXPERIMENTAL RESULTS

We divide the dataset into 163 HC subjects and 151 SZ patients

(SZ) groups. Each subject has 47C2 = 1,081 pairs of components or

1,081 connections: 1081 dFNC TCs. For each connection, we take

TCs from all the subjects within that group (HC/SZ). Our method eval-

uates a subset of statelets from both groups of subjects (SZ/HC). The

PD of these high dimensional state shapes denotes the consistency of

these statelets across connections among multiple brain regions. In

Figure 6, we show the most frequent statelets from both groups. We

used the Jonker-Volgenant algorithm (Cao, 2013) for a linear assign-

ment problem that optimizes the mapping of tSNE coordinates to a

two-dimensional grid preserving the matching shapes in the same

neighborhood constraint. In Figure 7, we compute the statelet's PD

that denotes the consistency of these statelets across connections

among multiple brain regions. Each bar indicates how frequently a

connection's statelet has appeared in the group dynamics. The fre-

quencies are also sorted based on their relative rank computed on

their frequency in both patient and control groups. This serves to ana-

lyze the connection's readiness in the functional dynamics. We can

see that the pair (connections) rank is very different in each group,

suggesting a diverse influence of a connection driving the dynamics of

patients versus controls. The observation indicates two distinct sub-

sets of connection drive the group dynamics and evident a high-level

group difference in terms of neural components participating in the

information processing. Further analysis is required to shed more light

on these differences. Another observation is frequency of the

statelets in HC connections is higher than in the SZ. To test the statis-

tical significance of this difference between the two distributions, we

compute a Kendall tau correlation coefficient, which is traditionally

used to measure the ordinal association between two entities

(Kendall, 1938; Puka, 2011). The hypothesis test evaluates τ =0.045

with a p-value = 0.025 indicating a statistically significant difference.

6.1 | Dynamic features analysis

We focus more on the dynamic features of the neural system, which

have been primarily unexplored in previous studies of dFNC. The

dynamic properties of these representative shapes show significant

group differences between HC and SZ phenotypes.

6.1.1 | Recurrence

To quantify the recurrence of statelets, we use passage coding by

convolving the group-wise most frequent statelet with each connec-

tivity time series. Passage coding annotates a time series with the

corresponding convolution score and visually perceivable the repeti-

tions. Figure 8 presents the occurrences of the group statelets in

individual dynamics (randomly selected three subjects from each

group). We investigated the recurrence of statelets for all the sub-

jects and got consistent results, as shown in Figure 8. Statelets are

designed to be the most generalized envelopes of brain connectivity

time series; thus, higher recurrence endorses better convergence to

the standard form of connectivity. The agreement toward regular

co-fluctuations by the connection aids synchronization in the brain

circuitry. In the SZ dynamic, the repetitions of statelets are signifi-

cantly lower than HC. That leads to a weaker association between

the brain components in SZ dynamics to perform smoother cogni-

tion. Also, fewer connections are present in the SZ dynamics than

F IGURE 4 After applying a Gaussian blur on the 2D image to
defocus less dense data points

F IGURE 5 A three-dimensional view of the tSNE plot after

marking the peaks extracted by a 2D peak finder. The peak finder
selects at least one peak from each high-density region. Later, we use
peak's tSNE coordinates to determine the real motifs it represents
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HC, which indicates the absence of necessary communication

among the subunits of the brain to process brain signals. Overall,

the recurrence helps understand the pattern of communication

(e.g., message passing) between the modules of the brain. Appar-

ently, a more connected brain graph with the edges characterized

by a recurrent communication scheme is required to produce the

necessary cognitive response. This recurrence analysis indicates the

absence of the necessary repetition of communications between the

submodules of the brain in the SZ dynamic. This provides a ground

for further study to explore the reasoning behind these abrupt con-

nectivity patterns. Also, more analyses are required to identify why

these disruptions are being triggered.

6.1.2 | Modularity

The line graphs in Figure 11 illustrate the ensemble behavior of the

connections in both dynamics (SZ/HC). The value represents the num-

ber of connections with similar prototypes at each time point.

Throughout the scan session, comparatively more HC connections are

activated in identical time steps than patients. This characterizes the

higher modularity in the HC functional network/graph (the connec-

tions between the functional components of the brain). Modularity is

imperative because it quantifies the strength of the network's division

into modules. Each module consists of a subset of nodes, independent

brain components in our case. These modules help data transmission

by performing specific tasks independently. Results show individuals

with higher baseline modularity exhibit more significant improvement

with cognitive training, suggesting that a more modular baseline net-

work state may contribute to greater adaptation in response to cogni-

tive training (Arnemann et al., 2015). Also, cognitive ability is

influenced by the relative extent of integration and segregation of

functional networks (i.e., modules) distributed across distant brain

regions (Chen, Abrams, & D'Esposito, 2006; Stevens et al., 2012). Sub-

sequently, the difference in modularity is informative about the cogni-

tive symptoms of SZ. In addition, the graph shows SZ connections

become modularized at the end of the time series, whereas the HC

ensembles are reduced by their size (Figure 9). This ensemble activa-

tion also demonstrates a distinct synchronization pattern between SZ

and HC brains and suggests an interchanging control by various neural

components.

6.1.3 | Consistency graphs

To measure the statelets' temporal consistency in the connectivity

time series, we introduced a metric called TD. The primary motivation

behind introducing TD is to approximate the temporal consistency of

the statelets. Also, measuring how frequently these generalized domi-

nant patterns appear in the timeline. The metric indicates how tempo-

rally localized or widespread the statelets are. TD is defined as

follows.

F IGURE 6 A subset of dominant motifs from SZ and HC dynamics. The motifs are detrended and visualized using tSNE followed by the
Jonker-Volgenant algorithm for the linear assignment problems. A similar type of shape is embedded into the same neighborhood. We can see a
few potential subgroups of motifs. The blank space in the figure was generated because we used a larger 2D grid than the number of motifs to
display. So, the algorithm optimizes the location for each motif from the 2D coordinate system to assign the matching patterns in the nearby
vicinity. The X axis is time, and the Y axis represents the dynamic functional connectivity strength
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TD: a temporal consistency measure—The TD approximates how

consistently a pair's connectivity exhibits the dominant motif in the

TC. The metric captures the temporal information of the summary

shapes and integrates it across a group dynamic. The following equa-

tion describes TD.

TD¼ 1
Sj j
XSj j

i¼1

1
Ti

ð11Þ

Here, jSj = The total number of subjects in the group SZ/HC and

Ti the index at which the pair has appeared for the first time in a sub-

ject (Ti = 1 to 136). If the pair is not present in a subject's dynamic,

then Ti = ∞ thus, TD for that pair in a subject is zero. We calculate

the TD for each connection in a subject's dynamic and lately compute

the average across the subjects within a group (SZ/HC). We used the

meantime decay computed on the group dynamic for the group repre-

sentation. We consider the appearance of a connection in a subject's

dynamic based on the first occurrence of group statelet on that time

series. The occurrence is calculated based on a thresholded convolu-

tion score. We also sorted the connection based on their first initiali-

zation in the subject's dFNC. The intuition was to investigate which

connections are responsible for triggering the convergence toward

statelets and how it propagates the dominance across the TC. The

expected time point at which the connection is initiated in the

dynamic is inverted. So, if the TD is very localized, then the mean is

very close to that time point and has a higher value. In essence, it

quantifies the temporal uniformity of the statelets in a subject's

dynamic. Since statelets are the most repeated, stable, and represen-

tative subsequences of the time series, this attribute can potentially

explain the connection's affinity toward a more generic connectivity

state contributing to the dynamics. Also, TD estimates how quickly/

lately the connectivity rectifies their initial disparity and converges to

routine cognition. It characterizes a connection as consistently late

(low TD value), consistently early (high TD value), pseudo-random

positioning (medium TD value, e.g., 0.10 to 0.15), consistent but

sparse in the group dynamics (0.5–0.9), etc.

Figure 10 demonstrates the average TD graphs computed on both

dynamics. Here, the vertices are independent brain networks, and the

edge represents the connection between two functional networks.

The weight of the edge stands for the TD; the darker, the higher. As

we can see, HC functional networks are firmly connected, and most of

the connections (out of 1,081) pass the TD benchmark. On the other

hand, only a small subset of SZ connections converges to their group

statelets. This provides evidence that the consistency of SZ network

connections is considerably lower than HC. The functional connec-

tions between different brain components show more substantial

temporal consistency in HC. SZ statelets are more dispersed along the

timeline, consequently lacking the expected connectivity signature in

the active channels. It might impact overall information processing

due to a deficiency in temporally sensitive message passing in the

functional network. To further probe the interconnections, we com-

puted the transitivity of each subject's TD graph. Figure 11 shows the

histograms of transitivity of subject-wise TD graphs in both groups.

Transitivity symbolizes the global probability of the network (connec-

tivity graph) to have adjacent nodes interconnected, revealing the

existence of tightly connected communities, e.g., clusters and sub-

groups. Most of the SZ graphs have zero or very low transitivity com-

pared to HCs. We compute a two-sample t test on the transitivity

scores from both groups, and the p-value, p = 9.23e-88, indicates the

difference is highly statistically significant. Higher transitivity suggests

that modules in the network consistent with prior work showing

increased modularity are linked to improved cognitive performance

(Arnemann et al., 2015). The analysis indicates that HC networks

intercommunicate more consistently and keep the channels up than

SZ. This result is consistent with previous work (Allen et al., 2014;

Karlsgodt, Sun, & Cannon, 2010; Rashid et al., 2014), which suggested

that patients exhibit more erratic and less efficient communication

among brain regions than controls. Figure 12 shows the average TD of

each connection in both SZ and HC groups. The rightmost map shows

HC-SZ group differences. All the pairs in HC show a more substantial

TD than SZ, especially in visual, SM, and default mode (DM) regions.

Notably, HC subjects show higher TD than patients with SZ, and the

apparent group differences present almost all over the brain. That also

makes the data more useful for classification. Intuitively, we feed

subject-wise TD data to multiple classifiers and get good accuracy in

every case. To avoid bias, the statelets are extracted from the whole

F IGURE 7 Each connection's probability density
(PD) demonstrates how frequently the statelets extracted from a
connection appear in the group dynamic. Each connection has two
density values: one per subject group. Blue demonstrates PD in
controls (HC) and red in the patients (SZ). We sort the connections
low to high according to their PD in the SZ group (left subplot), and
HC sorts the right subplot. Y axis represents the order of the links
after sorting, and X axis depicts their corresponding PD. We observe
that the rank of connections differs in both subject's groups in terms
of their PD; the PD difference is statistically significant and visually
evident in the plot
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dataset without using group (SZ/HC) information (unsupervised).

Thus, the classification accuracies are reasonably comparable. For clar-

ity, we can consider it a dimensionality reduction method like principal

component analysis (PCA) (Wold, Esbensen, & Geladi, 1987) for better

features selection. We compare the performance between running

F IGURE 8 Each graph represents the occurrences of the most recurring statelets over each subject's time course. These are three randomly
selected subjects from the HC (top) and SZ (bottom) groups. We convolve the group statelets with the subject dynamics (all the dFNC time courses,
1,081) to investigate the recurrence of the statelets over time. Then, we sorted the pairs based on the dominant shape's first occurrence in their
time series. Consequently, the early the statelets appear in a pair's time course, the higher the pair/connection in that subject's dynamics—we
threshold these convolutions matching scores at 0.8 for both groups to track down the strong appearances only. The color intensity corresponds to
how strongly/weakly the shape appears in that part of the course. The color bar is identical for all the reference subjects in the figure

F IGURE 9 Based on probability density ranking (in Figure 7), we

computed a collective appearance of the connections across all the
subjects. The X axis shows the time steps, and the Y axis corresponds
to the number of pairs connections that show the first statelet at that
step, which indicates the activation of the pair

F IGURE 10 Time decay graphs from both groups. The nodes are
functional networks, edges correspond to the connection between them
(maximum 1,081 possible), and the weight represents the mean time
decay (TD) of a connection within a group dynamic. We compute color
scaling from the 95 percentiles of the total values. After thresholding at
average group mean (SZ group mean + HC group mean)/2, 1,061 edges
survive in the HC group and only 16 edges in the SZ group
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the models directly on the dFNC matrix and methods like PCA (Wold

et al., 1987) for better features selection. We compare the perfor-

mance between running the models directly on the dFNC matrix and

the subject-wise TD. We use multiple classifiers to test TD and

observe significant accuracy improvement for more robustness.

Figure 13 shows how the models perform in both cases. We can see a

simple SVM or logistic regression model using TD outperforms all

other methods, including LSTM with attention.

dFNC states from statelets—In this cross-group analysis, we focus

on obtaining statelets across the dataset without separating SZ and

HC subjects into two different bins. The major objectives can be

articulated (i) extracting cross-group patterns, (ii) subgrouping the sub-

jects based on statelets, (iii) experimenting with the statelet's connec-

tivity strength and evaluating domain-wise group differences. It is

identical to the group-wise analysis motif extraction followed by prob-

abilistic summarization. The key difference is we send all the time

series (from both subject's group HC/SZ) together through our

statelet framework. Then, using approximated statelets as the repre-

sentative, we partition the collection of shapes into several subgroups

(connectivity states). After that, we use the EMD of extracted motifs

to determine their association toward a specific subgroup/state—

assign motifs to the nearest (lowest EMD) state. Statelets characterize

F IGURE 11 Histogram of
transitivity from subject-wise
time decay graphs. It refers to the
extent to which the relation
between two nodes in a network
connected by an edge is
transitive. A significant portion of
SZ subjects shows 0 transitivity,
which means the connections are

less consistent across different
subjects. We show the
differences are statistically
significant using a two-sample t-
test on both distributions.
Transitivity is also related to the
clustering coefficient

F IGURE 12 Pairwise mean time decays in healthy control (HC) and schizophrenia (SZ) groups. We run a two sample t test on the pairwise
time decay values to check the statistical significance of their HC-SZ group differences. The rightmost subfigure represents the FDR corrected
t values
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the intrinsic cluster in the motifs extracted from dFNC TCs. The cen-

troids of these clusters are referred to as brain states. We represent

these connectivity patterns extracted from the dFNC TC as dFNC

states. The centroids of these states represent patterns of FNC (tem-

poral coherence) that individuals move between throughout the

course of the experiment. We evaluate the HC-SZ group differences

in connectivity strength across the subjects within a state. For mea-

suring the statistical significance of these differences, we use a two-

sample t test. The t-values provide significant group differences in

connectivity strength throughout the distinct regions of the brain

(Figure 14). HC subjects in state 1 show stronger connections than

SZ, and differences are statistically significant in SM, CC, and DM

regions. In states 2 and 3, the differences are mostly HC < SZ; in state

3, group differences are statistically significant across the brain but

similar strength in the connections between SB and other domains.

State 4 shows mostly weaker differences except for a few auditory

(AUD) and SB components, demonstrating SZ subjects are more

strongly connected than HC in those regions. Two connections

between AUD and DM show a statistically significant difference in

state 5, and state 6 exhibits HC > SZ in the CC region. Above all,

states 7, 8, and 9 show significant connectivity differences in CC and

DM regions. Specifically, state 7 depicts HC > SZ and 8 and 9 shows

HC < SZ group distinction. In an earlier study (Rashid et al., 2014),

strong group differences are mostly in visual and AUD, but we got dif-

ferences in SM, CC, and CB. We got both HC < SZ and SZ < HC in

SM, CC, and DM. We observe the most significant pattern of group

differences here in CC, DM, and CB regions. This triangle shows the

variation in connectivity between patients and controls across multi-

ple states with an alternating directionality, which indicates a potential

biomarker for specific subtypes of SZ.

F IGURE 13 Classification accuracy for different methods. First,
three methods were applied to the dFNC matrix and LSTM with the
attention model applied to the dFNC time course. The last two
methods use time decay (TD) for classification. We run the models on
time decay information of all the subjects for 100 repeated iterations,
and the accuracies are mean across the iterations. We train the model
on 200 random samples in each iteration and cross-validate them
using the remaining 114 subjects

F IGURE 14 HC—SZ group differences in terms of max connectivity strength. State-wise group differences in functional connectivity (FC).

We have both SZ and HC subjects' groups at each state. For each pair of components, we have a subset of statelets from HC subjects and a
subset from SZ subjects. Then, we compute the maximum connectivity strength of those statelets from both subgroups. A two-sample t test
using a null hypothesis of “No group difference” compares patients' max connectivity versus controls. A higher t value indicates the rejection of
the null hypothesis irrespective of their sign. However, the sign of t values represents the directionality of the group difference. The pair matrix
(47 � 47) is labeled into seven different domains subcortical (SB), auditory (AUD), visual (VIS), sensorimotor (SM), cognitive control (CC),
defaultmode (DM), cerebellar (CB), respectively. White cells in the matrix indicate either the absence of that pair or nonsignificant group
differences for this pair within a state. The upper triangle represents the FDR corrected differences
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7 | CONCLUSION

We proposed a novel method for analyzing dynamic FC via extracting

high-frequency texture from the connectivity space. To our best

knowledge, it is the first pattern mining application on dFNC data.

The proposed framework addresses issues in current dFNC analysis

methods by modeling the dynamics through brief connectivity shapes.

The analysis of those motifs enables measuring the characteristics of

brain circuitry and network organization. The major contributions of

our study are two-folded, an unsupervised method for motifs discov-

ery using EMD as a distance metric and a probabilistic summarization

of these patterns. Because of the complexity of the data, it was neces-

sary to summarize the information into a predictable and concise sub-

space. To do this, we included a representative snippet of the human

brain connectivity graph, using the set of components as reduced

space to show how it behaves over time. The experiments facilitate

the observation of distinguishing connectivity signatures and the

interplay among the hubs to process information. Statelets provide

this summary that includes abstraction, analytics, and current trends

at a glance. The statelet approach seeks an improved understanding

of connectivity states and the mechanism through which their dynam-

ics vary across individuals. Results demonstrate how these state

movies help to investigate the dynamic properties of an inherently

dynamic system (i.e., brain). Our approach is more robust to noise

while observing short-length dynamic features of the functional

dynamics of the brain. These connectivity shapes from SZ and HC

dynamics help create a global contrast between healthy and diseased

brains and illustrate crucial group differences in several dynamic prop-

erties such as recurrence, modularity, and synchronizability. Our

method has some limitations and potential future improvements too.

That includes high time complexity and parameters tuning. We are

working on a dynamic programming implementation of motif extrac-

tions to reduce the time complexity to a polynomial order—also, a

framework for automatic fine-tuning of the model's free parameters.

However, statelets provide shape-based analytics and outlines of the

dynamics for the first time. It enriches our understanding of how net-

works communicate in spontaneous brain activity and the pattern of

binding/impairment between them to maximize information transfer

and minimize connection costs. We believe this would fill in a gap in

the field that will help us understand the dynamics better, possibly

providing an improved way to study neuropsychiatric disorders more

effectively.
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