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Abstract

The interplay between maturation-promoting factor (MPF), mitogen-activated protein kinase (MAPK) and Rho GTPase
during actin-myosin interactions has yet to be determined. The mechanism by which microtubule disrupters induce the
formation of ooplasmic protrusion during chemical-assisted enucleation of mammalian oocytes is unknown. Moreover, a
suitable model is urgently needed for the study of cytokinesis. We have established a model of chemical-induced
cytokinesis and have studied the signaling events leading to cytokinesis using this model. The results suggested that
microtubule inhibitors activated MPF, which induced actomyosin assembly (formation of ooplasmic protrusion) by
activating RhoA and thus MAPK. While MAPK controlled actin recruitment on its own, MPF promoted myosin enrichment by
activating RhoA and MAPK. A further chemical treatment of oocytes with protrusions induced constriction of the
actomyosin ring by inactivating MPF while activating RhoA. In conclusion, the present data suggested that the assembly
and contraction of the actomyosin ring were two separable steps: while an increase in MPF activity promoted the assembly
through RhoA-mediated activation of MAPK, a decrease in MPF activity triggered contraction of the ring by activating RhoA.
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Introduction

Cytokinesis is mediated by a dynamic interplay between the

microtubules of the mitotic spindle, the actomyosin cytoskeleton and

membrane fusion events [1]. For many decades, although morpho-

logical observations led to great insights into the cellular structures

that orchestrate cell division, the underlying molecular machinery is

largely unknown. While studies suggest that a local minimum of

microtubule density or microtubule depolymerization induces the

formation of contractile rings through activation of RhoA [2,3], how

RhoA is activated has yet to be determined. In addition, although

both the maturation-promoting factor (MPF) and mitogen-activated

protein kinase (MAPK) were found to regulate actin-myosin

interactions [4–6], interplay between these two kinases in this context

has not been reported. Furthermore, unlike other cell cycle events,

cytokinesis has been particularly resistant to in vitro biochemical

approaches, making research progress very slow [7]. A powerful in

vitro model is therefore urgently needed to dissect out the different

steps and molecules involved in cytokinesis.

During meiotic maturation of mammalian oocytes, the meiosis I

spindle first assembles around the centrally positioned chromo-

somes and then migrates to the cortex of the oocyte [8,9].

Meanwhile, an actin-rich but cortical granule- and microvillus-free

cortical domain develops over the eccentrically positioned meiotic

spindle [10–12]. While in most mitotic cells, the cues that direct

cell polarization are often extrinsic, coming from the environment

or certain cortical landmarks [13,14], the molecular cues for

asymmetric meiotic divisions of oocytes remain poorly understood.

Although studies suggested that the subcortically positioned

chromosomes in mouse oocytes [12,15,16], or the attachment of

spindle pole to the cortex of Xenopus oocytes [17,18], could

provide the necessary cue, and that the small GTPases [16–19]

might be involved, it is unknown how chromosomes or the spindle

pole attachment activate small GTPases during the establishment

of cortical polarity and assembly of a contractile ring.

A brief treatment of matured oocytes with microtubule disrupter

demecolcine results in a cytoplasmic protrusion containing a

condensed chromosome mass [20–22]. In goat oocytes with

demecolcine-induced ooplasmic protrusions the spindle disinte-

grated and a contractile ring formed around the condensed

chromosome mass [22]. When these oocytes were treated with

cytochalasin B, the contractile ring disappeared while the spindle

reintegrated. Therefore, we proposed that if the chemical-induced

ooplasmic protrusion can pinch off after a further appropriate

treatment, the goat oocyte could serve as an in vitro model for

study of cytokinesis. We have established such a model and have

studied the interactions between MPF, RhoA and MAPK on the

assembly (ooplasmic protrusion) and contraction (extrusion of

second polar bodies, Pb2) of the actomyosin ring using this model.

The results suggested that the assembly and contraction of the ring

were two separable steps: while an increase in MPF activities

promoted the assembly through RhoA-mediated activation of
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MAPK, a decrease in MPF activity induced the contraction of the

ring also by activating RhoA.

Results

Demecolcine-induced ooplasmic protrusion was
associated with activation of both MPF and MAPK

After a 30-min treatment with 0.8 ng/ml demecolcine, 85% of the

goat oocytes showed ooplasmic protrusions with a condensed

chromosome mass (Figure 1A and A’). While all the oocytes with

protrusions (n = 40) showed a disintegrated spindle and an actin-

enriched ring around the condensed chromosome mass (Figure 1B),

spindles were disintegrated but no actin ring was observed in oocytes

without protrusions (Figure 1C). Compared to that in control

oocytes, while both MPF and MAPK activities increased signifi-

cantly in oocytes with protrusions, only the MPF activity increased in

oocytes without protrusions after demecolcine treatment (Figure 2A).

Demecolcine induced ooplasmic protrusion by
increasing MPF and MAPK activities by activating MAD2

While over 80% of the oocytes treated with demecolcine,

MG132 (5-mM) or caffeine (1-mM) formed protrusions in the

absence of ROS, less than 5% did in the presence of 400-mM

ROS. While both MPF and MAPK activities increased

significantly in oocytes with protrusions, neither increased

when protrusion was inhibited by ROS (Figure 2A). In contrast

to those in demecolcine-treated oocytes, spindles in the

MG132- or caffeine-treated oocytes were not disintegrated

(Figure 1D and E). While 95% of the demecolcine-treated

oocytes were MAD2-postive (Figure 1F), all the oocytes with

MG132- or caffeine-induced protrusions were MAD2-negative

(Figure 1G). Injection of anti-MAD2 antibodies decreased

protrusion (23%) and inhibited activation of both MPF and

MAPK (Figure 2B) in the demecolcine-treated, but not in

MG132-treated oocytes.

Figure 1. Photographs of goat oocytes after different treatments to induce ooplasmic protrusions. A and A’ are the same oocyte
observed under phase contrast and fluorescence microscope, respectively, after Hoechst staining. B to K are confocal micrographs, of which, B to E
and H to K are merged images with DNA colored blue, a-tubulin green and actin red while F and G with DNA colored red while the activated MAD2
green. A and B show oocytes with protrusions while C shows an oocyte without protrusion after demecolcine treatment. D and E are oocytes with
protrusions after treatment with MG132 and caffeine, respectively. F and G are oocytes MAD2-positive and -negative after demecolcine and MG132
treatment, respectively. H and I show D+U- and M+U-treated oocytes with spindles disassembled and intact, respectively. J and K are OA.5h oocytes
without protrusion and OA4h oocytes with protrusion, respectively, both showing actin enrichment. Arrow: intact or disintegrated spindles; *: Pb1.
The scale bar is 30-mm in A–E and H–K but 70-mm in F and G.
doi:10.1371/journal.pone.0012706.g001
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MPF induced ooplasmic protrusion by increasing MAPK
activities

When oocytes were treated with demecolcine, MG132 or

caffeine in the presence of 20-mM U0126, protrusion was inhibited

(,7%); while MPF activities increased, the MAPK activity did not

(Figure 2C). Spindles were disassembled in demecolcine+U0126

treated oocytes (Figure 1H) but intact in the MG132+U0126

treated oocytes (Figure 1I). While only 23% of the oocytes formed

protrusions when treated with 0.5-mM OA for 0.5 h (OA.5h), 78%

did when treated with 0.1-mM OA for 4 h (OA4h). In oocytes

without protrusions after OA.5h treatment, while the MPF activity

did not change, MAPK activities increased significantly

(Figure 2C). In oocytes with protrusions after an OA4h treatment,

however, both kinase activities increased. The OA.5h oocytes

without protrusions showed actin enrichment and intact spindles

(Figure 1J). Although both ROS and U0126 inhibited protrusion

in the OA4h oocytes (,6%), ROS prevented activation of only the

MPF activity while U0126 inhibited both MAPK and MPF

(Figure 2C). The results suggested that (1) MPF induced ooplasmic

protrusion by increasing MAPK activities and (2) OA activated

MPF by way of MAPK.

MPF activates MAPK by way of RhoA during ooplasmic
protrusion

When oocytes were treated with demecolcine, MG132 or

caffeine in the presence of 400-mM Y27632 (inhibitor for Rho-

kinase ROCK), protrusion was inhibited (10%), and while MPF

activities increased, the MAPK activity was unchanged

(Figure 2D). Treatments that increased both MPF and MAPK

activities (D and OA4h) activated RhoA (Figure 2E); treatments

that increased MPF but not MAPK activities did not activate

RhoA (D- and AD-); and treatment that did not increase MPF

Figure 2. Relative MPF and MAPK activities (A to D) and RhoA-GTP levels (E) in oocytes after different treatments. In figures A to D,
black and gray bars represent MPF and MAPK activities, respectively. MII: Freshly matured oocytes; D and D-: Oocytes with and without protrusion
respectively after demecolcine; AD-: Aged oocytes without protrusion after demecolcine; +: In the presence of; R: ROS; U: U0126; Y: Y27632; OA.5h
and OA4h: OA for 0.5 and 4 h respectively; MD2: MAD2. a–d: Values without a common letter above their bars differ (P,0.05) within enzyme
activities.
doi:10.1371/journal.pone.0012706.g002
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activities did not activate RhoA whether it increased MAPK

activities (OA.5h and OA4h+R) or not (D+R). RhoA was activated

in oocytes treated with demecolcine and U0126 (D+U) though

their MAPK activation was inhibited. This suggested that (1) MPF

activated MAPK by way of RhoA during ooplasmic protrusion

and (2) OA activated while U0126 inactivated MAPK downstream

of RhoA.

Interactions between MPF, MAPK and RhoA during the
assembly of actomyosin rings

Treatment with 40-mg/ml CB (actin inhibitor) or 200-mM

blebbistatin (myosin II inhibitor) completely inhibited demecol-

cine- or MG132-induced ooplasmic protrusion. While oocytes

with protrusions always showed enrichment of both actin and

myosin in the protruding domain (Figure 3), oocytes without

protrusions showed either only actin enrichment (D+Bleb) or

neither actin- nor myosin-enrichment (D+CB). Treatments that

inhibited both MPF and MAPK (D+R) or MAPK alone (D+U)

prevented enrichment of both myosin and actin, whereas

treatment that inhibited MPF while activating MAPK (OA.5h)

allowed actin but not myosin enrichment. Neither actin nor

myosin was enriched in oocytes without protrusions after

demecolcine+Y27632 treatment (data not shown). When oocytes

were treated with MG132 in the presence of OA and Y27632

(M+Y+OA), both MPF and MAPK activities increased

(Figure 2D), but protrusion was inhibited (7%) and only actin

enriched while myosin did not (data not shown). The results

suggested that (1) OA activated MAPK downstream of ROCK; (2)

while MAPK promoted actin enrichment on its own, MPF

promoted myosin enrichment in a ROCK- and MAPK-depen-

dent manner.

Chromatin is essential for chemical induction of
actomyosin assembly

While injection of mouse sperm tails had no effect, injection of

mouse sperm head into intact goat oocytes induced a second

ooplasmic protrusion (Figure 4A and A’) in about half of the

injected oocytes after treatment with demecolcine (Figure 4B) or

MG132 (Figure 4C). The oocyte spindle is disintegrated after

demecolcine but intact after MG132 treatment. When mouse

sperm heads were injected into enucleated oocytes, however,

protrusion was observed only after MG132 (Figure 4D) but not

demecolcine treatment (Figure 4E).The MPF and MAPK activities

increased significantly in intact but not in enucleated oocytes after

sperm head injection and demecolcine treatment (Figure 4F). No

protrusion formed when enucleated oocytes were treated with

MG132 although both MPF and MAPK activities increased

significantly. The results suggested that ooplasmic protrusion

required interactions between chromatin and the signaling events

and the role of chromatin in inducing actomyosin assembly was

non-species-specific.

Interactions between MPF, MAPK and RhoA during the
constriction of actomyosin rings

Contraction of the actomyosin ring (Figure 5B and E) began at

0.5 and 1 h while extrusion of Pb2 (Figure 5A and D) was

observed at 1 and 2 h after chemical activation of oocytes with

demecolcine-induced protrusions and the control MII oocytes,

respectively. While the Pb2 in control oocytes were extruded with

half of the chromosome complement with the other half left inside

the oocyte (Figure 5D’ and F), the demecolcine-induced

protrusions were pinched off with the whole complement of

chromosomes (Figure 5A’ and C). While 63% of the demecolcine-

treated and 87% of the control oocytes released Pb2 after chemical

activation in the absence of Y27632, the percentage decreased to

4% and 12%, respectively, in the presence of Y27632. While MPF

activities declined to the lowest level at the time when the ring

began to contract, the MAPK activity remained high until the

time for Pb2 extrusion in both demecolcine-treated and control

oocytes (Figure 5G). Y27632 affected neither the MPF nor MAPK

dynamics. RhoA-GTP increased to the highest level at the time for

ring contraction but decreased to the basal level by the time for

Pb2 extrusion in both oocyte groups (Figure 5H).

Discussion

In this study, both MPF and MAPK activities increased

significantly in oocytes with protrusions after demecolcine

treatment. While injection of mouse sperm head into intact goat

oocytes induced a second ooplasmic protrusion and a significant

increase in both MPF and MAPK activities, injection into

enucleated oocytes had no effect after demecolcine treatment.

Furthermore, while MG132 or caffeine induced ooplasmic

protrusion without destroying spindles, treatment with ROS

inhibited protrusion in oocytes with demecolcine-disassembled

spindles. The results strongly suggest that demecolcine induces

ooplasmic protrusion by destroying the oocyte spindle and

activating MPF and MAPK. Studies in somatic cells also indicated

that treatment with microtubule-interacting agents increased MPF

activities [23–25]. In this study, while 95% of the demecolcine-

treated oocytes were MAD2-postive and injection of anti-MAD2

antibodies inhibited ooplasmic protrusion and activation of MPF

and MAPK, all of the oocytes with MG132-induced protrusions

were MAD2-negative and injection of anti-MAD2 antibodies had

no effect. It was shown that defects in spindle assembly or spindle-

kinetochore attachment, or artificial depolymerization of micro-

tubules, activated the mitotic checkpoint, which arrested cells prior

to the metaphase-anaphase transition with unsegregated chromo-

somes, stable cyclin B and elevated MPF activity [26,27]. Further

studies confirmed that MAD2 activated MPF mainly by

preventing cyclin B proteolysis [23,24,28,29].

Although studies suggest activation of MAPK family members

by microtubule inhibitors in somatic cells [30–32], it has rarely

been studied in the oocyte [22,33]. Furthermore, the mechanism

by which microtubule dysfunction activates MAPK is unknown. In

this study, while treatments that activated both MPF and MAPK

induced ooplasmic protrusion, treatments that activated MPF

while inhibited MAPK activation did not (Table 1). In both freshly

matured and aged oocytes without protrusions after demecolcine

treatment, while MPF activities increased, MAPK activity did not.

MG132 and caffeine which are known to specifically activate MPF

increased activities of both MPF and MAPK. Furthermore, while

treatment with ROS (specific CDK1 inhibitor) inhibited activation

of MAPK as well, treatment with U0126 (specific inhibitor of

MEK1/2) inhibited only MAPK. While some studies showed that

MPF triggered activation of MAPK [34–36], others demonstrated

a converse situation [37–40]. Studies in rodent [41–43] and goat

[44] oocytes suggest that MPF might be an upstream regulator of

the MAPK/Mos pathway during meiotic maturation. Further-

more, the possible role of MAPK in MPF activation in

mammalian oocytes was ruled out by the observation that oocytes

derived from mos-knockout mice, which are unable to activate

MAPK, display a normal pattern of MPF activation during

germinal vesicle breakdown and Pb1 emission [45]. After Pb1

emission, however, MPF cannot be properly reactivated in some of

the c-mos knockout oocytes. Thus, the present results suggested

that (1) microtubule dysfunction activated MAPK by activating

Signaling in Cytokinesis
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MPF and (2) MPF activated MAPK during actomyosin assembly

at the metaphase II (MII) stage of oocytes.

Among the drugs used in this study, while demecolcine

prevented proteolysis of cyclin B by activating spindle assembly

checkpoints, MG132, the specific inhibitor of proteasome catalytic

activity, prevented cyclin B degradation directly [46,47]. Caffeine

increased MPF activity by inhibiting Myt1/Wee1 and dephos-

phorylating Cdc2 [48,49]. Thus, the MPF in MII oocytes may be

activated either by cyclin B accumulation or by Cdc2 dephos-

phorylation. While treatment with OA for 0.5 h increased only

MAPK activity, OA treatment for 4 h increased MPF activity as

well in this study. Several studies indicated that OA activated MPF

as well as MAPK [41,50,51]. OA may activate MPF either directly

by inhibiting protein phosphatase 1 and 2A that would otherwise

inactivate Cdc25 [52] or indirectly by activating MAPK which

activates p90(rsk) and down-regulates Myt1 [39,40]. In this study,

when oocytes were treated with OA for 4 h, neither MPF nor

MAPK activities increased in the presence of U0126; however,

while MPF activation was inhibited, MAPK activity increased as

usual in the presence of ROS. This suggested that OA activated

MPF by activating MAPK, a situation similar to that of c-mos

knockout mouse oocytes in which MPF could not be properly

activated after first meiosis [45]. Together, the results suggest that

in MII oocytes, MPF and MAPK can each activate the other

depending on circumstances.

However, the mechanism by which MPF activates MAPK has

not been reported. In this study, when oocytes were treated with

demecolcine, MG132 or caffeine in the presence of the ROCK

inhibitor Y27632, protrusion and MAPK activation was blocked

while the MPF activity increased as usual (Table 1). Furthermore,

RhoA-GTP assay confirmed that the elevated MPF activities

activated RhoA which then activated MAPK during ooplasmic

protrusion. In keeping with the present results, studies using

somatic cells indicated that microtubule minimization or depoly-

merization activated RhoA [2,3], and that Rho GTPase activated

components in the MAPK signaling pathway [53–56]. In Xenopus

oocytes, Rho-associated protein kinase alpha potentiated insulin-

induced MAPK activation [57]. However, Rho activation by

increased MPF activities has not been reported, but on the

contrary, a decrease in MPF activities was found to activate RhoA

by activating the guanine nucleotide exchange factor (GEFs) in

both somatic cells [58,59] and mouse oocytes [60].

Since Elbaz et al. [60] also observed that many of the ECT2

(GEFs) depleted oocytes that failed to extrude Pb1 displayed an

elongated protrusion reminiscent of the induced ooplasmic

protrusion of this study, we postulated that the recruitment of

actin and myosin into contractile rings and the contraction of the

ring might be two separate steps involving different regulation

mechanisms; while the contraction requires activated ECT2 for

RhoA activation, assembly of the ring might be regulated by a

Figure 4. Ooplasmic protrusion and MPF/MAPK activities after oocytes were injected with mouse sperm head (SP) and treated with
demecolcine or MG132. A and A’ are the same oocyte observed under phase contrast and fluorescent microscopes, respectively, showing the egg
chromosome-induced protrusion (arrow), SP-induced protrusion (arrowhead) and Pb1 (*). B to E show confocal images with DNA colored blue, a-
tubulin green and actin red. B and C: Oocytes with both egg chromosome- and SP-induced protrusions after demecolcine and MG132 treatment,
respectively. D and E: Enucleated oocytes injected with SP formed protrusion after MG132 (D) but did not after demecolcine (E). Scale bar is 20 mm. F:
Relative MPF/MAPK activities after intact (MII) or enucleated oocytes (EnMII) were injected with SP (+SP) and treated with demecolcine (+SP+D) or
MG132 (+M). Values without a common letter above their bars differ (P,0.05) within kinase activities.
doi:10.1371/journal.pone.0012706.g004

Figure 3. Confocal micrographs of oocytes showing enrichment of actin and/or myosin (arrow) after different treatments. Myosin is
shown in green, actin in red and DNA in blue. Treatments include demecolcine (D), MG132 (M) or OA for 0.5 h (OA.5h) alone or demecolcine +
Blebbistatin (Bleb), Cytochalasin B (CB), U0126 (U) or ROS (R). *: Pb1. Scale bar is 30 mm.
doi:10.1371/journal.pone.0012706.g003
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different RhoA-activating mechanism. Recent studies in yeast

have shown that CDK/cyclin complex promotes actin polariza-

tion for hyphal growth by inhibitory phosphorylation of GTPase

activating proteins (GAPs) that would otherwise inactivate Rho

[61,62]. In this study, when goat oocytes with demecolcine-

induced protrusions were chemically activated with ionomycin

and CHX, MPF decreased while RhoA-GTP increased sharply,

and the actomyosin ring contracted and pinched off as Pb2 with

the whole complement of chromosomes. Y27632 inhibited

extrusion of Pb2 but had effects on neither the MPF nor MAPK

dynamics. This suggested that (1) RhoA activation was essential for

the constriction of actomyosin rings after oocyte activation, and (2)

while increased MPF activities activated RhoA possibly by

inactivating GAPs during the assembly, decreased MPF activities

activated RhoA probably by activating GEFs during the

constriction of the actomyosin ring. During mouse oocyte

maturation, coincident with the cortical localization of the meiotic

spindle was the formation of a microvillus- and cortical granule-

free area and a thickening of the actin layer in this region of the

egg cortex [10], and it was found that most of the mouse oocytes

completed formation of the cortical granule-free domain at the

metaphase I stage [63]. In fission yeast, while formation of the

contractile ring was completed at 30 min, contraction of the ring

was not started until 37 min after the onset of spindle pole body

separation [64].

In this study, oocytes with protrusions were always character-

ized by enrichment of both actin and myosin in the protruding

domains, and treatment with either actin or myosin inhibitor

completely inhibited ooplasmic protrusion. Requirements for

actin-myosin interactions have been reported during cytokinesis

of various cell types [7,65,66], but the signaling events involved

have not been fully elucidated. Studies using somatic cells suggest

that (1) MAPK activities are involved in the regulation of actin

reorganization [67–70]; (2) MAPK enhances myosin light chain

Figure 5. Pb2 Extrusion and activities of MPF, MAPK and RhoA after oocytes with demecolcine-induced protrusions (DIP) were
activated. A, A’ and D, D’ are the same oocyte observed under phase contrast and fluorescence microscope, respectively, after Hoechst staining. B,
C, E and F are confocal images with DNA colored blue, a-tubulin green and actin red. Contraction of the actomyosin ring began at 0.5 h (B) and 1 h
(E) while Pb2 extrusion (arrows) observed at 1 h (A, A’, C) and 2 h (D, D’, F) after chemical activation (CA) of the DIP and control MII oocytes,
respectively. *: Pb1. Scale bar is 30 mm. Panels G and H show relative MPF/MAPK and RhoA activities, respectively. MII and D: Freshly matured and DIP
oocytes prior to CA; +: In the presence of; Y: Y27632; CA.5h, CA1h and CA2h: Oocytes assayed at 0.5, 1 and 2 h of CA, respectively. a–d: Values without
a common letter above their bars differ (P,0.05) within enzyme activities.
doi:10.1371/journal.pone.0012706.g005
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kinase (MLCK) activity leading to activation of myosin light chains

(MLC) [71–73], which is important for recruitment of myosin into

the contractile ring [74]; (3) MPF activates MLC [75,76] either by

inhibiting myosin phosphatase-targeting subunit (MYPT) [77]

which would otherwise inactivate MLCK [78–80], or by

phosphorylating caldesmon which would otherwise inactivate

actomyosin ATPase [4,81]; and (4) ROCK activates myosin II by

inactivating MYPT [3]. However, interactions between MPF,

MAPK and Rho GTPase in this context have not been reported.

This study showed that while actin enrichment required only the

increase in MAPK activity during ooplasmic protrusion, myosin

enrichment required elevated activities of MPF as well as MAPK

and RhoA GTPase (Table 1), suggesting that while MAPK

controls actin recruitment on its own, MPF promotes myosin

recruitment in a RhoA- and MAPK-dependent manner during

actomyosin assembly. Since both MPF and ROCK inactivated

MYPT in somatic cells and that MPF activated RhoA in this

study, our hypothesis to explain the dependence of MPF on

MAPK and ROCK for myosin recruitment is that (1) MPF

inactivates MYPT via RhoA and (2) only when MYPT is

inactivated can the elevated MAPK activity activate MLCK and

thereby myosin II.

In this study, injection of mouse sperm head into intact goat

oocytes induced a second ooplasmic protrusion after treatment

with demecolcine or MG132. However, no protrusion formed

when enucleated oocytes were treated with MG132 although both

MPF and MAPK activities increased significantly. Thus, ooplas-

mic protrusion requires an interaction between the elevated MPF/

MAPK activities and the chromatin, which can be from a different

species. The chromosome spindle was found to determine the

localization of the actin-rich but cortical granule-free domain

during polarization of maturing mouse oocytes [10–12,15,16,82].

When the chromosomes became scattered following microtubule

disruption, however, a cortical granule-free domain was observed

over each individual chromosome [11,83]. Furthermore, mouse

sperm chromatin, even DNA-coated beads, could induce polar-

ization of mouse oocytes [12,15,16,84] after microinjection.

According to Deng and Li [84], the signals that emanate from

the sperm chromosomes to induce spindle formation and cortical

reorganization are qualitatively and quantitatively different; while

injection of loosely compact chromatin from round spermatids

induced both cortical reorganization and spindle formation,

leading to polar body extrusion, injection of highly compact

chromatin from mature spermatozoa only allowed cortical

reorganization without spindle formation and polar body

extrusion. Thus, the results show a similarity between the

chemical-induced cortical protrusion and polarization of oocytes.

To summarize the major findings of this study (Figure 6),

demecolcine activates MPF by disassembling spindle microtubules

and activating MAD2 while MG132 and caffeine activate MPF

directly. The increased MPF activity activates RhoA possibly by

inactivating GAPs. The activated RhoA activates MAPK. While

the elevated MAPK activity recruits actin on its own, the increased

MPF activity recruits myosin in a RhoA- and MAPK-dependent

manner. From data obtained in other systems, it is possible that

RhoA inactivates MYPT, which allows the activation of MLCK

by MAPK leading to the recruitment of myosin into the contractile

ring. Chromatin or DNA is essential for the assembly of

actomyosin rings. When oocytes with demecolcine-induced

protrusions were treated with ionomycin and CHX, the MPF

activity decreases, activating RhoA possibly by activating GEFs.

The active RhoA induces contraction of the ring resulting in

cytokinetic abscission of the protrusion (Pb2 extrusion).

Materials and Methods

All chemicals and reagents were purchased from Sigma

Chemical Company (St. Louis, MO, USA) unless otherwise

specified. Oocyte culture was carried out at 38.5uC in 5% CO2 in

humidified air, unless otherwise specified.

Collection and in vitro maturation (IVM) of oocytes
Oocytes collected from goat ovaries [22] were cultured for

maturation in droplets of TCM-199 (Gibco, Grand Island, New

Table 1. Interactions between MPF, MAPK and RhoA on enrichment of actin and myosin during ooplasmic protrusion following
different treatments of goat oocytes.

Treatments Protrusion MPF RhoA MAPK Actin enrichment Myosin enrichment Spindle integrity

D + + + + + + 2

D2 2 + 2 2 2 2 2

D+U 2 + + 2 2 2 2

D+Y 2 + 2 2 2 2 2

D+R 2 2 2 2 2 2 2

M + + NA + + + +

M+U 2 + NA 2 2 2 +

M+Y 2 + 2 2 2 2 +

M+Y+OA 2 + 2 + + 2 +

M+R 2 2 NA 2 2 2 +

OA.5h 2 2 2 + + 2 +

OA4h + + + + + + +

OA4h+R 2 2 2 + + 2 +

OA4h+U 2 2 NA 2 2 2 +

Abbreviations: D: 0.8 ng/ml demecolcine; D-: Oocytes without protrusion after D; U: 20-mM U0126; Y: 400-mM Y27632; R: 400-mM ROS; M: 5-mM MG132; C: 1-mM caffeine;
OA.5h: 0.5-mM OA for 0.5 h; OA4h: 0.1-mM OA for 4 h; +: In the presence of; NA: Not assayed. All treatments were performed for 30 min unless otherwise specified.
doi:10.1371/journal.pone.0012706.t001
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York, USA) supplemented with 10% FCS (Gibco), 1 mg/ml 17 b-

estradiol, 24.2 mg/L sodium pyruvate, 0.05 IU/ml FSH, 0.05

IU/ml LH and 10 ng/ml EGF. At 19 h of culture, oocytes were

freed of cumulus cells and those with a first polar body (Pb1) but

without spontaneous ooplasmic protrusions were selected for

further treatments.

Treatment of oocytes to regulate the assembly and
contraction of contractile rings

To induce or inhibit ooplasmic protrusion, oocytes were

cultured in Dulbecco’s phosphate-buffered saline (D-PBS) supple-

mented with different drugs for 30 min. At the end of treatment,

oocytes were examined under a stereomicroscope and were

divided into groups with or without ooplasmic protrusions for

further treatments.

To induce contraction of the actomyosin ring, oocytes with

demecolcine-induced ooplasmic protrusions and the control

oocytes collected at 19 h of IVM were first exposed to 5-mM

ionomycin for 5 min at room temperature, and then cultured in

the CR1aa medium containing 10-mg/ml cycloheximide (CHX)

with or without 400-mM Y27632. Oocytes were observed under a

phase contrast microscope for extrusion of Pb2 or assayed for

MPF/MAPK and RhoA activities at 0.5, 1 or 2 h of culture.

Micromanipulators were used to move the Pb2 to confirm

cytokinetic abscission.

Roscovitine (ROS, 20 mM), U0126 (10 mM), okadaic acid

(OA, 100 mM), MG132 (5 mM), Y27632 (20 mM), cytochalasin B

(CB, 5 mg/ml), blebbistatin (34.2 mM) and ionomycin were

dissolved in dimethyl sulfoxide (DMSO), while demecolcine

(10 mg/ml) was dissolved in Hank’s balanced salt solution (HBSS),

caffeine (100 mM) was dissolved in D-PBS and CHX in water. All

the stock solutions were stored in aliquots at 220uC except for

demecolcine which was stored at 4uC until use.

Immunofluorescence microscopy
All the procedures were conducted at room temperature unless

otherwise specified. Oocytes were washed 3 times in D-PBS

between treatments. Oocytes were (1) freed of zona pellucida by

treatment with 0.5% pronase (Roche Diagnostics GmbH,

Mannheim, Germany) in D-PBS at 37 uC for 3–5 min; (2) fixed

with 4% paraformaldehyde in the PHEM buffer (60 mM Pipes,

25 mM Hepes, 10 mM EGTA and 4 mM MgSO4, pH 7.0) for at

least 30 min; (3) treated for 10–15 min in 1% Triton-X 100 in

PHEM; (4) blocked in PHEM containing 1% BSA and 100 mM

glycine at 4 uC overnight.

Triple staining of a-tubulin, actin and chromatin. Blocked

oocytes were incubated (1) for 1 h in PHEM containing fluorescein

isothiocyanate (FITC)-conjugated anti-a-tubulin monoclonal

antibodies (1:50) to stain tubulin; (2) for 1 h in PHEM con-

taining tetramethylrhodamine B isothiocynate (TRITC)-conjugated

phalloidin (1:200) to label actin; (3) for 15 min in D-PBS with

10 mg/ml Hoechst 33342 to stain chromosomes.

Double staining of MAD2 and chromatin. Blocked oocytes

were incubated (1) overnight in rabbit anti-MAD2 antibody (1:50,

Santa Cruz, Biotechnology, Inc.) in 1% BSA/PHEM with

100 mM glycine at 4uC; (2) for 1 h with FITC-conjugated goat-

anti-rabbit IgG (1:200, Santa Cruz, Biotechnology, Inc.) in 1%

BSA/PHEM with 100 mM glycine; (3) for 15 min in D-PBS with

10-mg/ml propidium iodide to stain chromosomes.

Triple staining of myosin IIA, actin and chromatin.

Blocked oocytes were incubated (1) for 2 h in rabbit anti-

myosin IIA antibody (1:50, Santa Cruz, Biotechnology, Inc.) in

1% BSA/PHEM with 100 mM glycine; (2) for 1 h with FITC-

conjugated goat-anti-rabbit IgG (1:200) in 1% BSA/PHEM with

100 mM glycine; (3) for 1 h to stain actin as described above; (4)

for 15 min in D-PBS with 10 mg/ml Hoechst 33342 to stain

chromosomes.

Figure 6. The signaling pathways leading to the assembly and contraction of actomyosin rings during chemical-induced oocyte
cytokinesis. Refer to the text for detailed explanations.
doi:10.1371/journal.pone.0012706.g006
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Laser confocal microscopy. The stained oocytes were

mounted on glass slides and observed with a Leica laser

scanning confocal microscope. Hoechst 33342 labeled chromatin

was excited with the 405 nm line of a diode laser. The FITC/PI

and TRITC fluorescence was obtained by excitation with 488 and

533 nm lines of an Ar/ArHr laser and the emitted light was passed

through 488 and 533 nm filters, respectively. The individual

optical sections were pseudo-colored and digitally recombined

when necessary into a single composite image using the Leica

Confocal Software.

Histone H1 and MAP kinase assay
Ten oocytes from each treatment were washed 3 times in the

kinase buffer (15-mM 3-[n-morpholino] propanesulfonic acid

[MOPS], pH 7.2, containing 80-mM glycerophosphate, 10-mM

EGTA, 15-mM MgCl2, 0.1-mM PMSF, 10 mg/ml leupeptin,

10 mg/ml aprotinin, and 10 mg/ml cAMP-dependent protein

kinase inhibitor peptide), transferred to10-ml kinase buffer

contained in a 1.5 ml microfuge tube and stored frozen at

270uC. The frozen samples were subjected to 4 to 5 times freezing

and thawing to prepare lysates. Kinase reactions were initiated by

the addition of 10-m1 substrate buffer containing 2 mg/ml histone

H1 or 1 mg/ml myelin basic protein (MPB), 2-mM dithiothreitol

(DTT) and 20-mCi/ml [c-32P] ATP to each sample. The reactions

were carried out for 50 min at 36uC and terminated by the

addition of an equal volume of double-strength SDS sample buffer

containing b-mercaptoethanol. Kinase reaction products were

boiled for 3 min and separated by 12% linear gradient SDS-

PAGE. Gels were exposed to phosphor-screens. Data acquisition

was the actual scanning of sample images with the CycloneH Plus

Storage Phosphor System to create an image file that can be

analyzed by the OptiQuantTM Image Analysis Software. The

kinase activity values of newly matured goat oocytes collected 19 h

of IVM were arbitrarily set as 100%, and the other values were

expressed relative to this activity. The amount of kinase reaction

product used for SDS-PAGE was strictly controlled (20 ml) for

each sample, and three samples were analyzed for each treatment.

Microinjection of anti-MAD2 antibodies into goat
oocytes

Microinjection of anti-MAD2 antibodies was performed in D-

PBS using a Leica inverted microscope equipped with two

micromanipulators. A goat oocyte was held to the holding pipette

at the 9 o’clock position and then rotated until the oocyte side with

Pb1 was around the 12 o’clock position. The injection pipette (4-

mm in inner diameter with a beveled fine point) containing

antibodies was positioned at the 3 o’clock position and advanced

to penetrate the zona pellucida and the oolemma. Once inside the

oolemma, a volume of about 30-pl of the antibodies (0.2 mg/ml in

D-PBS) was injected into the oocyte. Control oocytes were injected

with the same volume of goat IgG (0.5 mg/ml in D-PBS) or D-

PBS. After injection, oocytes were cultured for 30 min in

maturation medium before treatments to induce ooplasmic

protrusions.

Rho-GTPase activity assay
From each treatment, 150 or 50 oocytes were collected for

RhoA-GTP or total RhoA analysis, respectively. Oocytes were (1)

washed 3 times in a sample buffer containing 50-mM Tris

pH 7.2, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1%

SDS, 60-mM n-octyl glucopyranoside, 500-mM NaCl, 10-mM

MgCl2, 10 mg/ml leupeptin, 10 mg/ml aprotinin and 1-mM

phenylmethylsulphonyl fluoride (PMSF); (2) transferred to a 0.2-

ml microfuge tube with 20-ml buffer and lysated by 3–5 times

freezing and thawing; (3) lysates were incubated with 5-mg of a

glutathione-agarose bound GST-tagged rhotekin Rho binding

domain (Upstate Biotechnology in USA) at 4uC for 45 min with

gentle rocking; (4) beads were collected by centrifugation at

15,000 rpm for 30s at 4uC and washed twice in the sample buffer;

(5) 15-ml sample buffer containing beads in each tube were frozen

at 270uC; (6) frozen beads were resuspended in 15-ml of

26Laemmli sample buffer, boiled for 5 min and separated by

12% linear gradient SDS-PAGE; (7) the protein samples were

transferred onto PVDF membranes in transferring buffer

containing 0.1M Tris, 0.192M glycin and 5% methanol in

TBST (TBS with 0.1% Tween 20) at 2mA/cm2 for 30 min with

AE-6675 HorizBlot (ATTO corporation in Japan); (8) mem-

branes were blocked for 1 h with TBST containing 3% BSA and

incubated with (a) anti-RhoA antibody (1:500 dilution, Abcam in

UK) in TBST with 3% BSA at 4uC overnight, (b) horseradish

peroxidase-conjugated antibody (1:1000 dilution, Sizheng Bio-

technology, China) in TBST/3% BSA for 1 h and (c) Immobilon

Western reagent (Millipore Corporation in USA); (9) membranes

were exposed to x-ray film. The relative quantity of RhoA-GTP

was determined with Image-Pro Plus Software by analyzing the

sum density of each protein band image. The quantity values of

newly matured oocytes collected 19 h of IVM were arbitrarily set

as 100%, and the other values were expressed relative to this

activity. b-actin in each sample was also analyzed as control using

the anti-b-actin antibody. Total lysate was immunoblotted with

the same RhoA antibody to illustrate equality in oocyte RhoA

across conditions.

Microinjection of mouse sperm heads or tails into goat
oocytes

Masses of dense sperm were collected from mouse caudae

epididymides [85] and placed in a test tube containing 500-ml D-

PBS. After mixing, the resulting sperm suspension was sonicated

for 5 min to separate sperm heads from the tails. The suspension

was then heated in a water bath at 60–65uC for 40 min and 1:1

diluted in D-PBS before microinjection. The Pb1 and 1/5–1/4 of

the ooplasm underneath were removed from some oocytes using

an enucleation pipette (25 mm in inner diameter). To inject sperm

heads or tails, an oocyte was held to the holding pipette at the 9

o’clock position and then rotated until the oocyte side with Pb1

was around the 12 o’clock position. The injection pipette (8–

10 mm in inner diameter) containing a sperm head or a tail was

advanced to penetrate the zona and the oolemma at the 3 o’clock

position. Care was taken to place sperm heads or tails into the egg

cortex as close to the plasma membrane as possible. After

microinjection, the oocytes were cultured for 30 min in matura-

tion medium before treatment for protrusion induction.

Data analysis
There were at least three replicates for each treatment.

Percentage data were arc sine transformed and analyzed with

ANOVA; a Duncan multiple comparison test was conducted to

locate differences. The soft ware used was Statistics Package for

Social Science (SPSS 11.5, Chicago, IL, USA). Data were

expressed as mean 6 SE and P,0.05 was considered significant.
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