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Abstract 
Background.  The pursuit of automated methods to assess the extent of resection (EOR) in glioblastomas is chal-
lenging, requiring precise measurement of residual tumor volume. Many algorithms focus on preoperative scans, 
making them unsuitable for postoperative studies. Our objective was to develop a deep learning-based model 
for postoperative segmentation using magnetic resonance imaging (MRI). We also compared our model’s perfor-
mance with other available algorithms.
Methods.  To develop the segmentation model, a training cohort from 3 research institutions and 3 public databases 
was used. Multiparametric MRI scans with ground truth labels for contrast-enhancing tumor (ET), edema, and sur-
gical cavity, served as training data. The models were trained using MONAI and nnU-Net frameworks. Comparisons 
were made with currently available segmentation models using an external cohort from a research institution and a 
public database. Additionally, the model’s ability to classify EOR was evaluated using the RANO-Resect classification 
system. To further validate our best-trained model, an additional independent cohort was used.
Results.  The study included 586 scans: 395 for model training, 52 for model comparison, and 139 scans for inde-
pendent validation. The nnU-Net framework produced the best model with median Dice scores of 0.81 for contrast 
ET, 0.77 for edema, and 0.81 for surgical cavities. Our best-trained model classified patients into maximal and 
submaximal resection categories with 96% accuracy in the model comparison dataset and 84% in the independent 
validation cohort.
Conclusions.  Our nnU-Net-based model outperformed other algorithms in both segmentation and EOR classifica-
tion tasks, providing a freely accessible tool with promising clinical applicability.

Key Points

• RH-GlioSeg-nnU-Net surpassed other algorithms with high Dice scores: contrast-
enhancing tumor (0.81), edema (0.77), and surgical cavity (0.81).

• Our model automatically assessed the extent of resection according to the RANO-Resect 
classification with 85% accuracy.

Deep learning-based postoperative glioblastoma 
segmentation and extent of resection evaluation: 
Development, external validation, and model 
comparison  
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Glioblastoma, the most common malignant brain 
tumor, has a dismal prognosis with a median overall 
survival of approximately 15 months.1 The extent of re-
section (EOR) is linked to survival, as recognized in var-
ious studies.2,3 Classifying patients by EOR is crucial for 
therapy, prognosis, and clinical trial eligibility or strati-
fication. Magnetic resonance imaging (MRI) is the pre-
ferred method for characterizing and monitoring these 
tumors. Specifically, postoperative MRI—recommended 
within 72 hours after surgery—is vital for estimating re-
sidual contrast-enhancing (CE) tumor volume, aiding in 
EOR assessment.4

Recently, the RANO resect group introduced a new clas-
sification system emphasizing prognostic implications.3 
Unlike, a previous publication,2 which classified patients 
on the basis of relative tumor volume reduction, these new 
easy-to-use RANO categories stratify patients solely based 
on residual enhancing and non-enhancing tumor (ET) vol-
umes. This approach offers more reliable stratification and 
potentially reduces technical effort by eliminating the need 
for preoperative volumetric analysis.

Automating the segmentation of residual tumors and 
assessing the EOR poses significant challenges for radi-
ologists, especially in postoperative studies where hemor-
rhagic debris, ischemic changes, and artifacts are prevalent. 
The interrater agreement of manual tumor segmentation is 
excellent before surgery, but poor immediately after sur-
gery and at progression. According to previous publica-
tions, the median interquartile range of EOR among raters 
is 8%.5 Thus, a central review of images is often necessary 
in multicenter clinical trials, and comparisons between 
publications or centers in tumor registries are problem-
atic. Additionally, precise and robust segmentation of the 
residual tumor and surgical cavity is crucial for optimal ra-
diation treatment planning. As a result, there is a growing 
interest in methods to automate these tasks, as highlighted 
in recent publications.6–16

Our objective is to develop a comprehensive MRI image 
processing pipeline for segmenting tumor subregions in 
postoperative studies. To achieve this, we have explored 2 
frameworks known for their robustness in medical image 
segmentation tasks: MONAI (https://monai.io/) and nnU-
Net17 (https://github.com/MIC-DKFZ/nnUNet). We aim to 
use convolutional neural networks available through these 
frameworks to segment the residual ET, the peritumoral 
region, and the postsurgical cavity. We hypothesize that ef-
fective training of a postoperative segmentation model re-
quires diverse samples encompassing preoperative, early 
postoperative, and follow-up studies.

We aim to compare our model’s performance with other 
pretrained, publicly available state-of-the-art tumor seg-
mentation algorithms using an external validation cohort. 
In pursuit of a method suitable for longitudinal scans, we 

also intend to evaluate our model’s applicability in preop-
erative scans.

Our main contribution lies in the development of a pub-
licly accessible pipeline that integrates multiparametric 
MRI preprocessing with an automatic segmentation 
method, encompassing all tumor subregions, including 
the postoperative cavity. Additionally, we provide an au-
tomatic method for classifying EOR in glioblastoma pa-
tients according to the latest accepted categories from 
an oncological standpoint. Furthermore, to the best of 
our knowledge, there are no published comparisons of 
existing methods for segmenting postoperative scans 
in glioblastomas, a gap we aim to address through our 
study.

Methods

Dataset Description

The training dataset consisted of a multi-institutional co-
hort of patients who underwent surgery with a confirmed 
pathological diagnosis of IDH-wild-type glioblastoma ac-
cording to the latest 2021 WHO Classification of Tumors 
of the Central Nervous System.18 A total of 184 patients 
and 395 scans constituted the training cohort, distributed 
as follows: 57 patients from the Río Hortega University 
Hospital, Valladolid, Spain; 33 patients from St. Olavs 
University Hospital, Trondheim, Norway; 38 patients from 
The LUMIERE Dataset19; 30 patients from Burdenko’s 
Glioblastoma Progression Dataset20,21; 21 patients from 
the 12 de Octubre University Hospital, Madrid, Spain; 
and 5 patients from the Ivy Glioblastoma Atlas Project 
(IvyGAP) dataset.22,23 For each included patient, the fol-
lowing MRI sequences were employed: T1-weighted (T1w), 
contrast-enhanced T1-weighted (T1ce), T2-weighted (T2w), 
and fluid-attenuated inversion recovery (FLAIR) images. 
Patients with inadequate image quality due to acquisition 
artifacts or missing MRI sequences were excluded from 
the study.

Regarding the timing of the MRI studies, the training 
cohort included 181 early postoperative scans, defined 
as those conducted within the initial 72 hours following 
surgery, in accordance with current guidelines.4,24,25 
Additionally, the training cohort included 112 preoperative 
scans and 102 follow-up scans, where tumor recurrence 
was diagnosed based on the modified RANO criteria.26

The external validation cohort comprised 2 subsets of 
patients. The first subgroup (model comparison cohort) 
comprises 2 Spanish centers and one public dataset, the 
Quantitative Imaging Network Glioblastoma (QIN-GBM) 
Treatment Response dataset.21,27,28 This dataset included 
15 patients from La Princesa University Hospital, Madrid, 

Importance of the Study

The proposed model, RH-GlioSeg-nnU-Net, facilitates 
robust and reliable postoperative segmentation of 
glioblastomas, covering all tumor subregions and the 

surgical cavity. Additionally, we provide an automatic 
and standardized assessment of the extent of resection.

https://monai.io/
https://github.com/MIC-DKFZ/nnUNet
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Spain, and 21 patients from Albacete University Hospital, 
Castilla-La Mancha, Spain. Patients from Spanish cen-
ters underwent early postoperative scans of glioblast-
omas treated with complete and partial resection. Patients 
from the QIN-GBM dataset have late postoperative scans, 
encompassing patients who were scanned after surgery 
but before the initiation of radiation therapy, with a range 
of 2–5 days between scans, and all patients underwent par-
tial tumor resection.

The second subgroup (independent validation cohort) 
consisted of a retrospective cohort from Oslo University 
Hospital, as reported in a previous study.16 This subset in-
cluded 139 patients with early postoperative scans.

Finally, we utilized the online validation dataset BraTS’20 
(https://ipp.cbica.upenn.edu/) to assess the model’s perfor-
mance on preoperative scans. This dataset comprises 125 
patients, and detailed descriptions can be found in the as-
sociated publications.29

The distribution of time point scans and their character-
istics are outlined in Table 1. The acquisition protocols for 
each of the sample centers are provided in Supplementary 
Table 1. The acquisition protocols did not fully adhere to the 
recommendations of a standardized brain tumor imaging 
protocol,30 with the main difference being that in 3 of the 5 
centers, the pre-contrast T1-weighted sequences were ac-
quired in 2D.

The utilization of anonymous data was authorized by 
the Regional Committee for Medical and Health Research 
Ethics (REK), Norway, with approval numbers 2016/1791, 
397012, and 2019/510, and the Research Ethics Committee 
(CEIm) at the Río Hortega University Hospital, Valladolid, 
Spain, with approval number 21-PI085.

Image Preprocessing

Multiparametric MRI scans were converted to NifTI 
format using dcm2niix (https://github.com/rordenlab/
dcm2niix) and coregistered to the SRI24 anatomical 
atlas,31 then resampled to 1mm isotropic voxel resolu-
tion using SimpleElastix.32 Skull stripping was performed 
using SynthStrip,33 followed by intensity normalization 
using the Z-score method. The processed images were set 
to dimensions of 240 × 240 × 155 voxels. The entire proc-
essing pipeline is available at https://github.com/smcch/
Postoperative-Glioblastoma-Segmentation. For datasets 
sourced from public repositories, the processing pipe-
line was tailored to meet the specific requirements of each 
dataset, incorporating only the essential steps, if needed, 
for each case. Additionally, attention was given to the var-
iations in labels among different algorithms, ensuring 
their comparability with those of the ground truth. The 
preprocessing requirements for each model included in the 
comparison were properly fulfilled.

Ground Truth Segmentation

All ground truth segmentations of the training dataset and 
model comparison cohort were conducted by 2 neurosur-
geons [SC, and IA] with over 10 years of experience in neu-
roimaging of brain tumors. The 4 processed MRI sequences 

were available for segmentation using a resampled voxel 
resolution of 1 mm3. ITK-SNAP software, version 4.0.1 
(http://itksnap.org), was utilized for this task. Initially, sem-
iautomatic segmentation was performed using the active 
contour tool and the clustering mode. Three labels were 
generated:

- Label 1—CE tumor: Residual tumor identified as T1ce 
hyperintense but T1w hypointense tissue, distinguishing 
it from hyperintense blood.

- Label 2—Edema/infiltration: Includes all peritumoral 
T2-FLAIR signal changes.

- Label 3—Surgical cavity: Encompasses hematic debris, 
hemostatic material, and air in the cavity.

Each label was subsequently manually corrected slice 
by slice. For preoperative studies, label 3 was assigned 
to necrosis. For follow-up studies, label 3 included both 
the surgical cavity and necrosis if both were identifiable. 
The segmentations were reviewed and approved by a 
neuroradiologist [TE] with over 15 years of experience. The 
approximate segmentation time for each patient was 35 
minutes.

For the independent validation cohort, a combination of 
semiautomatic and deep learning-aided preliminary seg-
mentation was used. Further refinement was performed 
by experts using ITK-SNAP. Processed MRI sequences 
were used for segmentation in some cases in the dataset, 
whereas the original resolution was used in others, as de-
scribed in the related publication.16 For this subset of pa-
tients, only ET labels were available.

MONAI Framework Training Description

We used the UNETR network architecture34 within the 
MONAI framework, focusing on technical specifics to 
optimize performance. MRI volumes were resized to 
128 × 128 × 64 voxels. The data augmentation pipeline 
included random flips, rotations, elastic deformations, 
and intensity adjustments. UNETR was configured with 
4 input and 4 output channels (including background), 
a feature size of 32, a hidden size of 768, 12 attention 
heads, and a DiceFocal loss function. The dataset was 
partitioned into 5 folds for cross-validation, with each 
fold trained over 200 epochs. An ensemble evaluation 
of models from different folds was used to finalize seg-
mentation predictions, utilizing a voting mechanism to 
improve accuracy. Postprocessing techniques or refine-
ment of the predicted segmentations were not used. 
The model trained using this framework was named: 
the Río Hortega Glioblastoma Segmentation UNETR 
(RH-GlioSeg-UNETR).

nnU-Net Framework Training Description

We used the nnU-Net framework in its 3D full-resolution 
version, using a dataset partitioned into 5 folds for cross-
validation, with each fold trained over 1000 epochs. The 
loss function combined Dice and cross-entropy. Data aug-
mentation techniques such as rotations, scaling, Gaussian 
noise and blur, brightness and contrast adjustments, 

https://ipp.cbica.upenn.edu/
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae199#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae199#supplementary-data
https://github.com/rordenlab/dcm2niix
https://github.com/rordenlab/dcm2niix
https://github.com/smcch/Postoperative-Glioblastoma-Segmentation
https://github.com/smcch/Postoperative-Glioblastoma-Segmentation
http://itksnap.org
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low-resolution simulations, gamma correction, and 
mirroring were applied to enhance the robustness of the 
model. This setup was designed to achieve precise seg-
mentation results through detailed feature extraction 
and extensive model training. Using this framework, no 
postprocessing techniques were applied to the predicted 
segmentation. The model trained using this framework 
was named: the Río Hortega Glioblastoma Segmentation 
UNETR (RH-GlioSeg-nnU-Net).

EOR Definition

Using the volumetric information, the EOR was defined ac-
cording to the latest classification system proposed by the 
RANO resect group as follows3:

• Class 1 (Supramaximal CE resection): No residual CE 
tumor plus ≤ 5 cm³ of non-CE tumor.

• Class 2 (Maximal CE resection): ≤ 1 cm³ of residual CE 
tumor.
◦ Class 2A (Complete CE resection): No residual CE tumor 

plus > 5 cm³ of non-CE tumor.
◦ Class 2B (Near total CE resection): ≤ 1 cm³ of residual 

CE tumor.
• Class 3 (Submaximal resection): > 1 cm³ of residual CE 

tumor.
◦ Class 3A (Subtotal CE resection): ≤ 5 cm³ of residual CE 

tumor.
◦ Class 3B (Partial CE resection): > 5 cm³ of residual CE 

tumor.
• Class 4 (Biopsy): No reduction in tumor volume.

Since only ET labels were available for the independent 
validation cohort, the EOR classification was only appli-
cable to define the Class 2 (maximal resection) and Class 3 
(submaximal resection) categories by the proposed 1 cm3 
threshold.

Evaluation Metrics

To assess the performance of the models for seg-
menting postoperative MRI scans, we employed the 
USE-Evaluator.35 Traditional metrics often fail to capture 
the nuances of clinical datasets, especially when dealing 
with small residual tumor labels or cases with empty an-
notations, such as in patients who underwent gross total 
resection. USE-Evaluator includes volume-based metrics 
such as Volumetric Similarity, which assesses how closely 
the volumes of the predicted and reference regions match, 
and Absolute Volume Difference, which quantifies the dif-
ference between these volumes. Overlap metrics like the 
Dice Score and Intersection over Union measure the ex-
tent of overlap between the predicted and reference re-
gions, with higher values indicating better alignment. 
Additionally, distance-based metrics such as the 95th per-
centile Hausdorff Distance and Average Symmetric Surface 
Distance (both measured in millimeters) evaluate the spa-
tial differences between the surfaces of the 2 regions, 
where smaller distances indicate more accurate boundary 
delineation.

While traditional metrics for image segmentation return 
“NaN” or 0 values, when the model correctly predicts an 
empty mask, we used USE-Evaluator to set a volumetric 
threshold of 0.1 cm3 below which the agreement between 
the reference annotation and prediction is automatically 
evaluated as an image-level classification task. This strict 
threshold has been adopted in line with similar studies, 
taking into account factors such as the size of the voxel, the 
minimum size interpretable by the human eye, and the ne-
cessity to differentiate residual tumor from small linear en-
hancements of pia matter in the walls of the surgical cavity 
and small blood vessels.36

To assess the models’ ability to classify the EOR, we 
employed precision, recall, F1 score, the area under 
the curve (AUC), and accuracy. Precision measures the 
proportion of true positives among all positive predic-
tions, indicating how often the model is correct when 
it predicts a positive outcome. Recall (or sensitivity) re-
flects the model’s ability to identify true positives from 
all actual positives. The F1 score is the harmonic mean 
of precision and recall, providing a balanced measure 
when there is an uneven class distribution. The AUC of 
the receiver operating characteristic curve was used to 
assess the model’s ability to distinguish between classes. 
Finally, accuracy represents the overall proportion of cor-
rect predictions.

Models Used for Comparison

The main automatic segmentation models currently avail-
able were used. They were the following: DeepMedic 
(https://github.com/deepmedic/deepmedic),37 HD-GLIO 
(https://github.com/NeuroAI-HD/HD-GLIO),38,39 PICTURE 
nnU-Net (https://gitlab.com/picture-production/picture-
nnunet-package),14,38,39 DeepEOR,9 Raidionics AGU-Net 
(https://github.com/raidionics/Raidionics),40,41 nnU-Net-
CPS (https://github.com/lidialuq/resect-glio),16 and Turin 
U-Net.15 Detailed descriptions of the algorithms are avail-
able in related publications.

Computational Resources

For both training and evaluation of the models, a machine 
equipped with an Intel Core i7 processor, 64 GB of RAM, and 
a dedicated RTX 3090 24 GB GPU was utilized. The model 
based on the MONAI framework and nnU-Net was trained 
using Python 3.9 and PyTorch version 2.1.1 + cu121. For 
the Emory University and DeepEOR models, TensorFlow 
version 2.10.0 was employed. Raidionics AGU-Net was ex-
ecuted via its graphical interface on the Windows 10 op-
erating system. PICTURE-nnU-Net, HD-GLIO, University 
of Turin, nnUnet-CPS, and DeepMedic were implemented 
in WSL Ubuntu version 20.04.4 LTS using Python 3.8, 
TensorFlow version 2.13.0, and PyTorch version 2.0.1.

Results

The training cohort consisted of 395 scans from 184 pa-
tients. Among the total scans, 112 were preoperative, 181 
were early postoperative, and 102 were follow-up scans. 

https://github.com/deepmedic/deepmedic
https://github.com/NeuroAI-HD/HD-GLIO
https://gitlab.com/picture-production/picture-nnunet-package
https://gitlab.com/picture-production/picture-nnunet-package
https://github.com/raidionics/Raidionics
https://github.com/lidialuq/resect-glio
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The model comparison cohort and the independent vali-
dation cohort consisted of 52 and 139 early postoperative 
scans, respectively. The median volume of residual ET in 
the early postoperative scans was 2.55 cm3, 6.08 cm3, 
and 0.66 cm3 for the training, model comparison, and in-
dependent validation cohorts, respectively. Details of the 
volumes for the labels and the EOR distribution by dataset 
and center are presented in Table 1.

When the class distribution according to the RANO resect 
EOR system is analyzed, distinct patterns emerge across 
the datasets. In the training cohort, Class 2A (Complete 
CE resection) was predominant, comprising 61.9% of the 
scans. In the comparison validation cohort, Class 2A re-
mained the most common class at 42.6%. In contrast, the 
independent validation cohort revealed Class 2B as the 
most frequent class at 54%. The detailed distributions are 
shown in Supplementary Figure 1.

In the model comparison validation cohort, the top-
performing model was based on the nn-U-Net framework 
(RH-GlioSeg-nnU-Net), which achieved median Dice scores 
of 0.81, 0.77, and 0.81 for the labels ET, edema, and surgical 
cavity, respectively. Supplementary Figure 2 provides an il-
lustrative example of the predicted labels from each model 
included in the comparison.

A comprehensive comparison of the proposed 
algorithm’s performance against other available algo-
rithms is presented in Table 2 and Figure 1.

After grouping ET volumes by quartiles, we identified 
a direct relationship between residual ET volume and the 
Dice score. Patients with a residual tumor volume of less 
than 2.69 cm³ presented lower Dice score values across all 
models compared to those with higher ET volumes. An il-
lustration of the distribution of Dice score and ET volumes 
is provided in Supplementary Figure 3.

In the image-level classification task for the label ET, when 
a threshold of 0.1 cm³ was used, the RH-GlioSeg-nnU-Net 
model achieved the highest performance, with an AUC of 
0.98 and a precision of 0.93. Additional details and compari-
sons of the models are provided in Supplementary Table 2.

The comparative analysis of models for classifying 
the EOR using the RANO-resect system included 2 clas-
sification levels: a 2-class classification (maximal and 
submaximal CE resection) and a full 5-class classification 
(supramaximal, complete, near-total, subtotal, and par-
tial CE resection). For the 2-class classification, the top 3 
models were RH-GlioSeg-nnU-Net with an accuracy of 
0.96, PICTURE nnU-Net with an accuracy of 0.92, and a 
tie between nnU-Net-CPS and HD-GLIO, both with an ac-
curacy of 0.90. In the 5-class classification, the leading 
models were RH-GlioSeg-nnU-Net with an accuracy of 
0.85, HD-GLIO with an accuracy of 0.79, and PICTURE nnU-
Net with an accuracy of 0.64. The detailed results and ad-
ditional metrics for all the models are comprehensively 
documented in Table 3 and Supplementary Figure 4a-b. 

Table 2. Performance Evaluation Across the Model Comparison Validation Cohort

Label Model ASSD DSC HD 95 IoU Precision Sensitivity VAD VS

  ET DeepEOR 25.86 ± 3.34 0.23 ± 0.05 91.02 ± 3.75 0.13 ± 0.03 0.16 ± 0.03 0.81 ± 0.1 18.63 ± 4.16 0.35 ± 0.04

DeepMedic 2.51 ± 0.57 0.65 ± 0.05 11.58 ± 5.12 0.49 ± 0.06 0.53 ± 0.07 0.91 ± 0.03 3.94 ± 1.06 0.77 ± 0.07

HD-GLIO 1.07 ± 0.14 0.76 ± 0.02 3.16 ± 0.66 0.61 ± 0.03 0.80 ± 0.02 0.71 ± 0.05 1.37 ± 0.51 0.98 ± 0.01

nnU-Net-CPS 1.87 ± 0.54 0.69 ± 0.05 9.85 ± 3.05 0.52 ± 0.05 0.83 ± 0.06 0.63 ± 0.03 0.64 ± 0.19 0.81 ± 0.03

PICTURE-nnU-Net 1.50 ± 0.09 0.73 ± 0.02 5.24 ± 1.04 0.57 ± 0.03 0.75 ± 0.03 0.80 ± 0.05 1.38 ± 0.38 0.88 ± 0.05

Raidionics AGU-Net 2.29 ± 0.49 0.65 ± 0.03 8.12 ± 4.31 0.48 ± 0.03 0.55 ± 0.04 0.89 ± 0.03 3.08 ± 1.06 0.87 ± 0.05

RH-GlioSeg-nnU-Net 0.95 ± 0.17 0.81 ± 0.04 3.24 ± 0.78 0.68 ± 0.05 0.86 ± 0.06 0.80 ± 0.05 0.93 ± 0.21 0.95 ± 0.03

RH-GlioSeg-UNETR 1.30 ± 0.51 0.73 ± 0.05 4.47 ± 4.1 0.57 ± 0.06 0.79 ± 0.04 0.72 ± 0.08 1.04 ± 0.42 0.96 ± 0.03

Turin U-Net 27.52 ± 1.94 0.05 ± 0.03 86.54 ± 3.97 0.02 ± 0.01 0.03 ± 0.02 0.29 ± 0.1 67.97 ± 4.54 0.15 ± 0.06

  ED DeepEOR 4.44 ± 0.82 0.58 ± 0.06 20.23 ± 5.94 0.41 ± 0.06 0.52 ± 0.07 0.81 ± 0.03 23.04 ± 5.23 0.69 ± 0.05

DeepMedic 2.60 ± 0.29 0.70 ± 0.04 13.45 ± 1.58 0.53 ± 0.05 0.57 ± 0.06 0.90 ± 0.02 14.12 ± 2.76 0.73 ± 0.05

HD-GLIO 1.91 ± 0.52 0.70 ± 0.03 9.00 ± 1.95 0.54 ± 0.04 0.79 ± 0.04 0.71 ± 0.06 8.23 ± 1.45 0.82 ± 0.02

PICTURE-nnU-Net 1.81 ± 0.34 0.74 ± 0.04 6.56 ± 1.68 0.59 ± 0.05 0.77 ± 0.05 0.75 ± 0.05 6.05 ± 1.73 0.87 ± 0.02

RH-GlioSeg-nnU-Net 1.46 ± 0.22 0.77 ± 0.02 5.05 ± 0.99 0.62 ± 0.03 0.74 ± 0.06 0.89 ± 0.03 4.93 ± 1.36 0.86 ± 0.03

RH-GlioSeg-UNETR 1.71 ± 0.21 0.77 ± 0.02 6.44 ± 1.21 0.63 ± 0.03 0.73 ± 0.05 0.87 ± 0.03 5.73 ± 1.59 0.85 ± 0.03

Turin U-Net 23.82 ± 1.43 0.15 ± 0.03 81.30 ± 3.38 0.08 ± 0.02 0.08 ± 0.02 0.89 ± 0.02 208.52 ± 8.29 0.17 ± 0.04

CAV PICTURE-nnU-Net 1.96 ± 0.24 0.77 ± 0.03 6.08 ± 0.74 0.63 ± 0.05 0.80 ± 0.04 0.86 ± 0.01 4.50 ± 0.81 0.89 ± 0.04

RH-GlioSeg-nnU-Net 1.42 ± 0.19 0.81 ± 0.04 4.36 ± 0.67 0.68 ± 0.05 0.96 ± 0.01 0.71 ± 0.05 5.30 ± 0.89 0.87 ± 0.03

RH-GlioSeg-UNETR 2.26 ± 0.28 0.75 ± 0.02 7.00 ± 1.14 0.59 ± 0.03 0.93 ± 0.01 0.63 ± 0.04 5.39 ± 1.47 0.84 ± 0.04

Turin U-Net 8.77 ± 1.89 0.14 ± 0.04 19.82 ± 5.52 0.07 ± 0.03 1.00 ± 0.01 0.07 ± 0.03 19.90 ± 5.1 0.01 ± 0.02

The best-performing values are highlighted in bold.
ET, residual enhancing tumor; ED, edema; CAV, surgical cavity; ASSD, average symmetric surface distance; DSC, dice similarity coefficient; HD 95, 
Hausdorff distance 95th percentile; IoU, Intersection over union;VAD, volume absolute difference; VS, volumetric similarity; Values are expressed as 
median ± 95% confidence Interval (bootstrapped).

 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae199#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae199#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae199#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae199#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae199#supplementary-data
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Additionally, several examples of RH-GlioSeg-nnU-Net 
predictions in the model comparison cohort are shown in 
Figure 2.

Furthermore, our model with the highest Dice score per-
formance, RH-GlioSeg-nnU-Net, was used to evaluate an 
independent validation cohort. The median Dice score for 
the ET label was 0.48, and the model achieved an image-
level classification AUC of 0.98. For the 2-class classifica-
tion of EOR, our model yielded an accuracy of 0.84. The 
detailed results are shown in Table 4 and Supplementary 
Figure 4b-c.

Finally, the RH-GlioSeg-nnU-Net model attained the 
highest overall overlap metrics and was selected to as-
sess its performance on preoperative MR images using the 
BRATS 2020 validation dataset via the online platform. The 
mean Dice scores obtained were 0.78, 0.88, and 0.72 for 
the ET, whole tumor, and tumor core labels, respectively. 
The detailed evaluation results of the preoperative scans 
are provided in Supplementary Table 3.

Discussion

In this study, we compiled 6 datasets from collaborative 
research institutions and 4 datasets from publicly online 
available data sources encompassing pre- and postop-
erative multiparametric MRI studies. Our dataset boasts 
diversity, stemming from multiple sources, and varying 
categories of EOR in postoperative studies. Leveraging 
a robust convolutional neural network architecture, we 
trained a model of notable reliability.

Postoperative segmentation of glioblastomas presents a 
significant challenge, primarily due to the difficulty in ac-
curately identifying residual ETs, especially when dealing 
with small volumes. The extensive variability observed in 
postoperative studies further complicates the standardi-
zation of methodologies. Variations in surgical techniques 
often result in patients exhibiting diverse EORs, despite 
undergoing surgery for glioblastoma in similar locations. 
Consequently, cases may vary from those with resections 
tightly confined to the enhancing component to those 
employing more aggressive strategies, such as supra-
marginal resections or lobectomies. These differences 
manifest notably in terms of the size of the surgical cavity 
and the deformation of the surrounding parenchyma. 
Additionally, the meticulousness of hemostasis signifi-
cantly influences postsurgical outcomes, leading to clean 
cavities in some cases and the presence of blood debris, 
air, and hemostatic material in others.

Training a model to accurately segment residual tumors, 
especially small volumes, poses additional challenges, par-
ticularly in reliably predicting the “absence” of residual tu-
mors. A model that excels at tumor segmentation may not 
necessarily be precise in identifying cases where no residual 
tumor exists, as it might tend to over-segment these regions.

In our dataset, the Class 2A (Complete CE resection) cat-
egory predominated, this fact stands in contrast to other 
datasets where the proportion is typically reversed. Given 
these circumstances, our hypothesis was that the post-
operative segmentation model would derive significant 
benefits from learning the characteristics of the tumor both 
preoperatively and in follow-up studies where tumor recur-
rence is detected.

GroundTruth

DeepMedic

HD-GLIO

Raidionics
AGU-Net

RH-GlloSeg
nnU-NetnnU-Net-CPS

Turin U-Net

DeepEOR

PIC TURE nnU-Net

RH-GlioSeg
UNETR

Figure 1. A descriptive example of the segmentations predicted by the models included in the comparison. The segmentations include the fol-
lowing labels: residual enhancing tumor, edema, and surgical cavity. The predicted labels are shown as a pair of images overlaid on (left) T1ce 
and (right) T2w. The visual distinction between the labels is consistent across the images for clarity.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae199#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae199#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae199#supplementary-data
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Table 3. Classification Performance of Extent of Resection Across Model Comparison Cohort

EOR 2 Classes: maximal vs. submaximal CE resection

Model Precision Recall F1 Accuracy AUC

  RH-GlioSeg-nnU-Net 0.97 0.96 0.96 0.96 0.96

  RH-GlioSeg-UNETR 0.89 0.89 0.88 0.89 0.89

PICTURE nnU-Net 0.92 0.92 0.92 0.92 0.92

  HD-GLIO 0.91 0.91 0.90 0.90 0.91

  DeepEOR 0.745 0.519 0.365 0.50 0.52

  DeepMedic 0.81 0.72 0.69 0.71 0.72

Raidionics AGU-Net 0.89 0.89 0.88 0.89 0.89

  Turin U-Net 0.24 0.50 0.33 0.48 0.50

  nnU-Net-CPS 0.92 0.91 0.90 0.90 0.91

EOR 5 classes: Supramaximal, Complete, Near-total, Subtotal and Partial CE resection

Model Precision Recall F1 Accuracy AUC

  RH-GlioSeg-nnU-Net 0.85 0.80 0.80 0.85 0.88

  RH-GlioSeg-UNETR 0.68 0.63 0.61 0.62 0.77

PICTURE nnU-Net 0.74 0.63 0.60 0.64 0.77

  HD-GLIO 0.70 0.72 0.70 0.79 0.83

  DeepEOR 0.10 0.22 0.13 0.31 0.52

  DeepMedic 0.60 0.41 0.38 0.46 0.64

  Turin U-Net 0.06 0.20 0.09 0.29 0.50

EOR, extent of resection; CE, contrast enhancing; AUC, area under the curve.

 

T1ce T1w Ground Truth Predicted EOR DSC

True: Near-Total
Predicted: Complete

ET: Nan/ CCR: 0
ED: 0.64
CAV: 0.87

True: Complete
Predicted: Near-Total

ET: Nan/ CCR: 0
ED: 0.52
CAV: 0.88

True: Subtotal
Predicted: Subtotal

ET: 0.81
ED: 0.73
CAV: 0.70

True: Complete
Predicted: Complete

ET: Non/ CCR: 1
ED: 0.78
CAV: 0.92

True: Near-Total
Predicted: Near-Total

ET: 0.58
ED: 0.72
CAV: 0.71

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Figure 2. Examples of predictions made by the RH-GlioSeg-nnU-Net model. The classification status of the patient’s resection extension (EOR) 
is indicated as either correct or incorrect. The ground truth and predicted segmentations are overlaid on T1 contrast-enhancing (T1ce) and 
T1 weighted (T1w) images to facilitate differentiation between blood remnants and residual enhancing tumors. The last column shows Dice 
Similarity Coefficient values for each label: enhancing tumor (ET), edema (ED), and surgical cavity (CAV). For cases with an empty label, the result 
is expressed as a classification task using the Correct Classification Rate (CCR).
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The automation of surgical cavity segmentation has 
potential applications in radiotherapy treatment plan-
ning, as shown by several studies.6–8,42 However, few 
models provide comprehensive labeling of all relevant 
structures—such as edema, residual tumor, and surgical 
cavity—specifically in postoperative studies,6,12,13,15 and 
many of these models are not publicly available. Our pro-
posed solution addresses this gap by including all rele-
vant subregions and demonstrating strong performance in 
detecting and estimating the volume of residual ET. With 
expert supervision, this approach could also save time in 
contouring treatment volumes.

By proposing this comparison, our aim was not to address 
criticism but rather to highlight strengths and glean insights 
from alternative approaches and strategies for a shared 
problem. Importantly, methodological comparisons among 
the models may not be feasible because of differences in 
their architectures, preprocessing and postprocessing pipe-
lines, or the diverse datasets used for training. In addition, 
some of the models included in the comparison are not spe-
cifically designed for postoperative scans.9,37 Notably, some 
models only include the possibility of segmenting the re-
sidual ET.14,16,41 Therefore, our aim is not to benchmark them 
against each other but rather to provide a practical perspec-
tive on their performance in a clinical setting.

In terms of architectures and frameworks, we trained 2 
models using the same dataset and employed an internal 
validation strategy with k-folds. However, the performance 
metrics are consistently higher when nnU-Net is used 
compared to UNETR. Despite both being 3D fully convolu-
tional architectures and employing similar data augmenta-
tion strategies, it appears that a more complex architecture 
such as UNETR does not offer significant advantages over 
U-Net in this specific task.43 Furthermore, all the models 
that achieved the highest scores in segmentation and EOR 
classification tasks were built upon the U-Net architecture.

To the best of our knowledge, our model offers for the 
first time an automatic way to classify EOR according to the 
latest system proposed by the RANO resect group.3 From a 
neuro-oncological perspective, the key is to be able to cat-
egorize patients into maximal and submaximal surgical re-
section groups because of differences in terms of survival.3

Despite being trained primarily on early postoperative 
studies and follow-up data, our model demonstrates a ro-
bust ability to generalize to external preoperative datasets, 
such as the BraTS 2020 external validation cohort. This 
capability, coupled with its proven performance on postop-
erative data, underscores the model’s potential versatility 
as a tool for segmenting glioblastoma throughout the en-
tire treatment course.

The limitation of our model lies in the inherent chal-
lenge of accurately segmenting postsurgical studies while 
encompassing all relevant regions. While manual and sem-
iautomatic segmentation serves as standards for training 
and evaluation, it is essential to acknowledge the varia-
bility between observers, which introduces a bias that is 
difficult to eliminate.

Our model has been publicly released to encourage fur-
ther analysis, but most importantly to be tested in other 
clinical settings to prove its reproducibility and effective-
ness. Importantly, these models are not intended to replace 
human observers but rather to increase their efficiency and 
improve diagnostic precision.

Finally, we firmly believe that only by adhering to an 
open science policy can the limitations in generating these 
types of computer-aided methods be overcome. Therefore, 
initiatives such as Federated Learning for Postoperative 
Segmentation of Treated Glioblastoma (FL-PoST; 
https://fets-ai.github.io/FL-PoST/) and the Brain Tumor 
Segmentation (BraTS) Challenge: Glioma Segmentation 
on Post-treatment MRI44 should be expanded to facilitate 
the translation of knowledge into clinical practice.

Table 4. RH-GlioSeg-nnUnet Performance on Independent Validation Cohort

Metric ET

Segmentation task ASSD 2.46 ± 0.30

DSC 0.48 ± 0.04

HD 95 11.13 ± 1.51

IoU 0.32 ± 0.04

Precision 0.55 ± 0.05

Recall 0.53 ± 0.06

VAD 0.61 ± 0.10

VS 0.49 ± 0.06

Image-level classification task * CCR 0.90 ± 0.03

AUC 0.98 ± 0.01

Precision 0.87 ± 0.02

Sensitivity 0.95 ± 0.02

Specificity 0.88 ± 0.04

ET, enhancing tumor; ASSD, average symmetric surface distance; DSC, dice similarity coefficient; HD 95, Hausdorff distance 95th percentile; IoU, 
Intersection over Union; VAD, volume absolute difference. VS, volumetric similarity. CCR, Correct classification rate. AUC, Area under the Curve. 
Values are expressed in median ± 95% Confidence Interval (bootstrapped). * 0.1 cm3 threshold.

 

https://fets-ai.github.io/FL-PoST/
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Our study highlights the value of using a diverse multi-
institutional dataset from longitudinal patient studies in 
conjunction with the robust nnU-Net framework, which 
achieves excellent performance in segmentation and EOR 
classification tasks. By comparing a wide range of openly 
available models, we provide a comprehensive guide for 
users to select the best model for their specific needs, ul-
timately bringing automatic glioblastoma segmentation 
closer to widespread clinical application.

Supplementary material

Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).
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