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Abstract
Phylogenetic analyzes under the Maximum-Likelihood (ML) model are time and resource intensive. To adequately 
capture the vastness of tree space, one needs to infer multiple independent trees. On some datasets, multiple 
tree inferences converge to similar tree topologies, on others to multiple, topologically highly distinct yet statistically 
indistinguishable topologies. At present, no method exists to quantify and predict this behavior. We introduce a 
method to quantify the degree of difficulty for analyzing a dataset and present Pythia, a Random Forest Regressor 
that accurately predicts this difficulty. Pythia predicts the degree of difficulty of analyzing a dataset prior to initiating 
ML-based tree inferences. Pythia can be used to increase user awareness with respect to the amount of signal and 
uncertainty to be expected in phylogenetic analyzes, and hence inform an appropriate (post-)analysis setup. 
Further, it can be used to select appropriate search algorithms for easy-, intermediate-, and hard-to-analyze datasets.
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Introduction
The goal of a phylogenetic inference is to find the phylo
genetic tree that best explains the given biological se
quence data. Since the number of possible tree 
topologies grows super-exponentially with the number of 
taxa, one cannot compute and score every possible tree 
topology. Instead, one deploys tree inference heuristics 
that explore the tree space to find a tree with a “good” 
score, for example under the Maximum-Likelihood (ML) 
criterion (Yang et al. 1995). However, these heuristics do 
not guarantee that the tree inference will converge to 
the globally optimal tree. Therefore, under ML, one typical
ly infers multiple trees and subsequently summarizes the 
inferred, locally optimal trees via a consensus tree. One 
can observe that for some datasets, all individual, inde
pendent ML tree searches converge to topologically similar 
trees. This suggests that the likelihood surface of such da
tasets exhibits a single likelihood peak, yielding the dataset 
easy to analyze. For other datasets, one observes that the 
independent tree inferences converge to multiple topo
logically distinct, yet, with respect to their ML score, statis
tically indistinguishable, locally optimal trees. These 
datasets are hence difficult to analyze, and we say that 
they exhibit a rugged likelihood surface. This diverse behav
ior of phylogenetic tree searches has already been reported 
in several publications (Lakner et al. 2008; Stamatakis 2011; 
Morel et al. 2020). In general, the more tree inferences we 
perform, the better our understanding of the behavior of 
data sets and coverage of the respective tree space will 
be. However, under ML, inferring a single tree can already 

require multiple hours or even days of CPU time. In order 
to save time and resources, an optimal analysis setup 
will perform as few tree inferences as necessary. For 
easy-to-analyze datasets with a single-likelihood peak, we 
require fewer and less involved tree search heuristics and 
bootstrap replicate searches to adequately sample the 
tree space, as opposed to difficult-to-analyze datasets 
with rugged likelihood surfaces. To the best of our knowl
edge, and despite anecdotal reports on the behavior of dif
ficult datasets, there does not yet exist a quantifiable 
definition of dataset difficulty that captures the behavior 
of ML tree searches on datasets.

In order to speedup ML tree inferences, researchers 
have developed elaborate ML tree inference tools that 
combine multiple search strategies to reduce the risk of 
becoming stuck in local optima. There also exist 
early-stopping criteria to determine whether the tree in
ference has converged. Such early-stopping methods de
ploy ad hoc or statistical criteria to terminate the tree 
inference. For example, the ML tree inference software 
FastTree (Price et al. 2010) relies on a maximum number 
of topology optimization iterations as a function of the 
number of sequences in the dataset. The ML software 
RAxML (Stamatakis 2014) implements an early-stopping 
criterion based on the topological distance between the 
respective best trees found in two consecutive optimiza
tion cycles (Stamatakis 2011). Vinh and von Haeseler 
(2004) propose an estimation criterion that determines 
with 95% confidence whether continuing the tree infer
ence will yield a better tree than the currently best tree. 
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However, early-stopping criteria only determine the con
vergence of the current tree search, but they do evidently 
not guarantee that the search has converged to the global
ly optimal tree. Thus, to better characterize and explore 
the tree search space, additional tree inferences and subse
quent a posteriori analyzes are required. In contrast, asses
sing the expected behavior of a dataset prior to 
conducting compute-intensive tree inferences allows for 
a more informed decision on the most appropriate tree in
ference and post-analysis setup. It also allows users to re
assemble/modify difficult datasets as these will most 
likely require resource-intensive analyzes that yield contra
dicting, yet almost equally likely, tree topologies with low 
confidence. Several methods have already been developed 
to assess the information content of datasets prior to tree 
inference, the most prominent example being the treelike
ness of a dataset (Bandelt and Dress 1992; Lyons-Weiler 
et al. 1996; White et al. 2007). Simple and fast-to-compute 
metrics include the sites-over-taxa ratio. For instance, 
Rosenberg and Kumar (2001) conclude that a higher 
phylogenetic inference accuracy can be achieved by in
creasing the MSA length, rather than including more 
taxa/sequences. A more involved method was proposed 
by Holland et al. (2002). The authors suggest the use of 
δ-plots, that is histograms, based on all quartet distances 
in the Multiple Sequence Alignment (MSA). However, 
computing the δ-plots is time-intensive due to the compu
tational complexity of O(n4), where n is the number of 
taxa in the MSA. Misof et al. (2014) provide an overview 
of various methods for calculating the treelikeness, prior 
to a phylogenetic analysis. The authors acknowledge that 
the considered treelikeness estimation methods capture 
certain aspects of the MSAs. However, they conclude 
that none of them sufficiently informs the user about 
the expected behavior of phylogenetic analyzes in general, 
and suggest further research in this area.

New Approach
Here, we initially introduce a quantification of difficulty 
based on the result of 100 ML tree inferences per MSA. 
We then show that this quantification adequately repre
sents the behavior of the ML searches on the dataset. 
Since executing 100 ML tree searches is computationally 
prohibitive in general, we train a Random Forest 
Regressor Ho (1995) that can predict the difficulty of a gi
ven MSA that is exclusively based on MSA attributes and 
some fast and thus substantially less expensive parsimony- 
based tree inferences (Farris 1970; Fitch 1971). By extract
ing multiple simple and fast-to-compute attributes, such 
as the sites-over-taxa ratio, and by deploying machine 
learning, we devise an accurate difficulty predictor called 
Pythia. We attain a high prediction accuracy, with a 
mean absolute prediction error (MAE) of 0.09 and a 
mean absolute percentage error (MAPE) of 2.9%. 
Computing the prediction features and predicting the dif
ficulty is on average approximately five times faster than a 
single ML tree inference. Pythia predicts the difficulty of a 

dataset on a scale ranging between 0.0 (easy) and 1.0 
(difficult).

In contrast to the aforementioned early-stopping cri
teria that can be applied during ML searches, Pythia in
forms the user about the expected behavior of the MSA 
in ML phylogenetic analysis prior to any ML phylogenetic 
inference. Thereby, users can take informed decisions on 
the most appropriate ML analysis and post-analysis setup. 
This includes, for example, a careful consideration of the 
number of required independent, resource-intensive, tree 
searches based on the difficulty. Also, for difficult MSAs, 
the user will be able to improve the informativeness of 
the MSA, for example, by increasing sequence length or re
moving sequences, to assemble an MSA that is easier to 
analyze. Thereby, one can save valuable time and resources 
by not performing tree inferences on difficult MSAs. We 
therefore suggest that an analysis with Pythia should be 
conducted at the beginning of any ML phylogenetic ana
lysis. Note that the predicted difficulty does not directly 
predict the number of tree inferences required to suffi
ciently sample the tree space, as this number also depends 
on the implemented tree inference heuristic.

Pythia is available as open source software libraries in C 
and Python. Both libraries include the trained Random 
Forest Regressor and the computation of the required 
prediction features. The C library CPythia is an addition 
to the COre RAXml LIBrary (Coraxlib) (Exelixis-Lab 2022) 
and is available at https://github.com/tschuelia/ 
CPythia. Additionally, we provide PyPythia, a light
weight, stand-alone Python library, including a respect
ive command line interface. PyPythia is available at 
https://github.com/tschuelia/PyPythia. Finally, by 
using the phylogenetic tree data that is being collected 
by our dynamically growing RAxML Grove (Höhler et al. 
2021) database, we regularly retrain Pythia and update 
the predictor in both libraries.

Results
Difficulty Prediction Accuracy
Our training data contains 3250 empirical MSAs obtained 
from TreeBASE Piel et al. (2009). We divide this training 
data into a training set (80%) and a test set (20%). The 
training set is used for training the predictor and the 
test set is exclusively used for evaluating the trained pre
dictor. Pythia predicts the degree of difficulty on a scale be
tween 0.0 and 1.0. A value of 1.0 indicates a difficult 
(hopeless) MSA with a rugged tree space. We expect 
such an MSA to exhibit multiple, statistically indistinguish
able locally optimal yet topologically highly distinct trees. 
In contrast, we expect an MSA with a value of 0.0 to be 
easy to analyze by requiring only few independent tree 
searches. Pythia attains a mean absolute error (MAE) of 
0.09. This corresponds to a mean average percentage error 
(MAPE) of 2.9%. The mean squared error (MSE) is 0.02 and 
the R2 score is 0.79. Supplementary figures S5a and S5b, 
Supplementary Material online show the distribution of 
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prediction errors for the training data. When analyzing the 
prediction error, we notice that Pythia tends to overesti
mate the difficulty of MSAs with a difficulty ≤0.3 and 
underestimate the difficulty for MSAs with a difficulty 
>0.3 (supplementary fig. S4, Supplementary Material on
line). We suspect that this is caused by an uneven distribu
tion of difficulties in the training data. Our training data 
contain substantially more “easy” MSAs than difficult 
MSAs: for approximately 60% of MSAs the assigned diffi
culty is ≤0.3 and only about 10% have a difficulty ≥0.7 
(supplementary fig. S2, Supplementary Material online).

Feature Importance
In our study, we analyze a plethora of distinct features of 
the MSA, of trees inferred under parsimony, and features 
based on a single ML tree inference using RAxML-NG. In 
order to decrease the runtime of Pythia’s difficulty predic
tion, we analyze the runtime of computing each feature for 
all MSAs in our training data, as well as the importance of 
the feature for the prediction. Based on these results, we 
selected a subset of eight features:

• Sites-over-taxa ratio:

Sites
Taxa

=
Number of alignment columns

Number of taxa 

• Patterns-over-taxa ratio:

Patterns
Taxa

=
Number of unique sites

Number of taxa 

• % Invariant sites: Percentage of fully conserved sites.
• % Gaps: Proportion of gaps in the MSA.
• Entropy: Shannon Entropy Shannon (1948) as average 

over all per-column/site entropies. See the supple
mentary information for a more detailed description.

• Bollback Multinomial: Multinomial test statistic ac
cording to Bollback (2002). See the supplementary in
formation for a more detailed description.

• RF-Distance Parsimony Trees: RF-Distances between 
100 trees inferred using parsimony.

• % Unique Topologies Parsimony Trees: Percentage of 
unique topologies among the 100 inferred parsimony 
trees.

Four of these are direct attributes of the MSA: the 
sites-over-taxa ratio, the patterns-over-taxa ratio, the per
centage of gaps, and the percentage of invariant sites. Two 
features quantify the amount of information in the MSA: 
the Shannon entropy (Shannon 1948) and the Bollback 
multinomial (Bollback 2002). Two additional features are 
based on rapid parsimony tree inferences: we infer 100 par
simony trees via a randomized step-wise addition order 
procedure and compute their average pairwise topological 
distances using the Robinson–Foulds distance metric 
(RF-Distance) (Robinson and Foulds 1981), as well as the 
proportion of unique topologies in this set of 100 parsi
mony trees. In supplementary section S2, Supplementary 
Material online, we present all features we considered 
and analyzed in more detail, alongside the respective fea
ture importance and runtime to justify the selection of 
the eight features we finally use. Table 1 shows the predic
tion importances of the eight features upon which the dif
ficulty prediction is based. We use the permutation 
importance (Breiman 2001) for computing feature import
ance. As the table shows, the difficulty prediction heavily 
relies on the average RF-Distance and the proportion of 
unique topologies among the inferred parsimony trees. 
This is expected, as our difficulty definition under ML re
flects the ruggedness of the tree space and correlates 
well with the ruggedness under parsimony.

Runtime of Feature Computation
Computing the selected set of prediction features takes on 
average 5 ± 31 s (μ ± σ) with a median runtime of 1 s. For 
our training data, this corresponds to a runtime of 21.5 ± 
88.6% relative to the runtime for inferring a single ML tree 
using RAxML-NG. The median is 6.8%. The high average 
compared to the median, and the large spread, are due to 
the fact that the runtime of computing the prediction fea
tures predominantly depends on the size of the MSA. The 
larger the MSA, the faster the feature computation is com
pared with a single ML tree inference. Supplementary figure 
S3, Supplementary Material online depicts this correlation. 
For benchmarking the runtimes of the feature computation, 
we used the implementation in our Python library. When 
running a subsequent ML tree inference, the runtime over
head induced by the prediction can be amortized by passing 
the inferred maximum parsimony trees as starting trees 
to the ML inference tool (e.g. RAxML-NG). Instead of re- 
computing parsimony starting trees, the RAxML-NG simply 
initiates its tree searches on the provided parsimony starting 
trees.

Discussion
Predicting the difficulty of MSAs to gain a priori insights 
into the expected behavior of phylogenetic tree searches 
and the shape of the likelihood surface constitutes a vital 
step towards faster phylogenetic inference and a more 
targeted setup of the computational analyzes and post- 
analyzes. Our difficulty prediction allows for careful 

Table 1. Importance of the Subset of Features we use to Train Pythia.

Feature Impurity Importance

% Unique topologies parsimony trees 42.9%
RF-distance parsimony trees 33.2%
Entropy 17.0%
Patterns-over-taxa 13.6%
% Gaps 2.5%
Bollback 2.3%
Sites-over-taxa 1.5%
% Invariant 0.6%
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consideration of the number of tree inference required to 
sufficiently sample tree space prior to ML analyzes. 
Especially for easy MSAs, this has the potential to save 
valuable time and resources. In this paper, we presented 
a quantifiable definition of difficulty for MSAs and showed 
that this definition adequately represents the ruggedness 
of the tree space of the dataset under ML. Using this def
inition, we trained Pythia, a Random Forest Regressor, to 
predict the difficulty on a scale ranging between 0.0 and 
1.0. We showed that Pythia achieves a high prediction ac
curacy. We further showed that the runtime to compute 
the prediction features is on average only approximately 
one-fifth of the runtime required for inferring a single 
ML tree with RAxML-NG. The more taxa and sites the 
MSA has, the faster the feature computation is relative 
to a single ML tree inference, making Pythia especially valu
able for phylogenetic analyzes on MSAs with many sites 
and taxa. We conclude that predicting the difficulty of 
an MSA prior to any tree inference allows for faster ana
lyzes, informing user expectations regarding the stability 
of the inferred tree, and Pythia should be included in ML 
phylogenetic inference pipelines. As a cautionary note, 
we emphasize that the ruggedness of the tree space might 
also depend on the model and tree inference heuristic 
being used. Yet, the fact that Pythia relies on parsimony 
trees to predict the ruggedness of ML trees shows that 
there exists a correlation between models regarding the 
ruggedness of the tree space and thus, the difficulty of 
the analysis.

Using our dynamically growing RAxML Grove database, 
we perpetually enlarge our training data and retrain Pythia 
at regular intervals. The goal of this retraining is to con
tinuously improve the predictive power of Pythia by pro
viding more, and more diverse data in terms of the 
distribution of feature values. At the time of writing this 
paper, the difficulty labels in our training data are unevenly 
distributed. Since we carefully select the new MSAs from 
RAxML Grove we include for retraining (see Section 
“Retraining the Model”), we expect the effect of uneven la
bel distribution to cancel out over time.

Use and Misuse of Pythia
We suggest predicting the difficulty using Pythia prior to 
any ML phylogenetic inference, as this will allow for 
more targeted analysis setups. For example, for a difficult 
MSA, the user should be careful to report a single ML 
tree as best-known tree, as the tree space most likely exhi
bits multiple, indistinguishable local optima. The user 
should also be aware that a more difficult MSA requires 
a higher number of independent tree searches to con
struct a reliable consensus tree. Furthermore, difficult 
MSAs require a more careful consideration of necessary 
additional phylogenetic analyzes and post-processing 
steps. Especially for very difficult MSAs (difficulty >0.8) 
we suggest to consider improving upon the difficulty of 
the MSA prior to analysis. This is because a phylogenetic 
analysis on very difficult MSAs, will most likely not yield 

a well-resolved tree, even if a consensus of numerous al
most equally likely yet topologically distinct ML trees is 
built. Pythia is not intended to directly predict the num
ber of independent tree searches required for conduct
ing a thorough ML analysis, as this number also heavily 
depends on the search strategy of the respective ML 
inference tool.

Future Work
Potential future applications of Pythia include, for in
stance, the assembly of benchmark datasets which cover 
a broad and representative difficulty range for testing no
vel phylogenetic models and tools. Pythia can also serve as 
a criterion during the empirical dataset assembly process. 
For instance, additional sequence data can be added to 
yield a dataset that is easier to analyze.

Another avenue for future work is to implement a 
difficulty-aware tree inference heuristic. Depending on 
the difficulty of the MSA, we can, for example, apply differ
ent heuristic search strategies. For instance, on easy MSAs 
it might be sufficient to explore the tree space via a less 
thorough exploration strategy, that is, by only using 
Nearest-Neighbor-Interchange (NNI) moves. In compari
son to Subtree Pruning and Regrafting (SPR) moves, this 
reduces the tree topology search complexity from O(n2) 
to O(n) (Heath and Ramakrishnan 2010).

In our study, we focused on predicting the difficulty of 
ML phylogenetic inferences. Another popular method to 
explore the tree space of an MSA is Markov chain 
Monte Carlo (MCMC) based Bayesian phylogenetic infer
ence. Since both methods, ML and MCMC, rely on the 
same input MSA and on the same likelihood function, 
we suspect the difficulty to be reflected in the apparent 
convergence speed of MCMC methods. In this section, 
we will explore this potential correlation on three exem
plary MSAs.

Besides informing the computational setup of ML 
phylogenetic analyzes, Pythia can also potentially be ap
plied to adjust user expectations regarding the bootstrap 
support of the best-known tree as well as related support 
measures. For instance, the perhaps most common and re
current user inquiry on the RAxML Google user support 
group concerns possible reasons for often unexpected 
and disappointingly low bootstrap support values. In 
this section, we also present an exploratory analysis of 
the correlation between the difficulty as predicted by 
Pythia, and the bootstrap support values for three 
MSAs.

Since both, MCMC phylogenetic analyzes and bootstrap 
analyzes, constitute extremely time- and resource-intensive 
tasks, a thorough exploration of their connection to diffi
culty prediction is beyond the scope of this work.

MCMC Convergence Prediction
The features we use to predict the difficulty of an MSA are in
dependent of the inference method used for the subsequent 
analyzes. However, as we describe in the Quantification of 
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Difficulty subsection, our difficulty quantification is based on 
100 tree inferences using RAxML-NG which implements the 
ML method. Therefore, our predictions might be biased to
wards ML analyzes and potentially not describe the rugged
ness of the tree space in a model-independent manner. To 
assess if our predictions can be generalized, we compare 
our difficulty prediction to convergence diagnostics of 
MCMC-based phylogenetic analyzes. For three DNA MSAs 
[D27 (Hedges et al. 1990), D125 (Poulakakis and Stamatakis 
2010), and D354 (Grimm et al. 2006)], we perform MCMC 
analysis using MrBayes Ronquist et al. (2012). We run four 
chains for 10 million generations each using the general 
time reversible (GTR) model with four Γ rate categories to ac
count for among site rate heterogeneity. MrBayes reports the 
average standard deviation of split frequencies (ASDSF; split 
frequencies: relative number of occurrence of splits/biparti
tions in the set of posterior trees) as a convergence diagnostic 
metric and suggests executing additional generations as long 
as the ASDSF is ≥0.01. D125 is an easy dataset with an ex
pected clear, single-likelihood peak. The difficulty according 
to our definition is low (≪0.1) and MrBayes appears to con
verge: the ASDSF value drops below 0.01 after 150,000 genera
tions and is ≪ 0.01 after only 1 million generations. D27 
exhibits at least two distinct likelihood peaks, suggesting 
that the MSA is rather difficult to analyze (Lakner et al. 
2008). The difficulty according to our definition is 0.45 and 
after 10 million generations MrBayes reports an ASDSF of 
0.011, indicating that the MCMC did not converge to a single 
local optimum. D354 exhibits a rugged likelihood surface 
(Grimm et al. 2006), so we expect a high difficulty and no con
vergence. The assigned difficulty for D354 is 0.6 and after 10 
million generations the ASDSF is 0.009. According to 
MrBayes this suggests convergence and adding more genera
tions should improve the ASDSF. However, we observe that 
the ASDSF did not improve during the last 2 million genera
tions, and adding more generations did not further improve 
the ASDSF. D125 with 125 taxa and approximately 30,000 
sites is a larger dataset than D354 with 354 taxa and only 
460 sites. Yet, D125 converges after 1 million generations, 
while for D354 the ASDSF drops below 0.01 only after 8 mil
lion generations. The smallest dataset D27 with 27 taxa and 
1,940 sites indicates no convergence after 10 million genera
tions according to the ASDSF. We thus suspect that the num
ber of generations required for the MCMC is correlated to the 
difficulty rather than to the size of the dataset.

Bootstrap Support Values
As already mentioned, the perhaps most common question 
on the RAxML user support Google group is related to dis
appointingly low support values. We expect the difficulty, 
and thus the vastness of the tree space, to correlate with 
the support values of the best-known tree in a subsequent 
bootstrapping analysis. We use the same MSAs for the same 
reasons as for the exploratory MCMC convergence predic
tion conducted above: D27, D125, and D354. For each MSA, 
we run RAxML-NG using its --all execution mode. This 
mode infers 20 ML trees for the MSA, infers bootstrap rep
licate trees, and draws support values on the tree with the 

highest log-likelihood (best-known tree). Per default, 
RAxML-NG infers at most 1,000 bootstrap replicates, but 
implements an early-stopping criterion that determines 
convergence based on the bootstopping criterion pre
sented by Pattengale et al. (2010). To explore the correl
ation between the difficulty prediction value and the 
bootstrap support values, we compute the average and 
standard deviation μ ± σ of bootstrap support values on 
the respective best-known trees. As stated above, D125 is 
an easy dataset exhibiting a clear signal with an assigned dif
ficulty ≪0.1. This is reflected by the high bootstrap support 
values: μ ± σ = 97.64 ± 8.38%. The assigned difficulty for 
D27 is 0.45 and RAxML-NG reports the bootstrap support 
values as μ ± σ = 51.5 ± 29.02%. Dataset D354 is the 
most difficult among the three example MSAs with a 
predicted difficulty of 0.6. Hence, the bootstrap support 
values are the lowest among the three MSAs with 
μ ± σ = 43.41 ± 32.48%.

Materials and Methods
We formulate the difficulty prediction challenge as a su
pervised regression task. The goal is to predict the difficulty 
on a scale ranging between 0.0 (easy) to 1.0 (difficult). We 
face two main challenges: (i) obtaining a sufficiently large 
set of MSAs to train Pythia on, ideally consisting of empir
ical MSAs, and (ii) obtaining ground-truth difficulties that 
represent the actual difficulty of the training data. In the 
following, we present how we obtain the training data 
and assign ground-truth difficulties. We further present 
our trained regression model, and finally present our heur
istic for regularly retraining the regression model to con
tinuously improve the prediction accuracy of Pythia.

Quantification of Difficulty
In order to train a reliable difficulty predictor, we need a 
reliable ground-truth label for each training datum. To ob
tain such labels, we require a quantifiable difficulty defin
ition. To stringently quantify the difficulty of an MSA, we 
would have to explore the entire tree space. Since this is 
computationally not feasible, we need to rely on a heuristic 
definition. Our heuristic to quantify the difficulty is based 
on 100 ML tree inferences. In our analyzes, we use 
RAxML-NG. First, we infer Nall= 100 ML trees and compute 
the average pairwise relative RF-Distance between all trees 
(RFall), as well as the number of unique topologies among 
the 100 inferred trees (N∗all). We determine the best tree 
among the 100 inferred trees according to the 
log-likelihood, and compare all trees to this best tree using 
statistical significance tests. We assign trees that are not 
significantly worse than the best tree to a so-called plaus
ible tree set. In our analyzes, we use the statistical signifi
cance tests as implemented in the IQ-TREE software 
package Minh et al. (2020). Due to the continuing debate 
about the most appropriate significance test for compar
ing phylogenetic trees, we use the approach suggested 
by Morel et al. (2020): we only include trees that pass all 
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significance tests in the plausible tree set. We further refer 
to the number of trees in this plausible tree set as Npl. We 
compute the average pairwise relative RF-Distances be
tween trees in the plausible tree set (RFpl), as well as the 
number of unique topologies (N∗pl). Finally, we compute 
the difficulty of the dataset based on the following for
mula:

difficulty =
1
5
· RFall + RFpl

􏼔

(1) 

+
N∗all

Nall
+

N∗pl

Npl
(2) 

+ 1 −
Npl

Nall

􏼒 􏼓􏼕

(3) 

The reasoning for expression (1) is that if the RF-Distance is 
high, the tree space consists of multiple distinct, locally op
timal tree topologies which characterize a dataset that is 
difficult to analyze. With expression (2) the reasoning is 
that the tree surface becomes more rugged, the more dis
tinct locally optimal tree topologies the tree inference 
yields, and the more tree topologies are not significantly 
different from the best tree. Finally, the rationale for ex
pression (3) is that, the more tree inferences yield a plaus
ible tree, the more informative the MSA will be about the 
underlying evolutionary process and the easier the MSA 
will be to analyze. Each term is a value between 0.0 and 
1.0, leading to an average value between 0.0 and 1.0 that 
quantifies the overall difficulty.

For each MSA in our training data, we compute the 
difficulty according to this definition. To this end, we 
implement a training data generation pipeline that auto
matically performs all required tree inferences, statistical 
tests, and computes the difficulty label alongside the fea
tures required for training Pythia. We implement this pipe
line using the Snakemake workflow management system 
(Köster and Rahmann 2012) and Python 3. The pipeline 
code is available at https://github.com/tschuelia/difficulty- 
prediction-training-data. In supplementary section S6, 
Supplementary Material online, we list the software versions 
we use in the described pipeline.

Training Data
We train Pythia using empirical MSAs obtained from 
TreeBASE (Piel et al. 2009). To date, our training data con
sist of 3,250 MSAs, of which 74% contain DNA data and 
26% contain Amino Acid (AA) data. The training data in
cludes partitioned and unpartitioned MSAs. We provide a 
detailed overview of the training data in supplementary 
section S1, Supplementary Material online. We include 
DNA and AA data in the same setup as, according to 
our analyzes, the prediction behaves analogously on 
both data types. We provide a more thorough justification 
of this equal treatment of DNA and AA data in 
supplementary section S5, Supplementary Material online. 

Note that while we include partitioned MSAs in our train
ing data, we compute all features across the entire MSA re
gardless of the defined partitions. The high feature 
importance of the parsimony tree based features, as well 
as the entropy that are all partition-agnostic, justifies 
this choice.

Figure 1 depicts the workflow for training data gener
ation. For each MSA, we compute the difficulty according 
to the above definition as ground-truth label for super
vised training using the training data generation pipeline. 
We compute the corresponding prediction features using 
our Python library. The set of prediction features and the 
corresponding difficulty label form our training data. For 
training the regression model, we split this training data 
into two sets: a training set and a test set. The training 
set comprises 80% of the training data and the test set 
the remaining 20%. The test set is exclusively used for 
evaluating the predictive power of the difficulty predictor. 
To ensure an even distribution of difficulty labels in the 
training and test sets, we deploy stratified sampling. 
Stratified sampling splits all difficulty labels into disjoint 
subsets and draws random samples from each subset inde
pendently. In principle, using simulated data would allow 
us to increase the size of the training data. However, since 
simulating data that behaves analogously to empirical data 
under ML tree inferences constitutes a challenging task 
(Höhler et al. 2021), we decided against using any simu
lated data.

Label Validation
Due to the lack of absolute ground-truth labels, we need to 
rely on the inferred difficulty labels. The motivation of the 
difficulty prediction is to limit the number of tree infer
ences required to sufficiently sample the tree space and 
obtain a representative consensus tree. To verify the label 
assignment for each dataset, we conduct two analyzes. 
First, we compare the consensus tree obtained from the 
plausible tree set constructed from all 100 ML tree infer
ences (baseline tree) to the consensus of the plausible trees 
we obtain when inferring only 100 * difficulty trees (predic
tion tree). Note that for this analysis we use the difficulty we 
compute according to the above definition rather than 
using a predicted difficulty. We compare the topologies 
of the consensus trees using the RF-Distance. The 
RF-Distance between the baseline tree and the prediction 
tree is on average 9.6 ± 15.8%. This noticeable topological 
difference suggests that either (a) the difficulty labels do 
not sufficiently represent the tree search behavior of the 
dataset, or (b) 100 tree inferences do not sufficiently sam
ple the tree space. To determine the impact of (b), we re
peatedly sample 99 trees out of the 100 tree inferences and 
compute the consensus tree Ci of the respective plausible 
tree set. We then assess the average RF-Distance between 
all consensus trees Ci. For our training data, this 
RF-Distance is on average 8.1 ± 14.5%. We conclude that 
mostly (b) causes the high topological distances between 
the baseline tree and the prediction tree. In fact, a high 
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RF-Distance between the consensus trees Ci for an MSA is 
correlated with its difficulty. Spearman’s rank correlation 
coefficient is 0.88 with a p-value of 0.0 (≪ 10−300). Thus, 
the more difficult the MSA, the higher the topological dis
tances between the consensus trees Ci will be.

The second analysis to justify our quantification of diffi
culty ensures that selecting the number of tree inferences 

based on the difficulty does not negatively impact the qual
ity of the tree inference. As stated above, the difficulty can, in 
general, not predict the number of tree searches required to 
sufficiently sample the tree space, as this number also de
pends on the implemented tree inference heuristic. 
However, since we define the difficulty based on 100 ML 
tree inference in RAxML-NG, we can use the difficulty to 

FIG. 1. Schematic depiction of the training data generation procedure. For each MSA, we compute the difficulty label based on our difficulty quan
tification using our training data generation pipeline (left dashed box). We further compute the prediction features using our Python prediction library 
PyPythia (right dashed box). Using the difficulty label and the corresponding prediction features for all MSAs in our training data, we train Pythia.
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determine the number of required tree inferences when 
again using RAxML-NG as a fraction of 100. Thus, to analyze 
the influence of the difficulty on the quality of the tree infer
ence, we compare the log-likelihoods obtained from 100 in
dependent RAxML-NG tree searches (LnLs100) to the 
log-likelihoods of |difficulty · 100| tree searches (LnLsdiff ) 
for all MSAs in our training data. We compare the respective 
best found log-likelihoods LnL∗100 and LnL∗diff , as well as the 
average log-likelihoods LnL100 and LnLdiff .

For 81% of the MSAs, the best found log-likelihoods 
LnL∗100 and LnL∗diff are identical. For the remaining 19% of 
MSAs, LnL∗diff is on average ≪0.01% worse than LnL∗100. 
The average log-likelihoods LnL100 and LnLdiff deviate on 
average by 0.01% only.

This analysis only serves for justifying the definition of 
our difficulty quantification. Predicting the number of 
tree inferences as a fraction of 100 is only applicable to 
ML tree inference with RAxML-NG. It should further be 
mentioned, that RAxML-NG infers only 20 trees by default 
and simply increasing the number of tree inferences to 
|difficulty · 100| is discouraged.

Given these analyzes, we conclude that our difficulty 
quantification is sufficiently accurate to capture the tree 
search complexity and the behavior of an MSA under 
ML-based phylogenetic analysis.

Machine Learning and Evaluation
During our experiments, we trained distinct regression al
gorithms and compared their predictive power according 
to the R2 score, the MSE, the MAE, and the MAPE. We div
ide the training data into two sets: a training set and a test 
set. We use the training set to train the prediction algo
rithms and the test set to evaluate the trained predictors 
on unseen data. We train multiple different regression mod
els, namely Linear Regression, Lasso Regression (Tibshirani 
1996), Random Forest Regression (Ho 1995), Adaptive 
Boosting (AdaBoost) (Freund and Schapire 1996), and 
Support Vector Regression (Boser et al. 1992). Random 
Forest Regression proves to be the most suitable Machine 
Learning algorithm for the task at hand, and outperforms 
all other tested regression models according to all our me
trics. In supplementary section S3, Supplementary Material
online, we present the results for all trained regression mod
els. Random Forest Regression is an ensemble method that 
averages over the predictions of multiple independently 
trained decision trees. To determine the optimal set of hy
perparameters for the Random Forest Regression, we imple
mented a grid search that tests various combinations of 
hyperparameter values. For this grid search, we use an add
itional validation set, obtained by further subdividing the 
training set. We then perform hyperparameter optimization 
using this validation set. Our final difficulty predictor con
sists of 100 decision trees with a maximum depth of 10. 
To prevent overfitting, we set the minimum number of 
samples in a leaf node to 10 and the minimum number of 
samples required for a split to 20. Further, we train the indi
vidual decision trees on bootstrapped training data. We set 

the sample size for the bootstrapping to 75% of the training 
data size. Note that this bootstrapping procedure samples 
the training data (features and corresponding label) and is 
not the phylogenetic bootstrap.

Retraining the Model
To continuously and automatically improve the prediction 
accuracy of Pythia, we regularly extend the training data 
set and subsequently retrain the predictor. We extend 
the training data using the anonymized MSAs that we con
tinuously obtain during our RAxML Grove database up
dates. Note that these MSAs are only available internally 
in RAxML Grove and are not publicly available. To limit 
the amount of resources required for retraining, we do 
not include every incoming, new MSA. We select MSAs 
based on a heuristic instead. At the time of writing, we se
lect the set of new MSAs such that it diversifies the distri
bution of features in our training data. Algorithm 1 shows 
the heuristic for deciding whether to use a given MSA for 
retraining. For each feature fi, we compute the respective 
histogram Hi on the training data using a predefined num
ber of bins nbins. Next, we compute the respective feature 
value for the given MSA and find the corresponding bin 
hist_bin in the histogram Hi. The goal is to attain an 
even distribution of features, that is, all histogram bins 
should have the same height h̅i = 1/nbins. To quantify 
the deviation vi from this even distribution, we divide 
this desired height h̅i by the actual height hi of hist_bin. 
The deviation vi is negatively correlated to the number 
of samples in the corresponding histogram bin. For bins 
with fewer samples than the desired even distribution, 
the deviation is >1. We sum the deviations vi across all fea
tures. We use the given MSA for retraining if this sum is 
≥14 or any of the deviations vi is ≥4. The rationale for 
the first threshold is that in this case, on average, for 
each feature fi the corresponding bin hist_bin has only 
half the desired height. The rationale for the second 
threshold is that in this case, one of the feature bins has 
only 1/4th of the desired height.

ALGORITHM 1: Heuristic for deciding whether to use a given MSA for re
training Pythia.

Foreach feature fi do
Hi = histogram(training_data, fi, nbins)
feat = compute_feature_value(MSA)
h̅i = 1/nbins
hist_bin = find_bin_for_value(Hi, feat)
hi = height(hist_bin)
vi = h̅i/hi

end
V =

􏽐
vi

analyze_msa = V ≥ 14 or max(vi) ≥ 4
return analyze_msa

For all MSAs we select, we compute the ground-truth 
label and prediction features as described in the Training 
Data subsection. Based on this enlarged training data, we 
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retrain Pythia and automatically update the trained pre
dictor in our Python and C libraries.

Code and Data Availability
We provide Pythia as open source software libraries in C 
and Python. Both libraries include the trained Random 
Forest Regressor and the computation of the required pre
diction features. The C library CPythia is an addition to 
Coraxlib and is available at https://github.com/tschuelia/ 
CPythia. Additionally, we provide PyPythia, a lightweight, 
stand-alone Python library, including a command line 
interface. PyPythia is available at https://github.com/ 
tschuelia/PyPythia. The implemented pipeline to compute 
the prediction features and ground-truth difficulty labels 
for the training data is available at https://github.com/ 
tschuelia/difficulty-prediction-training-data. This reposi
tory also contains the training data as parquet file.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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