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Abstract

Eight olivine beads found at the Middle Chalcolithic site of Tel Tsaf (ca. 5,200–4,700 cal.

BC), Jordan Valley, Israel, underscore a new facet of interregional exchange for this period.

The current paper presents the olivine beads assemblage, its morphometric and technologi-

cal characteristics, and chemical composition. The results of the chemical analysis suggest

that all eight beads derive from the same source. By means of comparison with the chemical

characteristics of known olivine sources, we argue for a northeastern African–western Ara-

bian provenience and cautiously suggest Ethiopia as a probable origin. Finally, we discuss

the significance of the assemblage, its possible origin, and the mechanisms that may have

brought the beads to the site.

1. Introduction

In antiquity, beads and other items of personal adornment appreciated by the community

were among the principal devices for transmitting social and economic information over large

distances. By token of their small size, they could change hands easily, while their aesthetic and

symbolic value rendered them economically effective [1]. Notably, beads fulfill various func-

tions [1–4] and are often considered markers of identity, social status, and even economic

progress and stability [5,6].

In the prehistoric southern Levant, exchange and trade in beads was common practice for

more than a hundred thousand years [7,8], and while most were made from locally available

raw materials, exotic rocks imported from farther away were also recorded (e.g., obsidian, tur-

quoise, amazonite, amethyst, serpentine [7,9–11]).

Among these exotic minerals, olivine (sometimes called peridot or chrysolite [12–14]) is one

of the rarest. This mineral is common in igneous rocks, measuring 6.5–7 on the Mohs hard-

ness scale, and is usually yellow-green or green in color. Chemically, olivine is a continuous
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solid solution between the end-members forsterite (Fo; Mg2SiO4) and fayalite (Fa; Fe2SiO4). It

is the most common mineral in the Earth’s mantle and the first mineral to crystallize in the

basaltic magmas. Consequently, large olivine crystals are uncommon on the Earth’s surface

and are restricted to slowly cooled mantle rocks: xenoliths or ophiolites. In basalts, olivine phe-

nocrysts are commonly small (<2 mm in size [15,16]). Notably, unlike other igneous gem-

minerals (e.g., garnet, tourmaline, beryl), olivine is characterized by low concentrations of

most trace elements (well below 1 ppm), which do not fit well its simple crystal structure and

chemical composition [17–19].

Viewed from the southern Levant, the nearest olivine sources with sufficiently large crystals

to facilitate bead production must be sought in remote locations. Casting a wide net over

southwestern Asia, northeastern Africa, and Arabia, we may speak of six possible sources: (1)

Egypt, specifically Zabargad (St. John’s Islands) in the Red Sea [20–23] and the Eastern Desert

[24]; (2) Harrat Kishb, Saudi Arabia [25–28]; (3) southwest and northwest Turkey [29–31]; (4)

Kohistan, northwest Pakistan [32–34]; (5) the Ethiopian plateau and main Ethiopian rift area

[35–37]; and (6) the north Tanzanian divergence area [38–40].

Under these circumstances, it is unsurprising that the occurrence of olivine in the southern

Levant is scarce. The earliest documented case in the region for using this mineral for beads

and other artifacts (such as pendants and emulates) is from Predynastic Egypt [20,41,42]. At a

much smaller scale, a bead from the Late Chalcolithic (ca. 4,500–3,900 cal. BC) burial cave of

Peqi’in, Israel, was provisionally identified as olivine [10], and a Bronze Age neckless made of

olivine beads was found in Raqqa, Syria [43].

Archaeometric and microscopic research on beads has developed considerably in the last

few years, providing new tools and methodologies for investigating exchange networks, techni-

cal innovations, and cultural and political contacts. Thus, the significance of these venues of

analysis lies in their ability to reconstruct bead movements across the landscape and modify

how we interpret social interactions. This paper discusses a corpus of olivine beads from the

Middle Chalcolithic site of Tel Tsaf, the Jordan Valley, Israel. Roughly dated to the late-sixth–

early-fifth millennium cal. BC, Tel Tsaf constitutes the earliest occurrence of olivine artifacts

in the southern Levant. Below, following a brief introduction to the site of Tel Tsaf, we describe

the olivine beads, reconstruct the procedures of their production, set out to determine their

chemical attributes, and trace their origin. Finally, we discuss the significance of their presence

at the site and its possible implications.

2. Materials: Tel Tsaf and the olivine beads assemblage

Tel Tsaf is a ca. 5 ha site in the Middle Jordan Valley, Israel (Figs 1 and 2), comprising three

hills and their immediate surroundings [44,45]. The site was first recorded in the 1940s [46]

and excavated by three expeditions. The first occurred between 1977 and 1980 [47] and the

second between 2004 and 2007 [44,48]. The third expedition was initiated in 2013 and is still

ongoing. It focuses on various aspects of long-distance contact, site economy and the establish-

ment of the Mediterranean diet in the region, social organization, and ecology [11,49–52].

Tel Tsaf was settled during ca. 5,200–4,700 cal. BC [50,53] and densely occupied through-

out. Excavations revealed an intricate assortment of structures and installations, including

courtyard buildings [44], silos, and roasting pits, probably reflecting large-scale storage and

feasting [44,48,51,52,54–56]. The structures were built of sun-dried mudbricks, and their walls

were coated with plaster [56]. Large quantities of diverse faunal (consisting mainly of domesti-

cated animals [57]) and floral remains were found (e.g., seeds, phytoliths, pollen, starch gran-

ules [50,58]) in association with storage, cooking, and roasting installations. Notably, the site

seems to provide evidence for the crystallization and establishment of the Mediterranean diet
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[11,49,52], including the gradually increasing significance of olives alongside the use of dairy

products [59].

Tel Tsaf is also notable for its numerous non-local exotic finds, indicating the site’s partici-

pation in a far-reaching exchange network [11,52]. A partial list includes beads from Transjor-

dan, beads and Nilotic shells from Egypt, tokens, and figurines from the northern Levant,

obsidian from Anatolia, a copper awl from an indeterminate northern origin [60], Ubaid style

pottery from Mesopotamia, and seashells from the Mediterranean coast.

Specifically concerning the occurrence of beads at the site, a massive assemblage of over

2,500 ostrich eggshell beads is notable [44]. Otherwise, dozens of beads were also recoded;

many were made from non-local rocks and minerals, while others were produced from clay,

bone, wood, and Theodoxus Jordani shells [61,62].

Fig 1. A map of the Near East and Africa with the locations of potential olivine sources (created by S. Haad).

https://doi.org/10.1371/journal.pone.0271547.g001

PLOS ONE Tel Tsaf and the long-distance trade in olivine beads

PLOS ONE | https://doi.org/10.1371/journal.pone.0271547 August 10, 2022 3 / 17

https://doi.org/10.1371/journal.pone.0271547.g001
https://doi.org/10.1371/journal.pone.0271547


So far, excavations at Tel Tsaf have produced eight olivine beads retrieved from various

contexts in Area C (Fig 3; Tables 1 and 2). Seven were found during the current excavation

project and one during the 2004–2007 expedition. Six were retrieved from Square AR16, a

deep cut in Area C. Of these, one was in a pit, and the others were in disparate accumulations.

Of the remainder, one bead was recovered from accumulations north of Room C70 in Building

complex CI, and the other was found in fills of a Byzantine/Early Islamic grave.

All eight beads are whole and characterized by a dark to light green color with a tint of yel-

low hue (Fig 3). Optical examination indicated that all beads are translucent and lack foreign

inclusions. They have an oval-lenticular cross-section, and their shape varies from round,

through oval, to quasi-triangular. The beads’ perforations are biconical, and their two faces are

sometimes even.

The olivine beads weigh 0.015–0.2 g and are 1.0–3.0 mm thick. Their smallest measure-

ments across are 3.0–6.0 mm, while their maximum measurements are 3.0–8.0 mm. All perfo-

rations have round outlines (Fig 3) and seem to have been drilled from both sides

(bidirectional drilling). Their minimum diameter is 0.3–0.6 mm, and their maximum diameter

ranges between 0.5 and 1.0 mm across (for both faces).

3. Methods

All beads underwent attribute analysis at the Laboratory for Ground Stone Tools Research

(LGSTR) at the Zinman Institute of Archaeology, University of Haifa. First, the beads’

Fig 2. Tel Tsaf. A view from the west.

https://doi.org/10.1371/journal.pone.0271547.g002

PLOS ONE Tel Tsaf and the long-distance trade in olivine beads

PLOS ONE | https://doi.org/10.1371/journal.pone.0271547 August 10, 2022 4 / 17

https://doi.org/10.1371/journal.pone.0271547.g002
https://doi.org/10.1371/journal.pone.0271547


morphometric and contextual properties were documented, including circumstances of dis-

covery, degree of preservation, shape, measurements, color, and profile. Next, aided by a

Dino-light, edge 3.0, digital microscope (magnification 10–150×), microwear patterns indica-

tive of production and use were recorded.

At the Institute of Earth Sciences at the Hebrew University of Jerusalem, the beads were

subjected to further optical examination with Hirox RH-2000 and Nikon SMZ800 binocular

microscopes. Preparing for geochemical analyses, we immersed the beads in epoxy and mildly

polished 1 μm off one side, using diamond polishing powder. We completed the treatment by

cleaning the beads with ethanol and distilled water in an ultrasonic bath.

All specimens were subjected to Raman spectroscopic analysis at the Center for

Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, to determine the

beads’ mineralogical compositions. We used a Renishaw InViaTM Raman microscope,

Fig 3. The Tel Tsaf olivine beads.

https://doi.org/10.1371/journal.pone.0271547.g003

Table 1. The context of the Tel Tsaf olivine beads.

Item Area Locus Basket Context Figure

Tsaf-

Olivine1

C 2066 3355 Accumulations in Sq. AR16 3:1

Tsaf-

Olivine2

C 2274 4400 A pit in Sq. AR16 3:2

Tsaf-

Olivine3

C 2184 3940 Accumulations in Sq. AR16 3:3

Tsaf-

Olivine4

C 907 2213 Accumulations north of C70 3:4

Tsaf-

Olivine5

C 2020 3044 Accumulations in Sq. AR16 3:5

Tsaf-

Olivine6

C 2196 4042 Accumulations in Sq. AR16 3:6

Tsaf-

Olivine7

C 1011 2816 Accumulations in Sq. AR16 3:7

Tsaf-

Olivine8

C 264 595 Fills (containing Middle Chalcolithic remains) of a Byzantine/early Islamic grave cut into the Middle Chalcolithic

layers

3:8

https://doi.org/10.1371/journal.pone.0271547.t001
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equipped with Argon-Ion Laser 50 mW (514 nm) and a Leica DM2500-M microscope. Each

spectrum was acquired for 10 seconds of illumination, using a 20× objective and the Renishaw

CCD camera (1040×256 px). Laser power for all analyses was set at 5%, and spectra were col-

lected between 100 and 1500 cm-1. The spectral resolution was 1 cm−1, and the spectrometer

was calibrated against the 520 cm−1 peak of a synthetic silicon plate. Mineral identification was

made against spectra of the Hebrew University mineral collection and the online RRUFF™
project spectral data for minerals (https://rruff.info/).

The beads were also subjected to elemental analysis at the Institute of Earth Sciences at the

Hebrew University of Jerusalem. We employed a JEOL JXA-8230 electron probe microanaly-

zer (EPMA) equipped with four wavelength dispersive spectrometers. Across all analyses, the

electron beam used was 1 μm in diameter with an acceleration voltage of 15 kV and a current

of 120 nA. Peak counting rates were 30 s for the major elements (Si, Mg, and Fe) and 180 s for

minor elements (Ca, Ni, Cr, Mn, and Al), while background counting rates were half the time

for each background position (i.e., 15 s and 90 s, respectively). A set of reference materials

were used to calibrate the EPMA for specifiable elements: San-Carlos olivine (NMNH#

111312–44) for Si, Mg, and Fe, SPI standard diopside (MgCaSi2O6) for Ca, chromite

(FeCr2O4) for Cr, rhodonite (MnSiO3) for Mn, pentlandite ((Fe, Ni)9S8) for Ni, and an in

house HUJI spinel (MgAl2O4) for Al. These standards were analyzed as unknowns for calibra-

tion control and to monitor instrument stability. The ±2σ analytical uncertainty of 75 analyses

of San Carlos olivine produced ±0.46 Fo# [where Fo# is the molar ratio of 100Mg/(Mg+Fe)],

±158 ppm Ni, ±41 ppm Ca, ±127 ppm Mn, ±18 ppm Al and ±24 ppm Cr.

4. Results

4.1 Microwear traces and the production sequence

We observed four types of microwear traces on the beads: scratches, flake scars, pits, and edge

rounding. Micro-scratches are widespread and observed on practically all parts of the bead:

perforation walls (including both horizontal and vertical scratches; Fig 4A), perforation rims

(Fig 4B and 4G), leveled surfaces (Fig 4E and 4F), leveled surfaces’ circumferences (Fig 4C),

and areas between the perforations and leveled surfaces (Fig 4D). Slightly less extensive micro-

Table 2. The characteristics and properties of the olivine beads.

Bead Shape Profile Weight

(g)

Minimum

measurement

across (mm)

Maximum

measurement

across (mm)

Thickness

(mm)

Drilling Perforation

minimum

diameter (mm)

Perforation max

diameter of side

A (mm)

Perforation max

diameter of side B

(mm)

Tsaf-

Olivine1

oval oval 0.2 6.0 8.0 3.0 + 0.4 1.0 1.0

Tsaf-

Olivine2

oval oval 0.08 5.0 6.0 2.0 + 0.4 0.9 1.0

Tsaf-

Olivine3

oval oval 0.03 4.0 5.0 1.0 + 0.3 0.6 0.7

Tsaf-

Olivine4

triangle oval 0.064 5.0 5.0 2.0 + 0.6 0.7 1.0

Tsaf-

Olivine5

triangle oval 0.032 5.0 4.0 2.0 + 0.3 0.5 0.5

Tsaf-

Olivine6

round oval 0.033 3.0 3.0 2.0 ? 0.3 0.6 1.0

Tsaf-

Olivine7

round oval 0.015 3.0 3.0 2.0 ? 0.3 0.5 0.6

Tsaf-

Olivine8

oval oval 0.05 4.0 4.0 2.0 ? 0.5 0.8 0.9

https://doi.org/10.1371/journal.pone.0271547.t002
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flake scars were recorded along beads’ perforation rims (Fig 4B), the leveled surfaces (Fig 4E),

and the leveled surfaces’ circumferences (Fig 4C). Lastly, edge rounding (Fig 4H) and micro-

pits (Fig 4E and 4F) were observed on leveled surfaces only (Fig 4I).

Drawing on these observations, we may carefully infer the beads’ chaînes opératoires. We

presume that the scratches were produced by grinding with an abrasive powder [63], whereas

micro-flake scars were created by percussion. These would have been the first operations

applied to the olivine crystals. Next, the beads’ leveled surfaces were produced, removing most

abrasion and flake scars, although some remained along the edges (Fig 4C, 4D and 4F). While

these surfaces (Fig 4A) seem aesthetically desirable, they could have served a technical function

as drill-facilitating platforms [64]. The surfaces’ shine might suggest that heat treatment was

also applied. Such treatment has been shown to render siliceous matrixes finer [65,66] and a

stone’s color more intense without altering its translucence or hardness. Further support for

heat application in the beads’ production process is provided by the observation of luster in

fresh breaks of platforms (Fig 4I: a) [65] and the occurrence of intensive red particles in some

beads’ fabrics (Figs 3: 5–6, 3: 8 and 4I: b).

The beads’ perforation was carried out by drilling from both sides, producing a biconical

shaft. This procedure was employed to avoid damage or breakage of the bead. The drill was

probably made of a hard stone such as flint or quartz [64,67,68], and its application presum-

ably entailed the use of a lubricant [63,69] (Fig 4A).

The last step of the chaîne opératoire was smoothing a bead’s surfaces (Fig 4E). The rounded

grains and low micro-topography observed on these surfaces suggest that a soft material was

used, possibly wood or linen [63,64]. Abrasive dust produced in the grinding stage of the

manufacturing process might have also been used for smoothing, a possibility suggested by

ethnographic and experimental observations [64,70,71].

4.2 Raw material and chemical attributes

The Raman spectra collected from all beads are almost identical (Fig 5), consisting of a promi-

nent doublet peak at 856 and 824 cm-1 and minor peaks at 962, 920, 606, and 303 cm-1. The

doublet peak’s position indicates Mg-rich olivine compositions with Fo# of 90%–100% [72].

This conclusion was reinforced by the ion proportions and major element composition deter-

mined by the EPMA (Table 3) that found 0.993±0.004 (1σ) Si atoms and 2.002±0.008 Mg+Fe

atoms per formula unit (4 oxygen atoms), corresponding with the chemical features of forster-

ite and fayalite (Mg2SiO4 and Fe2SiO4, respectively). Furthermore, Mg/Fe ratio suggests a com-

position of 89.5%–91.5% forsterite (Fo#). Minor elements in the olivine beads have limited

composition as well, varying between Ni = 2870±120 ppm, Mn = 880±100, Ca = 450±90,

Cr = 100±30, and Al = 70±20 ppm.

We hypothesized above, on the grounds of crystal size, that the olivine beads of Tel Tsaf

derive from mantle rocks. Now, our chemical analyses provide further support: the beads’ Fo#,

Ni, and Mn contents are well within the ranges of mantle olivine, which are 89%–94%, 2200–

3400 ppm, and 450–1050 ppm, respectively [73–75]. Moreover, Ca and Al concentrations in

the beads are below the maximum values for these elements in mantle olivines (~650 and

Fig 4. Micro use-wear traces on the Tel Tsaf olivine beads. ) a) A perforation’s wall bearing micro-scratches

vertically and horizontally aligned to the bead’s main axis; (b) A micro-flake scar (arrow) attributed to pecking and

micro-scratches (arrow) perpendicular to the perforation’s rim; (c) Micro-scratches and traces of pecking along the

edge of the even surface; (d) Micro-scratches on an area between the perforation’s rim and the even surface; (e–f)

Micro-pits, micro-flake scars, and micro-scratches on the even surface (arrow); (g) Micro-scratches on the

perforation’s rim; (h) A smoothed surface with rounded grains and a low microtopography (1) alongside traces of

pecking (arrow) and wear (2). (i) Platforms: Shiny, leveled surfaces (a) and red particles on Tel Tsaf olivine beads (b).

https://doi.org/10.1371/journal.pone.0271547.g004
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Fig 5. Raman spectra of four representative olivine beads (1–4) placed against three forsterite-rich olivine

references. The references were acquired from https://rruff.info/, comprising olivine from San Carlos, Arizona, USA

(5; RRUFFID = R040018), Zabargad Island, Egypt (6; RRUFFID = X050085), and East Africa (7;

RRUFFID = X050081).

https://doi.org/10.1371/journal.pone.0271547.g005
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150 ppm, respectively). They are also far below their values in other igneous olivines, usually

above 1000 and 100 ppm, respectively [74,75]. Thus, in all likelihood, the olivine beads of Tel

Tsaf originate in mantle rock fragments. On the Earth’s surface, such rocks occur in one of

two ways: as xenoliths—where mantle fragments are incorporated in ascending magmas—or

as ophiolites—exposed segments of oceanic crust and upper mantle.

5. Discussion

The eight olivine beads from Middle Chalcolithic Tel Tsaf are the earliest specimens of their

kind in the Near East and a rare incidence in the southern Levant. As noted above, six potential

olivine sources have been identified: Turkey, Pakistan, Egypt’s Eastern Desert and Zabargad,

Ethiopia, Tanzania, and Saudi Arabia. Of these, the Fo# of Turkey’s and most of Tanzania’s

olivines are higher (92.5%–94.5% and 93.5%-93.5%, respectively; see Fig 7) than those of the

beads from Tel Tsaf and, thus, are unlikely to have provided the raw crystals (Fig 6). Similarly,

Pakistan can be set aside due to its olivine’s comparatively low Fo# between 77%–85% and Ni/

Mg ratios. The statistical variations of the olivine populations’ chemical compositions further

reinforce these observations (Fig 7). Mn/Ni and Ca/Al ratios clearly distinguish the olivines

from Pakistan from those of Tel Tsaf, while Turkey’s and Tanzania’s olivines have too high

Fo# to be viable candidates for the beads’ provenance. None of the remaining three potential

sources (Saudi Arabia, Ethiopia, and Egypt) can be considered a substantially more probable

source than the others. Nevertheless, it is notable that, statistically, the olivines from Ethiopia

are closest to the beads from Tel Tsaf.

Either way, one of the most important observations is that the beads are chemically almost

identical. This, in turn, suggests they derived from a single source and most probably arrived

together at Tel Tsaf, possibly as a single chain or necklace. If indeed the Tel Tsaf olivine beads

originate from one of the three potential sources mentioned above, long-distance trade was

inevitably implicated (the Ethiopian plateau and the main Ethiopian rift area are over 2,000

km away). The beads had to travel via a long chain of hubs across far-flung and diffused sys-

tems of trade and exchange.

Raw materials and artifacts of long-distance trade are a familiar feature of the south Levan-

tine Chalcolithic period [76–82]. The most striking example of this is the relatively widespread

occurrence of Anatolian obsidian, especially during the Early and Middle Chalcolithic periods

[61,77,83–87]. The eight olivine beads discussed here add another significant trade connection

for the region, in general, and Tel Tsaf, in particular. As noted, the site’s long-distance trade

appears to have been particularly intensive, indicated by a wide range of artifacts: a copper awl

[60], Nilotic shells, beads, north Levantine tokens and figurines, Ubaid ceramics, and obsidian

[11,44,52,88,89].

In all likelihood, the olivine beads constituted personal objects and were entwined with

themes of value, desire, and social status. As a product, they boast high production value in

terms of technology and distribution [90]. Furthermore, embodying distance, transportation,

and far-reaching contacts conferred onto them high use-value.

The abundance of long-distance traded artifacts and substances at Tel Tsaf indicates that it

accommodated a community capable of obtaining and managing surplus to foster economic

and social connections. Moreover, along with the circulation of tangible goods, exchange net-

works also provide an infrastructure for the flow of intangible cultural assets communicated

by artifacts that convey coded information, interpreted or read as ‘value’ or social/economic

significance. In the case of the olivine beads, the transmitted coded information pertains to

their value that derives from acknowledging their distant origin and the difficulty obtaining

them.
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Fig 6. Chemical features of the Tel Tsaf olivine beads and possible olivine sources. (a) 100×Ni/Mg against Fo# spanning 86%–95%; (b) 100×Ni/Mg against

Fo# spanning 77%–95%; (c) 100×Mn/Fe against Fo# spanning 86%–95%; (d) 100×Ni/Mg against 100×Mn/Fe. The data for the possible olivine origins were

acquired from the following sources: For Turkey [29–31], for Pakistan [32–34], for Eastern Desert of Egypt [24], for Zabargad Island [21–23], for Saudi Arabia

[25–28], for Ethiopia [35–37], and for Tanzania [38–40]. Several samples are not presented here; they include specimens from the Eastern Desert of Egypt with

Fo>97% and Ni<2000 ppm and a few specimens from Turkey and Pakistan with Fo = 100.

https://doi.org/10.1371/journal.pone.0271547.g006
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However, modeling this multi-layered interaction system is nearly impossible due to

numerous indeterminate agents and ambiguous factors. Nevertheless, we have good reason to

presume that the value bestowed on exotic materials [91] is likely to have fed the motivation to

obtain these beads. The properties of olivine (i.e., color, translucence, and reflectivity) coupled

with its distant origins might have been instrumental for its far-flung circulation. The olivine

beads’ significance should be appreciated not only for their rare exoticism but also as indica-

tors of Tel Tsaf’s constitution as a pan-regional hub that engaged in (and probably controlled)

superregional exchange during the late sixth–early fifth millennia cal. BC.
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Molist M, editors. Stone tools in transition: From hunter-gatherers to farming societies in the Near East.

Bellaterra: Universitat Autònoma de Barcelona; 2013. pp. 165–176.

70. Belcher HE. Halaf bead, pendant and seal ‘workshops’ at Domuztepe: Technological and reductive

strategies. In: Healey E, Campbell S, Maeda O, editors. The state of the stone terminologies, continui-

ties and contexts in Near Eastern lithics. Berlin: Ex Oriente; 2011. pp. 135–143.

PLOS ONE Tel Tsaf and the long-distance trade in olivine beads

PLOS ONE | https://doi.org/10.1371/journal.pone.0271547 August 10, 2022 16 / 17

http://www.hadashot-esi.org.il/Report_Detail_Eng.aspx?id=25891
http://www.hadashot-esi.org.il/Report_Detail_Eng.aspx?id=25891
https://doi.org/10.1371/journal.pone.0227288
https://doi.org/10.1371/journal.pone.0227288
http://www.ncbi.nlm.nih.gov/pubmed/31968007
https://doi.org/10.1371/journal.pone.0092591
https://doi.org/10.1371/journal.pone.0163874
http://www.ncbi.nlm.nih.gov/pubmed/27760210
https://doi.org/10.1371/journal.pone.0271547


71. Stocks AD. Stoneworking technology in ancient Egypt, experiments in Egyptian archaeology. London:

Routledge; 2003.

72. Kuebler KE, Jolliff BL, Wang A, Haskin LA. Extracting olivine (Fo–Fa) compositions from Raman spec-

tral peak positions. Geochim. Cosmochim. Acta. 2006; 70: 6201–6222.

73. Deer WA, Howie RA, Zussman J. Rock forming minerals: Orthosilicates. 2nd ed. London: The Geolog-

ical Society; 1997.

74. Foley SF, Prelevic D, Rehfeldt T, Jacob DE. Minor and trace elements in olivines as probes into early

igneous and mantle melting processes. Earth and Planet. Sci. Lett. 2013; 363: 181–191.

75. De Hoog JCM, Gall L, Cornell DH. Trace-element geochemistry of mantle olivine and application to

mantle petrogenesis and geothermobarometry. Chem. Geol. 2010; 270: 196–215.

76. Rosenberg D, Buchman E, Shalev S, Bar S. Evidence for Late Chalcolithic copper recycling in the

southern Levant: New discoveries from the Fazael Basin. Documenta Prehistorica. 2020; 47: 246–261.

77. Carter T, Campeau K, Streit K. Transregional perspectives: Characterizing obsidian consumption at

Early Chalcolithic Ein el-Jarba (N. Israel). J. Field Archaeol. 2020; 45(4): 249–269. https://doi.org/10.

1080/00934690.2020.1717857

78. Getzov N. Seals and figurines from the beginning of the Early Chalcolithic period at Ha-Gosherim. ‘Ati-

qot. 2011; 67: 81*–83*.

79. Golden J. Dawn of the metal age: Technology and society during the Levantine Chalcolithic. London:

Equinox; 2010.

80. Rosenberg D, Getzov N, Assaf A. New light on long-distance ties in the Late Neolithic/Early Chalcolithic

Near East: The chlorite vessels from Hagoshrim, Northern Israel. Curr. Anthropol. 2010; 51(2): 281–

293.

81. Shalev S. The earliest gold artifacts in the southern Levant: Reconstruction of the manufacturing pro-

cess. In: Eluere C, editor. Outils et ateliers d’orfevres des temps anciens. Antiquites Nationales

Memoire 2. Paris: Saint Germain en Laye; 1993. pp. 9–12.

82. Streit K. The ancient Near East in transregional perspective. Material culture and exchange between

Mesopotamia, the Levant and Lower Egypt from 5800 to 5200 calBC. Vienna: Austrian Academy of

Sciences Press; 2020.

83. Carter T, Batist Z, Campeau K, Garfinkel Y, Streit K. Investigating Pottery Neolithic socio-economic

“regression” in the Southern Levant: Characterising obsidian consumption at Sha’ar Hagolan (N. Israel).

J Archaeol. Sci. Reports. 2017; 15: 305–317. https://doi.org/10.1016/j.jasrep.2017.08.016

84. Garfinkel Y. Obsidian distribution and cultural contacts in the Southern Levant during the 7th millennium

cal. BC. In: Heally E, Campbell S, Maeda O, editors. The state of the stone terminologies, continuities

and contexts in Near Eastern lithics. Berlin: Ex Oriente; 2011. pp. 403–409.

85. Gopher A, Barkai R, Marder O. Cultural contacts in the Neolithic period: Anatolian obsidian in the south-
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