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The discordance in results of independent genome-wide association studies
(GWAS) indicates the potential for Type I and Type II errors. We assessed
the repeatibility of current Affymetrix technologies that support GWAS.
Reasonable reproducibility was observed for both raw intensity and the
genotypes/copy number variants. We also assessed consistencies between
different SNP arrays and between genotype calling algorithms. We observed
that the inconsistency in genotypes was generally small at the specimen
level. To further examine whether the differences from genotyping
and genotype calling are possible sources of variation in GWAS results,
an association analysis was applied to compare the associated SNPs.
We observed that the inconsistency in genotypes not only propagated to
the association analysis, but was amplified in the associated SNPs. Our
studies show that inconsistencies between SNP arrays and between genotype
calling algorithms are potential sources for the lack of reproducibility
in GWAS results.
The Pharmacogenomics Journal (2010) 10, 364–374; doi:10.1038/tpj.2010.24;
published online 6 April 2010
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Introduction

Genome-wide association studies (GWAS) aim to identify genetic variants across
the human genome that might be associated with phenotypic traits. The
flourishing of GWAS1–30 makes the technology a promising field of research.
However, replication studies show that only a small portion of associated loci
in the initial GWAS can be replicated, even within the same populations.
For example, in replication studies of GWAS for type 2 diabetes mellitus, Zeggini
et al.5 replicated associations for only 10 out of 77 SNP-based loci tested, Scott
et al.6 10 out of 80, Easton et al.8 8 out of 57, and Steinthorsdottir et al.16 2 out of
47. Moreover, lists of associated SNPs identified in different GWAS for a disease,
such as type 2 diabetes mellitus, can be quite different. Though the differences
might be explained by population structure, they might also be due to technical
biases, or both.

Given the complexity of GWAS, multiple sources of Type I (false positive)
and Type II (false negative) errors exist. GWAS are based on the common trait-
common variant hypothesis, which implies that the genetic architecture of
complex traits consists of a number of common alleles, each conferring a small
increase in risk to the individual.31 Therefore, the likelihood of detecting an
individual SNP association is usually small and requires a large sample size
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to achieve adequate statistical power to detect true associa-
tions. The selection of participants for GWAS is an
additional potential source of variability because of inaccu-
rate participant ascertainment, biased selection of cases or
controls, and population stratification. Case–control mis-
classification can reduce study power and result in spurious
associations.32 Non-genetic covariates (for example smok-
ing33 and obesity3), when confounded with outcome, also
generate Type I errors. Population stratification inflates the
Type I error rate around variants that are informative about
the population substructure,34 but its influence is a matter
of debate.35,36 Statistical tools have been developed to
correct for population stratification34,37,38 and are now
incorporated into GWAS analyses. An emerging standard
in GWAS analysis is to filter low-quality arrays and SNPs
before statistical testing as genotyping errors, especially if
distributed differentially between cases and controls, can
generate spurious associations.39 Further complexities
emerge because of the need for multiple testing corrections.
Methods used in GWAS include Bonferroni correction, false
discovery rate,40 and false positive report probability,41 all of
which have a different impact on evaluating the significance
of associations.

In addition, attention to accurate genotyping is needed.42

Efforts to detect, prevent, and eradicate sources of technical
errors and biases in genotyping are important for improving
the quality and gaining confidence in GWAS results. This
study was designed to evaluate aspects of technical robust-
ness of genotyping.

Accurate and reproducible genotype calls are paramount,
as biases in genotypic measurements can lead to an inflation
of false associations. Large variances in genotypic measure-
ments diminish the accuracy of calls and may inflate the
Type II error rate. Different SNP array technologies exhibit
different biases and variance characteristics because of probe
and protocol differences. In addition, within the same
technology platform, there are different genotypic calling
algorithms developed and used. To our knowledge, there
are currently no thorough evaluations of the replication
consistency (repeatability and reproducibility) between
genotype calls obtained using different calling algorithms
or between different SNP arrays. Furthermore, it is important
to assess how differences in genotype calls (because of
technical reasons: algorithm or array) impact the down-
stream association analyses.

This study addresses several fundamental questions in
GWAS: (1) Are current genotyping technologies robust?
(2) Can consistent genotypes be obtained when different
SNP arrays are used? (3) What is the likelihood that different
calling algorithms generate different calls given identical
raw intensity data? (4) Do differences in genotype calls
impact downstream association analysis and generate
discordant results?

To answer these questions, technical robustness was
assessed by genotyping six subjects four times using
Affymetrix Genome-Wide Human SNP 6.0 array (Affy6),
the consistencies in the genotype calls between algorithms
DM,43 BLRMM,44 and Birdseed45 and between Affy6 and

Affymetrix GeneChip Human Mapping 500K array set
(Affy500K) were examined using the 270 samples from the
HapMap,46 and the impact on the association analyses
was evaluated.

Materials and methods

DNA samples

DNA samples for the three HapMap subjects (NA10385,
NA12448, and NA12449, labeled as N10385, N12248, and
N12249 in our study) are from a trio and were obtained from
the HapMap consortium.

The NCTR DNA samples (labeled as N13, N59, and N8)
are from three anonymous human liver specimens from the
US Cooperative Human Tissue Network that were used
for human genomic DNA extraction, and these liver tissue
samples were confirmed by pathological analysis to be
obtained from normal donors.

Genotyping
Four replicates of the six DNA samples were genotyped using
Affy6 according to the standard protocol from Affymetrix.
On a 96-well plate, DNA samples are placed in 24 wells. Each
well contains 2.0–2.5 mg of DNA at a concentration of
B100 ng ml–1. The 24 DNA samples were placed in three
columns of the 96-well plate (samples are randomized on
the plate, with their layout given in Supplementary Figure 7)
for genotyping with Affy6.

HapMap data

The raw data (CEL files) for Affy500K for the 270 HapMap
samples were downloaded from the International HapMap
project website (http://www.hapmap.org/downloads/raw_
data/affy500k/). The raw data (CEL files) from the Affy6 for
the 270 HapMap samples were obtained from Affymetrix.

Genotype calling and copy number variant calling
The quality of raw data was assessed using the program
apt-geno-qc in the Affymetrix Power Tools (APT) before
genotype calling. Genotype calling was conducted using
apt-probeset-genotype in APT. All the parameters were set
to the default values recommended by Affymetrix. In earlier
work, we assessed calling batch effect and found that
uniform and large batch sizes with homogenous samples
should be used to make genotype calls for GWAS.47 There-
fore, for our genotyping data, all raw data of the 24 samples
were called in one batch. For HapMap data of Affy500K,
three batches were used to make genotype calls: each used
90 samples from one of the three population groups.

Copy number variant (CNV) were called using the
program apt-canary in the APT.

Comparing raw data
The raw intensity data at probe level used for the
comparisons were extracted from the CEL files using the
program apt-cel-extract in the APT. Thereafter, the pair-wise
Pearson’s correlation coefficients were calculated using
the program corr in the statistical tool box for MatLab.
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Comparing CNV results

The CNV calling results were compared by calculating the
pair-wise concordance between the samples using the
formula:

Conci;j ¼
1
N

XN
k¼1

nk;nk ¼
1ðCNVi

k ¼ CNV
j
kÞ

0ðCNVi
k 6¼ CNV

j
kÞ

(

where N indicates total CNV regions, CNVk
i is the copy

number called on CNV region k for sample i, and CNVk
j is the

copy number called on CNV region k for sample j.

Comparing genotype calling results

The pair-wise concordances of genotypes between samples
were calculated using the formula:

Conci;j ¼
1
N

XN
k¼1

nk;nk ¼
1ðGi

k ¼ G
j
kÞ

0ðGi
k 6¼ G

j
kÞ

(

where N indicates total SNPs, Gk
i is the genotype called on

SNP k for sample i, and Gk
j is the genotype called on SNP k for

sample j.

Association analysis

Before association analysis, quality control (QC) of the
calling results was conducted to remove SNPs and samples of
low quality using minor allele frequency, call rates per
SNP and per sample, and testing for departure from Hardy–
Weinberg equilibrium. In an association analysis, a 2�2
contingency table (allelic association) and a 2�3 contin-
gency table (genotypic association) were generated for each
SNP and tested for association using w2 test.

Statistical analysis

To evaluate statistical significance of the difference in
missing call rates between all pair-wise comparisons, paired
t-tests were performed to test the hypothesis that two
matched (or paired) samples/SNPs in the genotype calling
results x and y come from distributions with equal means.
The difference between arrays or between calling algorithms
is assumed to come from a normal distribution with
unknown variance. The significance level of a¼0.05 was
used in all of the tests.

Results

Robustness of genotyping

The experiment that assessed the robustness of genotyping
used Affy6. DNA samples of three HapMap subjects and
three NCTR subjects were genotyped, each with four
replicates. The Birdseed-v1 in APT (1.10.0) was used to make
genotype calls. CNV were determined using the apt-canary
program in APT. To assess reproducibility across laboratories,
the raw data of the three HapMap subjects from Affymetrix
were included in our comparisons. The results are depicted
in Figure 1 (data in Supplementary Table 1).

The QC scores of the 24 CEL files were in the range of
88.6–98.3% (Supplementary Figure 1), similar to the Hap-
Map data from Affymetrix (88.2–99.1%, Supplementary
Figure 5c) and compatible with Affymetrix guidelines,

indicating that data were of acceptable quality for the
comparative study.

The consistency of log2-scaled intensity data were exam-
ined using Pearson’s correlation. Each pair-wise comparison

Figure 1 Genotyping robustness based on raw intensity, genotype,
and CNV. The average Pearson’s correlation coefficients of log2-scaled

raw intensity are color coded in red, the average concordance

of genotypes in blue, and the average concordance of CNV in green.

The error bars represent the corresponding standard deviations. The
circles of the most-left panel are the means (Rs) of correlation

coefficients or concordances of genotypes or CNV (Rs) between

technical replicates (BTR) within each of the six DNA samples, calculated

as Rs ¼ 1
nðn�1Þ

Pn
i;j¼1

Rs
i;j where, n¼4, iaj, s ¼ one of the six samples

(N10385, N12248, N12249, N13, N59, and N8, as shown from left to

right in the figure). The up-triangles of the second-left panel are the
means (Rs) of correlation coefficients or concordances of genotypes or

CNV (Rs) between our experimental data and the data from Affymetrix

(BEH) for each of the three HapMap samples that were calculated as

Rs ¼ 1
n

Pn
i¼1

Rs
i , where, n ¼ 4 and s¼one of the HapMap samples

(N10385, N12248, and N12249, from left to right). The diamonds of

the third-left panel are the means (R̄) of correlation coefficients or

concordances of genotypes or CNV (R) between parents (N12248 and
N12249) and son (N10385) (BPS) that were calculated as

R ¼ 1
nm

Pn
i¼1

Pm
j¼1

Ri;j, where, n¼5 (four replicates from our experiment

and one from Affymetrix for N10385) and m¼10 (four replicates from
our experiment and one from Affymetrix for each of N12248 and

N12249). The down-triangles of the right panel are the means (R̄) of

correlation coefficients or concordances of genotypes or CNV (R)

between not-related samples (BNS) that were calculated as

R ¼ 1
s1nmþ s2pqþ s3rt

ð
Xs1
k¼1

Xn

i¼1

Xm
j¼1

Rk;i;j þ
Xs2
k¼1

Xp

i¼1

Xq

j¼1
Rk;i;j

þ
Xs3
k¼1

Xr

i¼1

Xt

j¼1
Rk;i;jÞ

where when s1 ¼ 3 (3 NCTR samples), n¼4 (four replicates), and

m¼23 (all other samples); when s2¼1 (N10385), P¼5 (four replicates

from our experiment and one from Affymetrix), and P¼12 (3 NCTR
samples); and when s3¼2 (N12248 and N12249), r¼5, and t¼17

(all other samples except N10385).
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is summarized in Supplementary Figure 2. The average
correlation (Figure 1) between technical replicates (BTR) for
five subjects was 0.9514. One subject (N13) had noticeably
lower average correlation (0.9231), with one of its replicates
determined to be an outlier (lower quality). For the HapMap
samples, the average correlation between experiments and
Affymetrix data (BEH) was 0.9403, slightly lower than the
value corresponding to BTR (0.9515). The average correla-
tion between not-related samples (BNS) was much lower
(0.7576). The average correlation between parent and son
(BPS) was 0.8456.

Genotype concordances were calculated for all pair-wise
comparisons (Supplementary Figure 2) and averaged for
BTR, BEH, BPS, and BNS (Figure 1). The average concordance
for BTR was 0.9886, excluding N13 (0.9799), indicating a
high repeatability. The average concordance for BEH was
0.9883, showing a high reproducibility across laboratories.
As expected, the average concordance for BNS (0.6177) was
low, and for BPS (0.7290) moderate.

Except for one replicate of N13 with a significantly lower
heterozygous rate, the call rates and heterozygous rates were
very similar for comparisons between replicates and between
these experiments and Affymetrix data (Supplementary Figure
3). The lower heterozygous rate for the replicate of N13 is
consistent with its lower average intensity correlation and
genotype concordance. After removal of this replicate, the
average intensity correlation (0.9568) and genotype concor-
dance (0.9899) for N13 were similar to the other subjects.

Technical robustness was also evaluated by calculating
CNV concordances for all pair-wise comparisons (Supple-
mentary Figure 4), and averaging them for BTR, BEH, BPS,
and BNS (Figure 1). The average concordance for BTR was
0.9804, except for N13 (0.9414), indicating a reasonable
CNV repeatability. For the HapMap samples, the average
concordance for BEH was 0.9605, similar to the correspond-
ing BTR (0.9784), showing reasonable robustness across
laboratories. As expected, the average concordance for BNS
(0.8662) was low, and for BPS (0.8978) moderate.

Figure 2 Overview of the procedures for evaluating consistency between SNP arrays (a). Both data sets of the 270 HapMap samples from Affy500K

and Affy6 were genotype called using algorithm Birdseed. The 482 251 SNPs interrogated in both arrays were used in the downstream association
analysis. The same QC process was applied to both sets of genotypes before the same statistical tests for associations (see Materials and methods).

Overview of the procedures for evaluating consistency between genotype calling algorithms (b). The raw data (CEL files) of Affy500K of the 270

HapMap samples were genotype called using algorithms DM, BRLMM, and Birdseed. The same QC process and the same statistical tests were used
for the three sets of genotypes. In the association analysis, both allelic and genotypic association tests were conducted. Three different case–control

frameworks were used: each of the three population groups (European, African, and Asia) was set as ‘case’ with the other two as ‘control’

(see Materials and methods).
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In spite of the apparent overall reproducibility, an outlier
was detected only after replicate measurements were
completed. The outlier would have not otherwise been
detected, as the array met the guidelines for Affymetrix
genotyping array quality.

Inconsistencies between SNP arrays

To examine whether genotype calls from different SNP
arrays are consistent, genotypes of SNPs interrogated in
common in both Affy500K and Affy6 were compared using
the 270 HapMap samples.46

Figure 3 Comparison of genotype calls between SNP arrays. The missing call rates per SNP (a) and per sample (b) between arrays Affy500K and

Affy6 were plotted. The red diagonal lines indicate the locations of SNPs (a) and samples (b) when their missing call rates are exactly same between

these two arrays. The concordances of homozygote calls (AA), heterozygote calls (AB), and variant homozygote calls (BB) between Affy500K and

Affy6 were given by the bars in the left panel of (c) (left y axis). Each blue bar represents a ratio (n500K�6
g

/n500K
g

, g¼AA or AB or BB) of the number of
the specific genotypes from both Affy500K and Affy6 (n500K�6

g
) and the total of corresponding genotypes from Affy500K (n500K

g
). Each red bar is for

n500K�6
g

/n6
g

where n6
g

is the total from Affy6. The distribution of discordant successful genotype calls between Affy500K and Affy6 are depicted in the

right panel of (c) (right y axis). The value of green bar and magenta bar are for Affy500K and Affy6 that were calculated using ng500K
g6 /ng500K and

ng500K
g6

/ng6, respectively, where n500K
g6

is the number of genotypes assigned to g500K from Affy500K, but to g6 from Affy6; ng500K, the number of
genotypes assigned to g500K from Affy500K; and ng6, the number of genotypes assigned to g6 from Affy6 (g500K, g6¼AA or AB or BB; g500Kag6).

Figure 4 Comparison of genotype calls between calling algorithms. The missing call rates per SNP (a) and per sample (b) between algorithms

Birdseed, BRLMM, and DM were plotted. The red diagonal lines indicate the locations of SNPs (a) and samples (b) when their missing call rates are
exactly same between two of these three algorithms. The concordances of homozygote calls (AA), heterozygote calls (AB), and variant homozygote

calls (BB) between BRLMM and Birdseed (c), between DM and Birdseed (d), and between DM and BRLMM (e) were shown by the bars in the left

panels (left y axes). The blue bars represent ratios (nA1–A2
g /nA1

g , g¼AA or AB or BB) of the numbers of specific genotypes by both algorithms (nA1–A2
g )

to the totals of corresponding genotypes from the first algorithm A1 (nA1
g ) (A1¼BRLMM (c) and DM (d, e)). The red bars are for ng

A1–A2/nA2
g , where

nA2
g are totals from the second algorithms (A2¼Birdseed (c, d) and BRLMM (e)). The discordant successful genotype calls between two algorithms

are depicted in the right panels of (c, d, e) (right y axes). The values of green bars and magenta bars are for the first algorithms and the second

algorithms that were calculated using ngA1
gA2/ngA1 and ngA1

gA2/ngA2, respectively, where ngA1
gA2 is the number of genotypes assigned to gA1 from the first

algorithm, but to gA2 from the second algorithm; nA1, the number of genotypes assigned to gA1 from the first algorithm; and ngA2, the number of

genotypes assigned to gA2 from the second algorithm (gA1, gA2¼AA or AB or BB; gA1agA2).
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The QC scores for Affy500K (Supplementary Figures 5a
and b) and Affy6 (Supplementary Figure 5c) data
met Affymetrix guidelines. Therefore, all CEL files
were used.

After quantile normalization, genotypes were called using
the same calling algorithm, Birdseed, with the same
parameter settings. Thereafter, the 482 215 common SNPs
were used for the comparisons (Figure 2a).
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The missing call rates per SNP (Figure 3a) and per sample
(Figure 3b) were compared between Affy500K (x axis) and
Affy6 (y axis). Many SNPs and samples are not consistent,
some of which show large differences between the two
arrays. Moreover, the missing call rates from Affy6 are
slightly lower than those from the Affy500K. The P-values
(Supplementary Table 2) of paired two-sample t-tests for
comparing the missing call rates per SNP and per sample
were o0.05, indicating that the difference of missing call
rates is statistically significant.

Three possible genotypes (homozygote: AA; heterozygote:
AB; and variant homozygote: BB) are provided for each call.
The concordance of each paired calls between Affy500k and
Affy6 was analyzed (Supplementary Table 3). The analysis
revealed 267 608 (0.21%) genotype differences between
the two arrays. Further comparison regarding the nature of
the differences (Figure 3c) shows that concordance of
homozygous calls (AA and BB) was higher than the
concordance of heterozygous calls (AB). Moreover,
discordant genotypes between heterozygote and homozy-
gote were more prevalent than those between two homo-
zygous types.

Inconsistencies between calling algorithms

Genotype concordances were determined between three
algorithms (DM, BRLMM, and Birdseed) that were released
along with three recent generations of Affymetrix arrays
(Figure 2b). Affy500K raw data for the 270 HapMap samples
were called using the three algorithms. Thereafter, the calls
were compared to determine consistency between algo-
rithms.

The missing call rates per SNP (Figure 4a) and per sample
(Figure 4b) were compared. Many SNPs and samples had
different missing call rates between the three algorithms.
Furthermore, the missing call rates of the single-chip-based
algorithm DM were higher compared with the multiple-
chip-based algorithms BRLMM and Birdseed (caused by the
default cutoff used in this study, see Discussion), whereas
differences between BRLMM and Birdseed were much
smaller. The P-values (Supplementary Table 2) of paired
two-sample t-tests when comparing missing call rates per
SNP and per sample were o0.05, indicating that the
algorithms have significantly different missing call rates.

The consistencies of successful calls between the three
algorithms were calculated as concordances given in
Supplementary Table 3. A total of 538 774 genotypes
(0.41%) differed between DM and Birdseed; 200 592 geno-
types (0.15%) between DM and BRLMM; and 285 788
genotypes (0.21%) between Birdseed and BRLMM. The
concordance of the successful calls between BRLMM and
Birdseed stratified on three genotypes that are given in
Figure 4c. The concordance for homozygous calls was higher
than for heterozygous calls for both BRLMM and Birdseed.
Moreover, discordance between heterozygote and homo-
zygote was higher than between the two homozygous types.
Comparisons between DM and Birdseed and between DM
and BRLMM are depicted in Figures 4d and e, respectively,
with similar trends to the comparison between BRLMM and

Birdseed prevailing, such as homozygous calls being more
concordant than heterozygous calls.

Propagation of array inconsistency to associated SNPs

The objective of a GWAS is to identify genetic markers
associated with a phenotype. It is critical to assess how
inconsistencies between different SNP arrays propagate to
the associated SNPs identified in the downstream associa-
tion analysis. To mimic case–control GWAS, three associa-
tion analyses were conducted for genotypes obtained from
Affy6 and Affy500K data for the 270 HapMap samples
(Figure 2a). Each of the three population groups (EU:
European; AS: Asian; and AF: African) were set in turn as
the cases, whereas the other two groups were set as the
controls. Associations were analyzed to identify SNPs that
can differentiate cases from controls. The significantly
associated SNPs were compared using Venn diagrams.

Comparisons of significantly associated SNPs obtained
from allelic and genotypic tests (on 482 251 common SNPs)
between the two arrays are given in Figures 5a and b,
respectively. For all case–control frameworks and both allelic
and genotypic tests, the inconsistency in genotypes between
arrays influenced the downstream association analyses,
resulting in differently associated SNPs. For example, using
allelic testing, 4926 SNPs were significant only for the
Affy500K using Europeans as case. It is unclear whether
these differences are due to Type I errors using Affy500K or
Type II errors using Affy6. Alternatively, the variation in
associated SNPs could be due to the exclusion of SNPs
during QC steps.

For associated SNPs not common to both arrays, observed
differences in downstream association analysis were exam-
ined to see whether they were due to failing to pass QC or to
conflicting results for statistical testing. The results depicted
in Figure 5c show that most associated SNPs missed with
Affy500K were excluded at the QC step. Differences in
statistical testing were the major cause for the associated
SNPs missed in Affy6.

Propagation of calling algorithm inconsistency to associated SNPs

To assess propagation of inconsistencies in genotypes
between calling algorithms to the associated SNPs, associa-
tions were analyzed using genotypes obtained from algo-
rithms DM, BRLMM, and Birdseed for Affy500K data for the
270 HapMap samples. The associated SNPs were compared
using Venn diagrams (Figures 6a and b) for the allelic and
genotypic tests, respectively. The inconsistencies in geno-
types between the three algorithms propagated into the
downstream association analyses. For example: only 1593,
1349, and 1873 SNPs were significantly associated (geno-
typic test, European as case) using DM, BRLMM, and
Birdseed algorithms, respectively. Again, possible Type I or
Type II errors as well as QC exclusion differences contribute
to the variability in the associated SNPs.

For SNPs found to be significant only from one algorithm,
the SNPs that failed in QC and in statistical tests are given
in Figure 6c. Missed SNPs from DM were mainly caused
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by QC exclusion, whereas missed SNPs from BRLMM and
Birdseed were mainly caused by association testing.

For SNPs that were identified as significant only from two
algorithms, but not the third, the SNPs that failed in QC and
in statistical tests are shown in Figure 6d. QC caused more
missed SNPs from DM and Birdseed, whereas association
testing caused more missed SNPs from BRLMM.

Discussion

GWAS simultaneously interrogate hundreds of thousands of
SNPs and associate genetic variants with health-related
traits. In the past 3 years, many loci were identified and
replicated.1–30 However, often GWAS results are not repli-
cated, indicating that each step in GWAS has the potential

to introduce Type I and Type II errors. It is important to
know the robustness of current genotyping technology.
Availability of different SNP arrays and genotype calling
algorithms make it vital to be aware of SNP array and calling
algorithm inconsistencies and their effect in GWAS.

To evaluate genotyping technical robustness, an experi-
ment was designed and conducted with Affy6 using four
technical replicates for six subjects. The results showed
that genotyping with Affy6 is generally robust for the raw
intensity, genotypes, and CNV. The reproducibility across
laboratories with an average concordance of B0.99 was
observed. However, common diseases being investigated in
GWAS are typically influenced by multiple loci, with each
locus making a small contribution. Therefore, small errors in
any procedure can be amplified in GWAS results, as shown
in the results for significant associations under various SNP

Figure 5 Comparisons of the lists of associated SNPs from Affy500K and Affy6 for assessing propagations of the inconsistency in genotypes

between the two arrays to associated SNPs. The significantly associated SNPs identified using allelic association test (a) and genotypic association

test (b) from the 482 251 common SNPs were compared between Affy500K (numbers in the black circles) and Affy6 (numbers in the red circles).

Numbers in green are the associated SNPs from both arrays, numbers in black are the SNPs only significant from Affy500K, and numbers in red are
the SNPs only significant from Affy6. EUBOthers: the association analyses results for European versus others; AFBOthers: for African versus others;

ASBOthers: for Asian versus others. The discordant association SNPs caused by QC (solid circles) and by association statistical tests (empty circles)

in percentage were plotted in (c). Red points are for SNPs significant from Affy500K, but not from Affy6, the blue points are for SNPs significant from

Affy6, but not from Affy500K. The x axis indicates the ‘case’ populations for the association analyses.
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arrays and genotype calling algorithms. The potential for
errors caused by small technical fluctuations of genotyping
suggests that technical replicates can increase the reliability
of GWAS findings. Furthermore, using technical replicates
helps remove low-quality arrays as shown in this study. If no
technical replicates were used, one replicate of N13 would
not be identified as problematic because its QC looks
reasonable. But when comparing with the other three
technical replicates, it is obvious that all measures (intensity
correlation, concordances of genotypes and CNV, hetero-
zygous rate) show that the data from this array causes
problems in genotyping.

This study showed that genotype inconsistency propa-
gates to GWAS results. Sources of errors introduced into
genotypes such as experimental design, the type of SNP
array, and the genotype calling algorithm have the potential
to generate inconsistent associated SNPs, and hence Type I
and Type II errors. Furthermore, it was observed that
genotype inconsistency not only propagated to the down-
stream association analysis, but was amplified in the
associated SNPs (Supplementary Figure 6).

There were many SNPs (B15%) identified as significant
from BRLMM and Birdseed, but not from DM (Supplemen-
tary Figures 6b and 6c). Most of those SNPs had low call rates

Figure 6 Comparisons of the lists of associated SNPs between calling algorithms DM, BRLMM, and Birdseed for assessing propagations of the

inconsistence in genotypes to association SNPs. The significantly associated SNPs identified using allelic association test (a) and genotypic

association test (b) were compared between algorithms DM (numbers in the black circles), BRLMM (numbers in the blue circles), and Birdseed

(numbers in the red circles). Numbers in brown represent the associated SNPs shared by all three algorithms, numbers in green represent the
associated SNPs shared by only two algorithms, and the numbers in other colors are the associated SNPs identified by only the corresponding

algorithms. EUBOthers: the association analyses results for European versus others; AFBOthers: for African versus others; ASBOthers: for Asian

versus others. The discordant associated SNPs (missed from DM: black; BRLMM: red; Birdseed: blue) caused by QC (solid shapes) and by association
statistical tests (empty shapes) in percentage were plotted in (c) (SNPs were significant from one algorithm, but not significant from the other two

algorithms) and (d) (SNPs were significant from two algorithms, but not significant from the other one algorithm). The x axis indicates the ‘case’

populations for the association analyses.
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and were filtered in the QC process and not tested for
associations. If a less stringent cutoff was used in DM, it
could be expected that some of those SNPs would pass the
same QC criterion and the missing rate of associated SNPs
from DM would be decreased, but could not be completely
eliminated, evidenced by the comparison between BRLMM
and Birdseed in which discordant rates of associated SNPs
were about three times of the discordant rate of genotypes
between the two algorithms (Supplementary Figure 6d).

Genotype discordance was found in both missing calls
and successful calls. Our study showed that the propagation
of discordant genotypes to the associated SNPs was
caused by both sources of discordance (Figures 5 and 6).
Our observations suggest that there is room for improve-
ments on both call rate and accuracy of calling algorithms.
There is a tradeoff in the source of discordance depending
on the chosen cutoff for calling a missing.

An interesting observation was that more associated SNPs
were identified in the model using African as case (Figures 5
and 6). In the HapMap samples, it is well known that the
Yoruban is more genetically distinct than the Asian and
European. However, discordant rates of associated SNPs for
the African model were lower than Asian and European
models (Figure 6). Therefore, discordance in genotypes
might be amplified more in the associated SNPs for weaker
traits than for stronger traits. Comparing with the popula-
tion differences of the HapMap samples used in our study,
traits of current GWAS are usually much weaker, and a
smaller number of concordant associated SNPs are expected.
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