

Contents lists available at ScienceDirect

Data in Brief

Data Article

Data for β -lactoglobulin conformational analysis after (-)-epigallocatechin gallate and metal ions binding

Liangliang Zhang ^{a,*}, Indra Dev Sahu ^b, Man Xu ^a, Yongmei Wang ^a, Xinyu Hu ^a

ARTICLE INFO

Article history: Received 2 December 2016 Received in revised form 7 December 2016 Accepted 12 December 2016 Available online 21 December 2016

ABSTRACT

This data article contains complementary results related to the paper "Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β -lactoglobulin" (Zhang et al., 2017) [1]. Data was obtained by circular dichroism (CD) spectroscopy to investigate potential β -lactoglobulin (β -Lg) conformational changes with different concentrations of EGCg and Cu²⁺ or Al³⁺ added to β -Lg. 500 μ L of the 25 μ M β -Lg solution containing EGCg (25 μ M) or metal ions (0–500 μ M) were measured, and the spectra were recorded. CD spectroscopy data present in this article indicated that the β -Lg-Cu, β -Lg-Al and β -Lg-EGCg interaction resulted in unfolding of the secondary structure of β -Lg.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area More specific Chemistry

Polyphenol chemistry

More specific subject area

DOI of original article: http://dx.doi.org/10.1016/j.foodchem.2016.11.158

* Corresponding author.

E-mail address: zhll20086@163.com (L. Zhang).

^a Key Lab. of Biomass Energy and Material, Jiangsu Province; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China

^b Chemistry and Biochemistry Department, Miami University, Oxford, OH 45056, USA

Type of data Figure

How data was MOS-500 spectropolarimeter (Bio-Logic, France)

acquired

Data format Analyzed

Experimental CD spectroscopy was performed with the method of Li et al. [2].

factors

Experimental features All samples were prepared in 20 mM PBS buffer at pH 7.4. 500 μ L of the 25 μ M β Lg solution containing EGCg (25 μ M) or metal ions (0–500 μ M) were measured.

and the spectra were recorded.

Data source Nanjing, China

location

Data accessibility Data is with this article

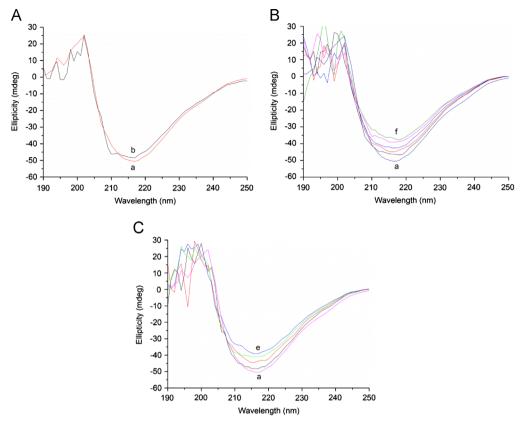
Value of the data

• The data provides some additional data on the effects of metal ions on the binding reaction of EGCg to β -Lg.

- The data indicated the conformational change of β -Lg after binding with EGCg or metal ions Cu, Al.
- The interaction between [β-Lg-Cu] and [β-Lg-Al] results in unfolding of the secondary structure of β-Lg.
- This data provide insights in understanding the effects of metal ions on the binding reaction of polyphenol compounds to β -Lg.

1. Data

Fig. 1 reports the CD spectra of β -Lg with different concentrations of EGCg or Cu²⁺ or Al³⁺. The negative bands at 222 nm could indicate the α -helix structure of the proteins [1,3].


2. Experimental design, materials and methods

2.1. Materials

EGCg (\geq 95%) and β-Lg (A variant, purity \geq 90%) were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). Working solutions of EGCg (0.25 mM) were prepared by dissolving the EGCg in a 50% methanol solution. The working solution of β-Lg (25 μM) was prepared in 20 mM PBS buffer, pH 7.4 and stored in a refrigerator prior to use. The β-Lg and EGCg concentrations were determined spectrophotometrically by their extinction coefficients: ε_{280} (β-Lg)=17600 M⁻¹ cm⁻¹ and ε_{280} (EGCg)=9700 M⁻¹ cm⁻¹ at 280 nm [4,5]. For *in vitro* experiments, the working solutions of Cu²⁺ and Al³⁺ (1.0 mM) were prepared by dissolving CuCl₂·2H₂O and AlCl₃, respectively, in double-distilled water containing 0.1 M HCl to facilitate dissolution. All other reagents and solvents were of analytical reagent grade and used without further purification. All aqueous solutions were prepared using freshly double-distilled water.

2.2. Experimental design

CD spectroscopy was performed using a MOS-500 spectropolarimeter (Bio-Logic, France) with the modified method of Li et al. [2]. The CD spectra of the β -Lg, [β -Lg-EGCg] and [β -Lg-metal] systems were recorded between 190 and 250 nm by scanning the spectrum at 25 °C, with a scanning speed of 100 nm min⁻¹, 2 s response time, and 1.0 nm step size. All samples were prepared in 20 mM PBS buffer at pH 7.4. To investigate the effect of EGCg, Cu²⁺ and Al³⁺ on the secondary structure of β -Lg, 500 μ L of the 25 μ M β -Lg solution containing EGCg (25 μ M) or metal ions (0–500 μ M) were measured, and the spectra were recorded. The samples were loaded into a rectangular quartz cuvette with a path

Fig. 1. (A) CD spectra of β -Lg-EGCg system. a, (25 μM β -Lg), b (25 μM EGCg); (B) CD spectra of β -Lg-Cu system. a, (25 μΜ β -Lg), $c(Cu^{2+})$: a (0), b (100 μM), c (200 μM), d (300 μM), e (400 μM), f (500 μM); (C) CD spectra of β -Lg-Al system. a (25 μΜ β -Lg), $c(Al^{3+})$: a (0), b (100 μM), c (200 μM), d (300 μM), e (400 μM).

length of 1 mm. The spectra of three consecutive scans were averaged and corrected by subtracting the solvent/buffer spectra.

Acknowledgements

This work was supported by the Key Lab. of Biomass and Energy and Material Jiangsu Province (KLBEM) (JSBEM-S-201707) and National Key Research and Development Plan (2016YFD0600806).

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2016.12.021.

References

[1] L.L. Zhang, I.D. Sahu, M. Xu, Y.M. Wang, X.Y. Hu. Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin, Food Chem. 221 (2017) 1923–1929.

- [2] R.F. Li, Z.F. Lu, Y.N. Sun, S.H. Chen, Y.J. Yi, H.R. Zhang, S.Y. Yang, G.H. Yu, L. Huang, C.N. Li, Molecular design, structural analysis and antifungal activity of derivatives of peptide CGA-N46, Interdiscip. Sci. Comput. Life Sci. 8 (2016) 319–326.
- [3] K. Shiraki, K. Nishikawa, Y. Goto, Trifluoroethanol-induced stabilization of the α-helical structure of β-lactoglobulin: implication for non-hierarchical protein folding, J. Mol. Biol. 245 (1995) 180–194.
- [4] M. Li, A.E. Hagerman, Role of the flavan-3-ol and galloyl moieties in the interaction of (-)-epigallocatechin gallate with serum albumin, J. Agric. Food Chem. 62 (2014) 3768–3775.
- [5] J. Yang, J.R. Powers, S. Clark, A.K. Dunker, B.G. Swanson, Hydrophobic probe binding of β-lactoglobulin in the native and molten globule state induced by high pressure as affected by pH, KIO₃ and N-ethylmaleimide, J. Agric. Food Chem. 50 (2002) 5207–5214.