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Abstract

Maternal recognition of pregnancy (MRP) in the mare is an unknown process. In a non-preg-

nant mare on day 14 post-ovulation (PO), prostaglandin F2α (PGF) is secreted by the endo-

metrium causing regression of the corpus luteum. Prior to day 14, MRP must occur in order

to attenuate secretion of PGF. The embryo is mobile throughout the uterus due to uterine

contractions from day of entry to day 14. It is unknown what signaling is occurring. Literature

stated that infusing oil or placing a glass marble into the equine uterus prolongs luteal life-

span and that in non-pregnant mares, serum exosomes contain miRNA that are targeting

the focal adhesion (FA) pathway. The hypothesis of this study is embryo contact with endo-

metrium causes a change in abundance of focal adhesion molecules (FA) in the endome-

trium leading to decrease in PGF secretion. Mares (n = 3/day) were utilized in a cross-over

design with each mare serving as a pregnant and non-pregnant (non-mated) control on

days 9 and 11 PO. Mares were randomly assigned to collection day and endometrial sam-

ples and embryos were collected on the specified day. Biopsy samples were divided into

five pieces, four for culture for 24 hours and one immediately snap frozen. Endometrial biop-

sies for culture were placed in an incubator with one of four treatments: [1] an embryo in con-

tact on the luminal side of the endometrium, [2] beads in contact on the luminal side of the

endometrium, [3] peanut oil in contact on the luminal side of the endometrium or [4] the

endometrium by itself. Biopsies and culture medium were frozen for further analysis. RNA

and protein were isolated from biopsies for PCR and Western blot analysis for FA. PGF

assays were performed on culture medium to determine concentration of PGF. Statistics

were performed using SAS (P� 0.05 indicated significance). The presence of beads on day

9 impacted samples from pregnant mares more than non-pregnant mares and had very little

impact on day 11. Presence of oil decreased FA in samples from pregnant mares on day 9.

On day 11, oil decreased FA abundance in samples from non-pregnant mares. Embryo con-

tact caused multiple changes in RNA and protein abundance in endometrium from both

pregnant and non-pregnant mares. The PGF secretion after 24 hours with each treatment

was also determined. On day 9, there was no change in PGF secretion compared to any

treatments. On day 11, presence of peanut oil increased PGF secretion in samples from

PLOS ONE | https://doi.org/10.1371/journal.pone.0213322 March 5, 2019 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Klohonatz KM, Nulton LC, Hess AM,

Bouma GJ, Bruemmer JE (2019) The role of

embryo contact and focal adhesions during

maternal recognition of pregnancy. PLoS ONE 14

(3): e0213322. https://doi.org/10.1371/journal.

pone.0213322

Editor: Bin He, Houston Methodist Research

Institute, UNITED STATES

Received: December 14, 2018

Accepted: February 19, 2019

Published: March 5, 2019

Copyright: © 2019 Klohonatz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-9790-1950
https://doi.org/10.1371/journal.pone.0213322
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213322&domain=pdf&date_stamp=2019-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213322&domain=pdf&date_stamp=2019-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213322&domain=pdf&date_stamp=2019-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213322&domain=pdf&date_stamp=2019-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213322&domain=pdf&date_stamp=2019-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213322&domain=pdf&date_stamp=2019-03-05
https://doi.org/10.1371/journal.pone.0213322
https://doi.org/10.1371/journal.pone.0213322
http://creativecommons.org/licenses/by/4.0/


non-pregnant mares. In samples from non-pregnant mares, presence of an embryo

decreased PGF secretion compared to control samples from non-pregnant mares. Results

revealed that while beads and peanut oil may impact abundance of FA RNA and protein in

endometrial samples, it does not appear to impact PGF secretion. Conversely, embryo con-

tact for 24 hours with endometrium from a non-pregnant mare causes a decrease in PGF

secretion. These results suggest that it is not just contact of any substance/object causing

attenuation of PGF secretion, but the embryo itself is necessary to decrease PGF secretion.

Introduction

Maternal recognition of pregnancy (MRP) refers to the mechanism by which endometrium

identifies the presence of an embryo resulting in continued secretion of progesterone (P4) by

the corpus luteum (CL) [1]. In non-pregnant mares on day 14 post-ovulation (PO), oxytocin is

released from the endometrium into the uterine lumen, binding endometrial receptors, caus-

ing release of more oxytocin and production and release of prostaglandin F2α (PGF)[2]. In

pregnant mares, the conceptus enters the uterus on day 6, and by day 9 is surrounded by a gly-

coprotein rich capsule, a characteristic unique to the horse and rabbit [3] Once the conceptus

is in the uterus, uterine contractions move the embryo throughout the uterus reaching peak

mobility between days 11 and 14 PO [4,5]. This mobility is necessary to mitigate secretion of

PGF. Embryo mobility ceases by day 16, indicating that MRP occurs between days 11 to 14 PO

and functions in an antiluteolytic manner [4,6,7].

The CL must be protected from endometrial PGF in order to sustain P4 production [8–10].

Maternal recognition of pregnancy is vital to pregnancy success yet differs in the mare com-

pared to other species. Interferon tau and estradiol are MRP signals in ruminants and pigs,

respectively, but they do not have any impact on luteal function in the horse [11–14]. The

equine conceptus secretes prostaglandin E2 on day 4, but it has no reported effect if infused

into the uterus of non-pregnant mares [12]. Interestingly, when coconut or peanut oil was

infused into the uterus of a NP mare on day 10 PO, luteostasis occurred, indicating that a com-

ponent in these oils impacted the luteolytic pathway [15]. Literature also states that placing a

glass ball, or marble, into the diestrous uterus of a mare will prolong the lifespan of the CL,

suggesting it is physical contact onwith endometrium that prevents PGF secretion [16,17].

Exosomes, which are cell secreted vesicles, have been identified in equine serum [18]. Exo-

somes are capable of storing and transferring bioactive material, such as RNA and protein,

between cells [19]. Recent literature has indicated that serum exosome content varied between

pregnant and non-pregnant mares [20]. Specifically, it was found that differential miRNA in

exosomes from non-pregnant mares potentially target the focal adhesion (FA) pathway [20].

Focal adhesions are macromolecular complexes that are comprised of heterodimeric trans-

membrane integrin receptors that regulate effects in extracellular matrices in endometrium

[21]. It has also been reported that FA sense and transduce mechanical forces [22]. It has been

suggested that mechanotransduction is the reason intrauterine devices resulted in luteal persis-

tence in mares [16].

The present study was designed to test if presence of an embryo is necessary to attenuate

PGF secretion, or if PGF secretion can be attenuated by oil or noncellular contact with endo-

metrial epithelium. The hypothesis of this study is that contact of an embryo with equine endo-

metrial epithelium will cause a change in FAM abundance and result in a decrease in PGF

section.

The role of embryo contact and focal adhesions during maternal recognition of pregnancy
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Materials and methods

Care and management of mares

All horse use was approved by the Colorado State University Animal Care and Use Committee

(Approval Number 13-4293A). Mares (n = 6) were housed in group pens at Colorado State

University Equine Reproduction Laboratory (Fort Collins, CO) and maintained on a dry lot

and fed grass-alfalfa mix with free choice mineral and salt supplement. Mares were used in a

cross-over design in which each mare had a pregnant and non-pregnant (non-mated) cycle.

Mares were teased with a stallion daily and transrectal ultrasonography was used to monitor to

track their follicular development every other day. Once a follicle reached 35 mm in diameter,

or greater, each mare was inseminated with 500 x 106 progressively motile sperm from a single

stallion with proven fertility. After insemination, mares were evaluated every day with trans-

rectal ultrasonography and inseminated every other day until ovulation (day 0) was detected.

Mares were randomly assigned to one collection day (day 9 or 13) for their pregnant and

non-pregnant cycles. On the assigned day, the mare was evaluated via transrectal ultrasonogra-

phy to confirm pregnancy by the visualization of an embryonic vesicle. Endometrial samples

were obtained non-surgically via a trans-cervical biopsy punch [23]. Embryos were collected

via terminal uterine lavage on the same day as biopsy to be used in culture. After embryo and

biopsy collection the mare received a luteolytic dose of prostaglandin F2α (PGF; Estrumate,

Merck Animal Health, 250 mcg per dose). The subsequent estrous cycle was utilized for the

non-pregnant (non-mated) control cycle. Another herd of mares (n = 3) were monitored and

bred with the same protocol in order to provide embryos to be cultured with endometrial sam-

ples from non-pregnant mares on corresponding days.

After endometrial biopsy samples were obtained, each sample was rinsed in DPBS/Modi-

fied 1X (Hyclone Laboratories, Logan, UT). Special care was taken to ensure the sample was

not inverted in order to keep the luminal side of the endometrium facing upwards. Biopsy

samples were cut into five pieces. Four pieces were then washed three times in incubation

medium [(Medium 199 (Life Technologies, Carlsbad, CA) containing 5% antibiotic-antimyco-

tic (Life Technologies, Carlsbad, CA)] prior to culture for 24 hours (explained in the next sec-

tion). The fifth piece was immediately snap frozen in liquid nitrogen and transferred to -80˚C.

Endometrial biopsy culture

After endometrial biopsy and embryo collection, samples were immediately transferred to

clean culture dishes for incubation for 24 hours with the corresponding treatment. Biopsy

samples were cultured in one of four conditions: (1) direct contact with an embryo from the

corresponding day (EE), (2) direct contact with plastic beads (utilized routinely to teach

embryo flushing and transfer) (EB) (Cospheric, Product Number: UVPMS-BR-1-5, Santa Bar-

bara, CA), (3) direct contact with peanut oil (EO) and (4) endometrial biopsy alone (control)

(E-). Fig 1 contains a diagram of the culture method. Tissues were incubated in a humidified

atmosphere at 5% CO2, 95% air at 37˚C according to Watson and Sertich 1989 [24] for 24

hours. After 24 hours endometrial biopsies and their corresponding medium were immedi-

ately placed at -80˚C until further analysis.

RNA isolation and quantification

Total RNA was isolated from endometrial biopsies, both cultured and snap frozen, using TRI

Reagent (Molecular Research Center, Cincinnati, OH). Frozen tissue was homogenized in TRI

Reagent and left at room temperature for ten minutes. After the incubation, chloroform was

added to the homogenate, vortexed and incubated for an additional eight minutes at room
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temperature. The sample was then centrifuged at 13,200 revolutions per minute (RPM; 16,100

x g) for 15 minutes in order to separate the sample into three distinct phases (RNA, DNA and

protein). The top, aqueous phase RNA phase was transferred to a new 1.7 mL Eppendorf tube

for RNA isolation. DNA and protein phases were frozen at -80˚C until further analysis.

RNA was isolated from samples utilizing RNeasy Mini Kit (Qiagen, Valencia, CA). The pro-

tocol was followed according to manufacturer’s recommendations. Following isolation, all

samples were treated with an RNase-Free DNase set (Qiagen, Valencia, CA) to remove any

DNA contamination. RNA purity and quantification were assessed using the NanoDrop Spec-

trophotometer ND-1000 (Thermo Scientific, Wilmington, DE). Samples were used for PCR

analysis if they had 260/280 and 260/230 values above 1.7.

Real time quantitative polymerase chain reaction

The following genes were selected for evaluation within the endometrium based upon litera-

ture and previous data in our laboratory: ACTN1, ACTN2, ACTN3, ACTN4, AKT3, BCL-2,

CAV1, CCND1, ITGA10, ITGA4, ITGA5, ITGA6, ITGAV, ITGAX, ITGB1, ITGB3, PAK6,

PTGS2, PTK2 (FAK), RAF1, SLCO2A1 and TLN1 (20, 21). Equine specific forward and reverse

primers were designed using Primer3 (http://primer3.wi.mit.edu/). Primers were designed

specifically to have a product size between 115–135 bp, a primer length between 19–27 bp, a

primer Tm between 60–65˚C, and a GC% content between 40–60. The genes, designed primer

sequences and amplicon length for each of the genes can be found in S1 Table. Prior to PCR

analysis, primer specificity, via DNA sequencing of PCR products was evaluated. PCR analysis

Fig 1. Endometrial culture layout. This figure represents the culture layout for each sample. Special care was taken to ensure the luminal side of the endometrium was

in contact with the treatment for the entire 24 hours.

https://doi.org/10.1371/journal.pone.0213322.g001
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for specificity was performed using an endometrial cDNA pool and GoTaq (Promega, Madison,

WI) following the manufacturer’s protocol. PCR products were electrophoresed on a 2% agarose

gel to confirm presence of an amplicon with the expected size. The product band was excised

from the gel for DNA isolation with Qiaquick Gel Extraction (Qiagen, Valencia, CA). Isolated

DNA was then sent to the University of California-Davis DNA Sequencing Facility, Davis, CA, to

be sequenced. The resulting sequences were confirmed using NCBI BLAST for gene specificity.

For qRT-PCR analysis, total RNA was processed for reverse transcription using iScript

cDNA Synthesis (Bio-Rad, Hercules, CA). 1 μg of total RNA was added to each reverse tran-

scription reaction with 4 μL of 5x iScript reaction mix, 1 μL of iScript reverse transcriptase, and

nuclease-free water to reach a total reaction volume of 20 μL. Reverse transcription was per-

formed following the manufacturer’s specifications with 5 minutes at 25˚C, 30 minutes at 42˚C,

5 minutes at 85˚C, and then holding at 4˚C for immediate use as cDNA template in qRT-PCR.

For each real time PCR reaction 5 μL of SsoAdvanced SYBR Green Supermix (Bio-Rad, Hercu-

les, CA) was added to 2.5 μL of nuclease-free water, 1 μL of cDNA at a concentration of 50 ng/

μL, and 1.5 μL of primer mix at a concentration of 10 μM to reach a final volume of 10 μL. Sam-

ples were loaded into 384 well LightCycler 480 plates (Roche, Indianapolis, IN) and analyzed in

duplicate using a LightCycler 480 PCR System (Roche, Indianapolis, IN). Real Time PCR cycle

conditions were per manufacturer’s protocol; 30 seconds at 95˚C, and 40 cycles of denaturing at

95˚C for 5 seconds and annealing and extension at 60˚C for 30 seconds. PCR analysis followed

by melt peak analysis occurring at 0.5˚C increments from 65–95˚C, holding for 2 seconds at

each increment. Cq values were normalized to the geometric mean of GAPDH, TUBA1B, B2M
and ACTB by subtracting the geometric mean from the Cq value (Microsoft Excel). These nor-

malized values were used for the statistical analyses. For theses analyses, the treated sample was

compared to the endometrial sample from the same day cultured by itself (control). Statistical

analysis was performed with SAS 9.4 (SAS Institute Inc.). Proc Mixed was used to fit a mixed

model separately by gene. Fixed effects included day (9 or 11), pregnancy status (pregnant or

non-pregnant) and treatment (EE, EB, EO, E) plus all interactions. Horse ID and horse ID by

pregnancy status were included as random effects to account for the repeated measures design.

Tukey adjusted pairwise comparisons were used and significance was assessed at P� 0.05.

Protein isolation and quantification

Protein was isolated from all endometrial tissue utilizing RIPA buffer containing nuclease-free

water, Tris pH 8.0, NaCl, glycerol, Nonidet P-40, SDS, deoxychlorate, ethylenediamine tetraa-

cetic acid, HCl, 0.01% proteinase inhibitor PIC, and 0.05% PMSF. Frozen tissue samples were

homogenized in RIPA lysis buffer while on ice, then sonicated on ice for 30 seconds and cen-

trifuged at 9,300 RPM (10,000 x g) at 4˚C for 10 minutes. The supernatant was placed into a

new tube and PIC and PMSF were added. The protein content in samples was quantified using

Pierce BCA Protein Assay Kit (Thermo Scientific, Wilmington, DE) following the manufactur-

er’s protocol. Briefly, standards were prepared using manufacturer provided BSA at 2.0 mg/

mL. Working reagent utilizing manufacturer’s reagents A and B was prepared. A microplate

was loaded with 25 μL of standard or sample and 200 μL of working reagent and the micro-

plate was incubated at 37˚C for 30 minutes. Samples were quantified using the Synergy 2

Multi-Mode Microplate Reader (Biotek, Winooski, VT). Sample concentrations were deter-

mined based on a standard curve prepared with the standards.

Western blot analysis

Western blots were performed for proteins of interest based upon PCR results for all cultured

and snap frozen samples. Western blots were normalized to Cytochrome C (primary antibody:

The role of embryo contact and focal adhesions during maternal recognition of pregnancy
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sc-7159, rabbit polyclonal, Santa Cruz Biotechnologies, Santa Cruz, CA; secondary antibody:

ab6721, goat anti-rabbit IgG with HRP, Abcam, San Francisco, CA) and all gels were run on a

4–15% gradient gel (Bio-Rad Laboratories, Hercules, CA, catalog number 4561086). Proteins of

interest were (Table 1): FAK (1:200 primary antibody: sc-558, rabbit polyclonal, Santa Cruz Bio-

technologies, Santa Cruz, CA; 1:2000 secondary antibody: ab6721, goat anti-rabbit IgG with

HRP, Abcam, San Francisco, CA), p-FAK (1:200 primary antibody: sc-16563-R, rabbit poly-

clonal, Santa Cruz Biotechnologies, Santa Cruz, CA; 1:2000 secondary antibody: ab6721, goat

anti-rabbit IgG with HRP, Abcam, San Francisco, CA), Integrin β3 (1:200 primary antibody: sc-

6627, goat polyclonal, Santa Cruz Biotechnologies, Santa Cruz, CA; 1:2000 secondary antibody:

sc-2345, mouse anti-goat IgG with HRP, Santa Cruz Biotechnologies, Santa Cruz, CA), α-acti-

nin (1:200 primary antibody: sc-7453, goat polyclonal, Santa Cruz Biotechnologies, Santa Cruz,

CA; 1:2000 secondary antibody: sc-2345, mouse anti-goat IgG with HRP, Santa Cruz Biotech-

nologies, Santa Cruz, CA), PAK6 (1:500 primary antibody: ab37749, rabbit polyclonal, Abcam,

San Francisco, CA; 1:2000 secondary antibody: ab6721, goat anti-rabbit IgG with HRP, Abcam,

San Francisco, CA), CCND1 (1:200 primary antibody: ab7958, rabbit polyclonal, Abcam, San

Francisco, CA; 1:2000 secondary antibody: ab6721, goat anti-rabbit IgG with HRP, Abcam, San

Francisco, CA), BCL-2 (1:200 primary antibody: sc-492, goat polyclonal, Santa Cruz Biotechnol-

ogies, Santa Cruz, CA; 1:2000 secondary antibody: sc-2345, mouse anti-goat IgG with HRP,

Santa Cruz Biotechnologies, Santa Cruz, CA) and CAV1 (1:200 primary antibody: sc-894, rabbit

polyclonal, Santa Cruz Biotechnologies, Santa Cruz, CA; 1:2000 secondary antibody: ab6721,

goat anti-rabbit IgG with HRP, Abcam, San Francisco, CA).

For each Western blot, 20 μg of endometrial protein was loaded into each well. Samples

were incubated with a 4:1 6x buffer to DTT mix for 10 minutes at 90˚C. Samples were then

transferred to wells and run for 35 min at 200 V and transferred to nitrocellulose membranes

(Bio-Rad Laboratories, Hercules, CA, Catalog #1620213) for 1 hour at 100 V at 4˚C. Mem-

branes were blocked in 5% blocking buffer (5% non-fat dried milk in 1X TBST) for 1 hour at

room temperature and washed with 1X TBST. Membranes were incubated with primary anti-

body overnight at 4˚C on a rocker. The next day membranes were washed three times in 1X

Table 1. Proteins and antibody information used for western blot analyses.

Protein Primary Antibody Secondary Antibody

Dilution Type Company Catalog

Number

Dilution Type Company Catalog

Number

Cytochrome

C

1:200 Rabbit

Polyclonal

Santa Cruz

Biotechnologies

sc-7159 1:2000 Goat anti-rabbit IgG

with HRP

Abcam ab6721

FAK 1:200 Rabbit

Polyclonal

Santa Cruz

Biotechnologies

sc-558 1:2000 Goat anti-rabbit IgG

with HRP

Abcam ab6721

p-FAK 1:200 Rabbit

Polyclonal

Santa Cruz

Biotechnologies

sc-16563-R 1:2000 Goat anti-rabbit IgG

with HRP

Abcam ab6721

Integrin β3 1:200 Goat

Polyclonal

Santa Cruz

Biotechnologies

sc-6627 1:2000 Mouse anti-goat IgG

with HRP

Santa Cruz

Biotechnologies

sc-2345

α-actinin 1:200 Goat

Polyclonal

Santa Cruz

Biotechnologies

sc-7453 1:2000 Mouse anti-goat IgG

with HRP

Santa Cruz

Biotechnologies

sc-2345

PAK6 1:500 Rabbit

Polyclonal

Abcam ab37749 1:2000 Goat anti-rabbit IgG

with HRP

Abcam ab6721

CCND1 1:200 Rabbit

Polyclonal

Abcam ab7958 1:2000 Goat anti-rabbit IgG

with HRP

Abcam ab6721

BCl-2 1:200 Goat

Polyclonal

Santa Cruz

Biotechnologies

sc-492 1:2000 Mouse anti-goat IgG

with HRP

Santa Cruz

Biotechnologies

sc-2345

CAV1 1:200 Rabbit

Polyclonal

Santa Cruz

Biotechnologies

sc-894 1:2000 Goat anti-rabbit IgG

with HRP

Abcam ab6721

https://doi.org/10.1371/journal.pone.0213322.t001
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TBST for 5 min and incubated with horseradish peroxidase conjugated secondary antibody for

one hour at room temperature. Membranes were washed three times in 1X TBST and ECL

Plus Western Blotting Detection Reagent (GE Healthcare Life Sciences, Pittsburgh, PA, Cata-

log #RPN2232) was added for 5 minutes. Membranes were imaged for analysis on a Molecular

Imager ChemiDoc XRS+ System (Bio-Rad, Hercules, CA).

For theses analyses, the treated sample was compared to the endometrial sample from the

same day cultured by itself (control). Statistical analysis was performed with SAS 9.4 (SAS

Institute Inc). Proc Mixed was used to fit a mixed model separately by gene. Fixed effects

included day (9 or 11), pregnancy status (pregnant or non-pregnant) and treatment (EE, EB,

EO, E) plus all interactions. Horse ID and horse ID by pregnancy status were included as ran-

dom effects to account for the repeated measures design. Tukey adjusted pairwise comparisons

were used and significance was assessed at P� 0.05.

Prostaglandin F2α hormone assay

In order to quantify the amount of PGF secreted by the endometrium after culture, a PGF2α

EIA kit from Enzo Life Sciences was utilized (Enzo Life Sciences, Farmingdale, NY, catalog

number ADI-901-069). This is a competitive immunoassay utilizing a polyclonal antibody to

PGF. Briefly, standards with known concentrations of PGF were prepared utilizing incubation

medium. 100 μL of standards and samples were pipetted into the corresponding wells. Samples

were evaluated in duplicate. Assay buffer, conjugate, and antibody were added to each well.

After a two-hour incubation at room temperature, the wells were washed with wash solution.

Substrate solution was added to each well and incubated for 45 minutes at room temperature.

After stop solution was added to each well the plate was read at an optical density of 405 nm.

Unknown concentrations were determined utilizing a four-parameter logistic fit. Once the

concentration was determined, it was adjusted based upon an adjustment factor equal to the

weight of the original tissue divided by the mL of medium. There were varying amounts of

medium in the wells due to the need to ensure the entire embryo was covered. For theses anal-

yses, the treated sample was compared to the endometrial sample from the same day cultured

by itself (control). Concentrations were analyzed for statistical significance using SAS 9.4 (SAS

Institute Inc.). Proc Mixed was used to fit a mixed model separately by gene. Fixed effects

included day (9 or 11), pregnancy status (pregnant or non-pregnant) and treatment (EE, EB,

EO, E) plus all interactions. Horse ID and horse ID by pregnancy status were included as ran-

dom effects to account for the repeated measures design. Tukey adjusted pairwise comparisons

were used and significance was assessed at P� 0.05.

Results

Focal adhesion molecules in snap frozen endometrium

There were very few transcripts differentially expressed on days 9 or 11. On day 9, TLN1 was

increased (P = 0.011) in endometrial samples from pregnant mares. Also, in samples from

pregnant mares on day 9, CAV1 was more abundant (P = 0.004). On day 11, ACTN3 was

increased (P = 0.050) in endometrial samples from pregnant mares and CAV1 was increased

(P = 0.011) in endometrial samples from non-pregnant mares. Fig 2 shows the transcript levels

on days 9 and 11. There were no differences identified in protein abundance on day 11 (Fig 2).

Endometrium co-cultured with mechanical pressure

On day 9 from endometrial samples collected from pregnant mares, CCND1 was more abun-

dant (P = 0.015) in control tissue (Fig 3). In endometrial samples collected from non-pregnant
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mares, ITGAV was more abundant (P = 0.013) in control tissue (Fig 4). When evaluating pro-

tein levels, the samples from pregnant mares had different protein abundance. α-ACTININ

(Fig 5) and CCND1 (Fig 3) were more abundant (P = 0.001 and P = 0.001 respectively) in con-

trol tissue and p-FAK was more abundant (P< 0.001) in endometrial samples co-cultured

with beads (Fig 6).

On day 11, CAV1 was more abundant (P = 0.001) in samples from pregnant mares with

mechanical pressure on the endometrium. FAK was more abundant (P = 0.004) in samples

with mechanical force from pregnant mares and CAV1 was more abundant (P = 0.030) in con-

trol samples from pregnant mares (Figs 3 and 6).

Endometrium co-cultured with peanut oil

On day 9, no transcript or protein levels in endometrial samples from non-pregnant mares were

affected by co-culture with oil. PAK6 was more abundant (P = 0.012) in samples from pregnant

mares co-cultured with peanut oil. Only protein levels in samples from pregnant mares were

Fig 2. Endometrial gene and protein abundance in snap frozen endometrial samples from pregnant (P+) and non-pregnant (NP) mares. This figure

shows the gene and protein abundance of targets for this study. � = P� 0.05, �� = P� 0.01 and ��� = P� 0.001. Graphs are mean ± SEM.

https://doi.org/10.1371/journal.pone.0213322.g002
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Fig 3. Gene and protein abundance for Bcl-2, CAV1, CCND1 and PAK6 for all treatments in endometrial samples

from pregnant (P+) and non-pregnant (NP) mares. This figure contains all of the gene expression and protein

quantification data for Bcl-2, CAV1, CCND1 and PAK6. E = no treatment (control); EE = endometrium with an

embryo in contact with the luminal side of the biopsy sample; EB = endometrium with beads in contact with the

luminal side of the biopsy sample; EO = endometrium with beads in contact with the luminal side of the biopsy

sample. � = P� 0.05, �� = P� 0.01 and ��� = P� 0.001. Graphs are mean ± SEM.

https://doi.org/10.1371/journal.pone.0213322.g003
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Fig 4. Gene abundance for α-integrins for all treatments in endometrial samples from pregnant (P+) and non-pregnant (NP) mares. This figure contains

all of the protein and gene expression data that was analyzed in this project. E = no treatment (control); EE = endometrium with an embryo in contact with the

luminal side of the biopsy sample; EB = endometrium with beads in contact with the luminal side of the biopsy sample; EO = endometrium with beads in

contact with the luminal side of the biopsy sample. � = P� 0.05, �� = P� 0.01 and ��� = P� 0.001. Graphs are mean ± SEM.

https://doi.org/10.1371/journal.pone.0213322.g004
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Fig 5. Actin genes and protein abundance for all treatments in endometrial samples from pregnant (P+) and non-pregnant (NP) mares.

This figure contains all of the gene expression and protein quantification for ACTN1-4 and α-ACTININ protein data. E = no treatment

(control); EE = endometrium with an embryo in contact with the luminal side of the biopsy sample; EB = endometrium with beads in contact

with the luminal side of the biopsy sample; EO = endometrium with beads in contact with the luminal side of the biopsy sample. � = P� 0.05, ��

= P� 0.01 and ��� = P� 0.001. Graphs are mean ± SEM.

https://doi.org/10.1371/journal.pone.0213322.g005
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impacted by the presence of oil. CAV1 (P = 0.024) and CCND1 (P = 0.005) were all in higher

abundance in control samples compared to the samples co-cultured with peanut oil (Fig 3).

On day 11, transcript differences were only identified in samples from non-pregnant

mares. ACTN4 (P = 0.011) and CAV1 (P = 0.001) were more abundant in control tissue sam-

ples compared to samples co-cultured with peanut oil (Figs 3 and 5). There were no changes in

protein abundance in endometrial samples collected from non-pregnant mares. BCL-2 was

the only protein that was higher in abundance (P = 0.007) in the presence of oil in samples col-

lected from pregnant mares (Fig 3).

Endometrium co-cultured with an embryo

On day 9 both transcript and protein changes were identified based upon the presence of an

embryo. Only one gene, RAF1, was more abundant (P = 0.047) in endometrial samples co-

Fig 6. FAK and p-FAK expression and protein abundance for all treatments in endometrial samples from pregnant (P+) and non-pregnant (NP) mares.

This figure contains the gene and protein levels for FAK and p-FAK in the endometrium on days 9 and 11. E = no treatment (control); EE = endometrium with

an embryo in contact with the luminal side of the biopsy sample; EB = endometrium with beads in contact with the luminal side of the biopsy sample;

EO = endometrium with beads in contact with the luminal side of the biopsy sample. � = P� 0.05, �� = P� 0.01 and ��� = P� 0.001. Graphs are mean ± SEM.

https://doi.org/10.1371/journal.pone.0213322.g006
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cultured with an embryo from samples from pregnant mares (Fig 7). BCL-2 (P = 0.004),

ITGA4 (P = 0.028) and SLCO2A1 (P = 0.001) were all higher in abundance levels in samples

from non-pregnant mares after culture with an embryo for 24 hours (Figs 3, 4 and 7). In

samples from pregnant mares, α-ACTININ (P = 0.002), CAV1 (P = 0.006) and CCND1

(P = 0.002) were more abundant in control samples (Figs 3 and 5). ITGB3 was more abundant

(P = 0.004) in the presence of an embryo in samples from non-pregnant mares (Fig 8).

On day 11, no transcripts were changed due to the presence of an embryo in samples from

pregnant mares. In samples from non-pregnant mares, ACTN2 (P = 0.050) was the only gene

that was higher in abundance in the presence of an embryo (Fig 5). ACTN1 (P = 0.007),

ACTN4 (P = 0.005), CAV1 (P< 0.001) and ITGA6 (P = 0.035) were all more abundant in con-

trol samples from non-pregnant mares (Figs 3–5). Only one protein, BCL-2, was more abun-

dant (P = 0.009) in samples from pregnant mares in the presence of an embryo (Fig 3). PAK6

was the only protein more abundant (P = 0.047) in samples from non-pregnant mares in the

presence of an embryo (Fig 3).

PGF secretion after co-culture

PGF concentration in the medium was evaluated to determine if the presence of beads, oil or

an embryo would alter PGF secretion. On day 9 there was no change in PGF secretion due to

any of the treatments. On day 11, the presence of oil increased PGF secretion in samples from

pregnant mares compared to control samples (P = 0.043). Most importantly, in samples from

non-pregnant mares, the presence of an embryo decreased PGF secretion (P = 0.003) com-

pared to the sample that was not in the presence of an embryo (591.73 pg/mL versus 3282.96

pg/mL respectively). Interestingly, when comparing samples from pregnant and non-pregnant

mares after 24 hours of culture without the presence of an embryo, PGF secretion was lower in

samples obtained from pregnant mares (P = 0.036). Fig 9 shows the concentration of PGF in

each treatment group.

Discussion

Previous studies reported that focal adhesions play an important role at the maternal-fetal

interface in many species, but none have identified their potential role in equine endometrium

[21]. While it is known that focal adhesions are present in equine endometrium, their impact

on maternal recognition of pregnancy and PGF secretion have not been studied to date [20].

In the present study, we evaluated the presence of specific focal adhesion molecules in equine

endometrium that were immediately snap frozen after collection, but also after the sample had

been challenged for 24 hours with one of four treatments (an embryo, beads/mechanical force,

peanut oil, or with no contact). The genes tested in this study were derived from previous stud-

ies in our laboratory and studies on focal adhesions in other species [20,21]. Others have

hypothesized that placing a glass bead in the uterus of a mare will extend luteal function [25].

This suggested that MRP is triggered based upon the presence of a round object moving

throughout the uterine body. Even though this finding is highly disputed, the beads used in

the present study mimicked the contact of a glass marble on endometrium [16]. The peanut oil

was used because previous studies have indicated that infusing a mare’s uterus with oil will

prolong diestrous [15].

Mechanical force on the endometrium (beads) induced changes in focal adhesion molecule

abundance. This could be due to the fact that focal adhesion molecules are mechanical sensors,

so just the contact of something on these molecules will induce a change but may not illicit a

response [21]. Studies have shown that focal adhesions and their downstream effects are

dependent upon the composition and rigidity of the ECM [26,27]. Therefore, while the beads
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Fig 7. Transcript abundance levels for AKT3, PTGS2, RAF1, SLCO2A1 and TLN1 for all treatments in endometrial samples from pregnant (P+)

and non-pregnant (NP) mares. This figure contains the gene expression data for AKT3, PTGS2, RAF1, SLCO2A1 and TLN1. E = no treatment

(control); EE = endometrium with an embryo in contact with the luminal side of the biopsy sample; EB = endometrium with beads in contact with the

luminal side of the biopsy sample; EO = endometrium with beads in contact with the luminal side of the biopsy sample. � = P� 0.05, �� = P� 0.01 and
��� = P� 0.001. Graphs are mean ± SEM.

https://doi.org/10.1371/journal.pone.0213322.g007
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are making contact and causing a change in the focal adhesions, they may not be eliciting a

true response. This lack of response was further validated when the PGF concentration was

measured in the medium. On both days 9 and 11, the PGF concentration in the medium was

similar between samples with and without bead co-culture. The beads actually resulted in a

larger amount of PGF (P = 0.004) being secreted into the medium than the embryo (3987.4

pg/mL and 591.7 pg/mL respectively) on day 11 in samples from non-pregnant and pregnant

mares (P = 0.019; 3771.9 pg./mL and 775.8 pg/mL respectively). This data shows in vitro that

the presence of beads making physical contact with the endometrium is not enough to signal

maternal recognition of pregnancy, ultimately leading to a decrease in PGF secretion.

Contrary to previous reports, this study showed that the application of peanut oil on endo-

metrial samples does not cause a decrease in PGF secretion [15]. This was true for both days 9

and 11. Interestingly, on day 9, no FAMs were changed based upon the presence of peanut oil

on endometrial samples from non-pregnant mares and PAK6 was the only transcript more

abundant (P = 0.012) in samples from pregnant mares. α-ACTININ (P = 0.026), CAV1

Fig 8. Gene and protein abundance for β-integrins for all treatments in endometrial samples from pregnant (P+) and non-pregnant (NP) mares. This

figure contains all of the protein and gene expression data that was analyzed in this project. E = no treatment (control); EE = endometrium with an embryo in

contact with the luminal side of the biopsy sample; EB = endometrium with beads in contact with the luminal side of the biopsy sample; EO = endometrium

with beads in contact with the luminal side of the biopsy sample. � = P� 0.05, �� = P� 0.01 and ��� = P� 0.001. Graphs are mean ± SEM.

https://doi.org/10.1371/journal.pone.0213322.g008
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(P = 0.024) and CCND1 (P = 0.005) were all decreased due to the presence of peanut oil on

day 9 in samples from pregnant mares. On day 11, only ACTN4 (P = 0.011) and CAV1
(P = 0.001) were decreased due to the presence of peanut oil and BCL-2 was more abundant in

samples from pregnant mares. Peanut oil actually caused the endometrium from pregnant

mares on day 11 to secrete more PGF compared to the control (6444.4 pg/mL and 3586.0 pg/

mL respectively).

The presence of an embryo altered many FAMs and PGF secretion. It was expected that

samples from non-pregnant mares would be altered in the presence of an embryo, but samples

from pregnant mares would not. This is because once focal adhesion molecules are activated,

they can stay active due to internal contractility in cells [28]. It was hypothesized that once the

endometrial samples from pregnant mares were exposed to an embryo in utero, even once the

embryo was removed for culture, the focal adhesions would remain active for the 24 hour cul-

ture. On day 9, samples from both pregnant and non-pregnant mares were altered by the pres-

ence of an embryo. Only RAF1 was more abundant (P = 0.047) in samples from pregnant

mares due to the presence of an embryo. α-ACTININ (P = 0.002), CAV1 (P = 0.006) and

CCND1 (P = 0.002) were less abundant in samples from pregnant mares. In samples from

non-pregnant mares on day 9, BCL-2 (P = 0.004), ITGA4 (P = 0.028), SLCO2A1 (P = 0.001)

and ITGB3 (P = 0.004) were more abundant due to the presence of an embryo. Even with

these alterations, on day 9 there was no change in PGF secretion in the presence of an embryo.

It is thought that although the embryo is mobile, it does not reach maximum mobility until

days 11–14, therefore the signaling has not occurred for maternal recognition of pregnancy

and there is no change in PGF secretion [4].

On day 11, only BCL-2 was more abundant (P = 0.009) due to the presence of an embryo in

samples from pregnant mares. All other alterations occurred in samples from non-pregnant

mares. ACTN1 (P = 0.007), ACTN4 (P = 0.005), CAV1 (P< 0.001) and ITGA6 (P = 0.035)

were less abundant in the presence of an embryo and ACTN2 (P = 0.050) and PAK6

(P = 0.047) were more abundant in the presence of an embryo in samples from non-pregnant

mares. PGF secretion was dramatically decreased (P = 0.003) in samples from non-pregnant

mares in the presence of an embryo (591.7 pg/mL versus 3586.0 pg/mL) on day 11. Another

interesting observation was when comparing the PGF secretion in control samples between

Fig 9. PGF concentration in the medium after 24 hours of co-culture for all treatments for endometrial samples from pregnant (P+) and non-pregnant

(NP) mares. This is a graphical representation of the concentration of PGF in the medium after 24 hours of culture with the specific treatment. E- = no

treatment (control); EE = endometrium with an embryo in contact with the luminal side of the biopsy sample; EB = endometrium with beads in contact with

the luminal side of the biopsy sample; EO = endometrium with beads in contact with the luminal side of the biopsy sample. � = P� 0.05, �� = P� 0.01 and ���

= P� 0.001. PGF concentration is in pg/mL, mean ± SEM.

https://doi.org/10.1371/journal.pone.0213322.g009
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pregnant and non-pregnant mares, although the sample from a pregnant mare was not in the

presence an embryo for 24 hours, the amount of PGF secreted remained lower than the sam-

ples from non-pregnant mares (1877.8 pg/mL and 3586.0 pg/mL respectively). These data fur-

ther validate the idea that once the machinery is activated, it remains active for a period of

time without external pressure [28].

An interesting observation from this dataset was that α-ACTININ, CAV1, and CCND1

were altered due to all treatments. These three proteins may play a crucial role in sensing force

in the extracellular matrix and relaying that to the cell. Caveolin-1 (CAV1) is a mechano-medi-

ator that has been identified in rat endometrium and increases during pregnancy [29]. It is

located apically in uterine epithelial cells and human Ishikawa cells [30]. α-ACTININ is a Ca+2

sensitive actin filament cross-linking protein [31]. It is a cytoskeletal protein, and in contrast

to actin, is located specifically on the apical plasma membrane of rat uterine epithelial cells

[32]. It was hypothesized to be involved in actin filament reorganization during early preg-

nancy, especially the period of receptivity [32]. Cyclin D1 (CCND1) plays an important role in

the progression of the cell cycle [33]. CCND1 acts as an oncogene in many different human

neoplasia’s when overexpressed [34]. More specifically, CCND1 overexpression has been

reported in many endometrial carcinomas [35]. Overall, these three proteins can be playing a

distinct role in sensing and reacting to external stimuli from the extracellular matrix but are

not transducing the signal into the cell to signal maternal recognition of pregnancy leading to

a decrease in PGF.

In conclusion, we determined that the contact of beads, peanut oil, and an embryo cause

changes in focal adhesion molecules in endometrium from pregnant and non-pregnant mares.

In contrast, the contact with an embryo on day 11 on endometrial samples from non-pregnant

mares was the only treatment capable of decreasing PGF secretion. These results suggest the

contact of an embryo alone, and only for 24 hours, is enough to alter focal adhesions and

decrease PGF secretion. Based upon this data we hypothesize that a mobile embryo in the

uterus activates focal adhesions, which lead to a decrease in PGF secretion (Fig 10). Future

Fig 10. A schematic of a mobile embryo and focal adhesions within the endometrium. As the embryo is being

bounced around the uterine lumen from days 9–16 it is causing the assembly and activation of focal adhesions. Once

activated, these focal adhesions intracellularly can be impacting multiple processes, including the prevention of PGF

release.

https://doi.org/10.1371/journal.pone.0213322.g010
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studies will need to evaluate what portion of the embryo is responsible for this change in PGF

secretion and the mechanism by which that message is being relayed to the endometrial cell.
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