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A B S T R A C T   

The time dependent density functional theory (TDDFT) and TDDFT/similarity transformed EOM 
domain-based local pair natural orbital CCSD (STEOM-DLPNO-CCSD) calculations were explored 
to estimate their validity in predicting the excited-state properties of multi-resonant thermally 
activated delayed fluorescence (MR-TADF) materials. Obviously, it was demonstrated that TDDFT 
calculation is inadequate to provide the quantitative prediction of the lowest singlet excited-state 
(S1), the lowest triplet excited-state (T1), and ΔEST. On the other hand, TDDFT/STEOM-DNLPNO- 
CCSD calculation reveals the superior prediction of S1, T1, and ΔEST that are in quantitative 
agreement with experiments. More importantly, it was found that TD-LC-⎤∗HPBE/STEOM- 
DLPNO-CCSD calculation provides the most accurate prediction of S1, T1, and ΔEST. Accordingly, 

we suggest that TD-LC-⎤∗HPBE/STEOM-DLPNO-CCSD calculation should be utilized to compute 
the excited-states properties of MR-TADF materials accurately.   

1. Introduction 

Since the first report by Hatakeyama et al. [1], the multi-resonant thermally activated delayed fluorescence (MR-TADF) materials, 
which exhibit the short-range intramolecular charge transfer and double excitation characteristics, have been paid intensive attention 
as potential electro-luminophore to replace the fluorescence, phosphorescence, and conventional TADF materials thanks to their 
unique characteristics such as high external quantum efficiency, narrow full-width half maximum (FWHM), and weak sol
vatochromism [2–8]. Since then, experimental and theoretical studies to extend the design space or identify the underlying spin-flip 
transition have been intensely reported [3,9–14]. However, in terms of theoretical approach, a proper methodology to predict the 
photo-physical properties of MR-TADF materials has been strongly desired since the conventional density functional theory (DFT) 
functionals known as the global, meta-GGA, and range-separated hybrid DFT functionals are inadequate to describe the nature of 
excited states in MR-TADF materials. Previously, Pershin et al., reported that Spin-Component Scaling second-order approximate 
Coupled Cluster (SCS-CC2) method can be successfully applied to quantitatively predict the energy difference between the lowest 
singlet (S1) and triplet (T1) states (ΔEST) of MR-TADF materials [15]. They noted that the correlation effect of wave-function method 
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plays an essential role in accurately describing the double excitation characteristic of MR-TADF materials. Recently, Shizu and Kaji 
reported the important role of the equation-of-motion coupled-cluster single and double (EOM-CCSD) method in computing the 
accruate excited-state properties of DABNA-1 [16]. Moreover, the second-order algebraic diagrammatic contructiton (ADC(2)) and the 
spin-component scaling second-order algebraic diagrammatic contructiton (SCS-ADC(2)) were successfully utilized to describe the 
nature of excited states in MR-TADF materials [17]. Despite the advantage of these wave-function method in predicting the 
photo-physical properties of MR-TADF materials, the expensive time cost is a significant hurdle to use it conveniently. Accordingly, 
such a new approach, which should be simultaneously advantageous in terms of cheap time cost and excellent accuracy, is strongly 
desired. Recently, Pratic et al., reported that the similarity transformed EOM domain-based local pair natural orbital CCSD 
(STEOM-DLPNO-CCSD) [18] calculation at the optimized structures computed by optimally tuned time dependent (TD)-LC− ⎤ HPBE 

(TD-LC-⎤∗HPBE) accurately reproduces the experimentally determined photo-physical properties of several MR-TADF materials [19, 
20]. This result also supports that the considering the correlation effect is essentially required to describe the nature of both excited 
states in MR-TADF materials. Moreover, it has been known that STEOM-DLPNO-CCSD calculation was developed to reduce computing 
time while maintaining equivalent accuracy, compared to other wave-function methods. Therefore, we expect that 
TDDFT/STEOM-DLPNO-CCSD calculation could be utilized as one of alternative methodology to compute the excited-state properties 
of MR-TADF materials. However, it is further required to clarify that which DFT functional, combined with STEOM-DLPNO-CCSD, is 
the most advantageous to predict the photo-physical properties of MR-TADF materials. To address this question, we estimated the DFT 
functional that provides the superior quantitative prediction combined with STEOM-DLPNO-CCSD calculation. The conventionally 
used DFT functionals can be introduced as the global, meta-GGA, and range separated hybrid (RSH) functionals, respectively. Among 

them, B3LYP [21–23], M06 [24], LC-⎤∗HPBE [25–27] functionals were selected as representatives since these DFT functionals have 
been commonly utilized to investigate the excited-state properties in various type of chromophores. In the practical application, blue 
MR-TADF material with high internal quantum efficiency (IQE) has been received tremendous attentions to replace the current 
fluorescence emitter due to the limited exciton utilization efficiency. Therefore, the exact theoretical prediction of the excited-state 
properties to activate the virtual design of new blue MR-TADF materials are important to abundantly expand the design space and 
exactly understand the nature of excited-state properties. With this aim, we carefully selected 10 representative blue MR-TADF ma
terials to estimate the prediction quality of theoretical methodologies in this study (See Fig. 1). 

In this present works, we strongly ensure that our presented research importantly guides the appropriate computation approach to 
accurately obtain the excited-state properties of MR-TADF materials. Furthermore, we believe that our research may contribute to the 
understanding of the underlying mechanism as well as designing of the new materials in the MR-TADF materials. 

Fig. 1. The schematic structures of MR-TADF materials.  
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2. Theory and computation 

DFT simulations for 2PTZBN [28], 2PXZBN [28], BN1 [29], DABNA-1 [1], BN-DMAC [30], BN-DPAC [30], Cb-B [14], TABNA 
[31], t-DABNA [32], and ADBNA-Me-Mes [33] were carried out employing B3LYP, M06, LC-ω*HPBE with 6-311G** basis sets, as 
implemented in the suite of Gaussian 16 package [34]. These materials were selected as represent materialsFor LC-ω*HPBE, the ω* (the 
optimal ω) can be determined at the minimum of J2(ω) as a function of ω. This can be obtained by the following equation. 

J2(ω)=
∑1

i=0
[εH(N + i) + IP(N + i)]2 (1) 

where εH, N, IP indicate the energy level of the highest occupied molecular orbital, electron number of system, and ionization 
potential, respectively. The calculated ω* values for MR-TADF materials were listed in Table 1. At the optimized structures in the 
ground state (S0), time-dependent DFT (TDDFT) calculations of the singlet and triplet excited-states (S1 and T1) in conjunction with 
Tamm-Dancoff Approximation (TDA) [35] were performed to obtain the optimized structures and their corresponding emission en
ergies with same functional and basis set. All molecular structures of S0, S1, and T1 states were optimized without any symmetry 
constraints (C1) in the gas phase. Moreover, frequency calculations for optimized structures of S0, S1, and T1 states were conducted to 
confirm thermodynamic stability, showing that there is no imaginary in these optimized structures. To further consider the correlation 
effect for MR-TADF materials, STEOM-DLPNO-CCSD calculations at the optimized structures of S1 and T1 states computed by TDDFT 
calculations were further conducted, as implemented in the ORCA 5.0 program [36]. Def2-TZVP basis set and their corresponding 
auxiliary basis sets were used. In addition, RIJCOSX approximation was utilized to consider the acceleration of the SCF. 

3. Results and discussions 

3.1. 3-1. DFT calculations 

The adiabatic excitation energies of the representative MR-TADF materials computed by B3LYP, M06, and LC-⎤∗HPBE functionals 
are listed in Table 2. Moreover, the regression plots of S1, T1, and ΔEST between theory and experiment are depicted in Fig. 2. 
Interestingly, it is noticed that the qualitative predictions of S1 and T1 energies were successfully achieved with B3LYP, M06, and LC- 

⎤∗HPBE functionals. Moreover, the qualitative predictions of S1 and T1 energies are superior in the order of LC-⎤∗HPBE > M06 >

B3LYP. This result indicates that B3LYP, M06, and LC-⎤∗HPBE functionals can be utilized in the role of screening or categorizing the 
energies of both excited states in MR-TADF materials. On the contrary, the comparison of the ΔEST values in theory and experiment 
reveals that DFT functionals are inadequate to utilize as a qualitative prediction of the ΔEST. 

Let us turn to see the quantitative perspective. As shown in Fig. 3(a), most of the calculated S1 energies by B3LYP, M06, and LC- 

⎤∗HPBE functionals are larger than the experimentally measured values. However, the calculated T1 energies are generally under
estimated except M06 functional. In addition, the calculated ΔEST values are significantly larger than the experimentally measured 
ones. To compare the quantitative prediction accuracy of these DFT functionals, the root means square error (RMSE) values of S1, T1, 

and ΔEST were derived. For the calculated S1 energy, the RMSEs of LC-⎤∗HPBE, B3LYP, and M06 functionals are 0.274, 0.132, and 

0.284, showing higher accuracy in the order of B3LYP > LC-⎤∗HPBE > M06. In contrast, the RMSEs of LC-⎤∗HPBE, B3LYP, and M06 

functionals for computed T1 energies are 0.126, 0.167, and 0.087, determining higher accuracy in the order of M06 > LC-⎤∗HPBE >

B3LYP. Moreover, the RMSEs of the computed ΔEST for LC-⎤∗HPBE, B3LYP, and M06 functionals are 0.355, 0.225, and 0.257, indi

cating the higher accuracy in the order of B3LYP > M06 > LC-⎤∗HPBE. According to the RMSEs of S1, T1, and ΔEST, it can be un
derstood that energy gaps between TDDFT calculations and experiments are remarkably large to use as the aim of the quantitative 
prediction. In addition to TDDFT calculations, we further considerd the ⊗ SCF method to calculate the T1 energy since it has been 

Table 1 
The optimal ⎤.values for MR-TADF materials. The unit 
is in Bohr− 1.   

LC-⎤∗HPBE 
2PTZBN 0.159 
2PXZBN 0.180 
BN1 0.136 
DABNA-1 0.170 
BN-DPAC 0.141 
BN-DMAC 0.155 
Cb-B 0.170 
TABNA 0.161 
tDABNA 0.151 
ADBNA-Me-Mes 0.156  
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known as the efficient methodology to optimize the structure in T1 state [37,38]. Specifically, ⊗ SCF calculations by LC-⎤∗HPBE 

functional were conducted with the individual ⎤∗ values of MR-TADF materials. Therefore, the computed T1 energies were compared 
to the experiments and TDDFT calculations. As listed and shown in Table 3 and Fig. 3(b), it can be seen that T1 energies computed by ⊗
SCF method are slightly larger than TDDFT calculations. More importantly, according to the RMSE values, ⊗ SCF calculations 

computed by LC-⎤∗HPBE and B3LYP exhibit better quantitative T1 energies than TDDFT calculations. On the other hand, M06 
functional is disadvantageous to obtain the quantitative T1 energy of MR-TADF material. We further compare ⊗⨁ST values that 
derived from difference between S1 (TDDFT) and T1 (⊗ SCF) energies. As a result, it is noticed that ⊗ SCF calculation is more beneficial 
than TDDFT calculation in terms of the accurate ⊗⨁ST value and inexpensive time cost. This result implies that ⊗ SCF method can be 
selected as the alternative methodology to predict quantitative T1 energy of MR-TADF materials. 

Although ⊗ SCF method guarantees the improvement of the quantitative prediction of T1 and ΔEST, the accuracy of the computed 
⊗⨁ST values are not yet enough to accurately describe the spin-flip transition of MR-TADF. Consequently, these results make us to 
insist that TDDFT and ⊗ SCF calculations can inform incorrect parameters, leading to the misunderstanding of the spin-flip behavior of 
MR-TADF materials. 

3.2. 3-2. STEOM-DLPNO-CCSD calculation 

As mentioned in the introduction, the correlation effect must be considered to quantitatively calculate the energies of both excited 

Table 2 
The calculated S1, T1, and ΔEST values by TDDFT calculations. All unit is in eV.    

LC-⎤∗HPBE B3LYP M06 Exp. 

S1 T1 ΔEST S1 T1 ΔEST S1 T1 ΔEST S1 T1 ΔEST 

2PTZBN 2.69 2.24 0.45 2.53 2.16 0.37 2.69 2.32 0.37 2.59 2.44 0.15 
2PXZBN 2.83 2.28 0.55 2.50 2.14 0.36 2.73 2.31 0.42 2.60 2.41 0.19 
BN1 2.64 2.20 0.44 2.48 2.2 0.28 2.74 2.34 0.40 2.50 2.39 0.11 
DABNA-1 3.13 2.55 0.58 2.89 2.49 0.4 3.10 2.67 0.43 2.74 2.59 0.15 
BN-DPAC 2.68 2.27 0.41 2.63 2.28 0.35 2.80 2.44 0.36 2.53 2.40 0.13 
BN-DMAC 2.81 2.34 0.47 2.68 2.3 0.38 2.84 2.46 0.38 2.56 2.42 0.14 
Cb-B 3.07 2.55 0.52 2.89 2.47 0.42 3.06 2.63 0.43 2.70 2.58 0.12 
TABNA 3.58 2.94 0.64 3.36 2.94 0.42 3.55 3.09 0.46 3.11 2.90 0.21 
tDABNA 2.99 2.45 0.54 2.88 2.45 0.43 3.04 2.60 0.44 2.80 2.63 0.17 
ADBNA-Me-Mes 2.77 2.31 0.46 2.66 2.31 0.35 2.82 2.41 0.41 2.57 2.39 0.18 
RMSE 0.274 0.126 0.355 0.132 0.167 0.225 0.284 0.087 0.257     

Fig. 2. The regression plots between TDDFT calculation and experiment (a) S1 energy, (b) T1 energy, and (c) ΔEST.  
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states in MR-TADF materials. Therefore, single-point STEOM-DLPNO-CCSD calculations were further conducted at the optimized 
geometries of TDDFT calculations. The calculated S1, T1, and ΔEST values are collected in Table 4. In addition, the regression plots of 
S1, T1, and ΔEST between theory and experiment are depicted in Fig. 4. According to the R2, it is worth noticing for S1 energy that TD- 
LC-⎤∗HPBE/STEOM-DLPNO-CCSD and TD-B3LYP/STEOM-DLPNO-CCSD calculations appear R2 more than 0.8 while TD-M06/ 
STEOM-DLPNO-CCSD calculation exhibits R2 below than 0.5. Interestingly, all TDDFT/STEOM-DLPNO-CCSD calculations display 
R2 more than 0.8 for T1 energy. These results indicate the reliable quantitative prediction. Although TDDFT/STEOM-DLPNO-CCSD 
calculations are in qualitative agreement with experiments, we believe that the utilization of these methodologies as qualitative 
prediction seem to be less meaningful than DFT calculations. Because all data points of TDDFT/STEOM-DLPNO-CCSD calculations are 
more dispersive than those of DFT calculations, indicating the overestimation of R2. 

The energy gaps of S1, T1, and ΔEST between theory and experiment are depicted in Fig. 5, notifying that the calculated S1, T1, and 
ΔEST are close to the experiments. In detail, TD-LC-⎤∗HPBE/STEOM-DLPNO-CCSD calculations show the smallest RMSEs for S1, T1, 
and ΔEST (0.097, 0.084, and 0.058). On the other hand, TD-M06/STEOM-DLPNO-CCSD calculations exhibit the largest RMSEs in 
predicting the S1, T1, and ΔEST (0.157, 0.116, and 0.145). Therefore, it is obtained that the quantitative predictions are more accurate 

Fig. 3. The absolute errors of S1, T1, and ΔEST between DFT calculations and experiments. (a) TDDFT calculations (S1 and T1) (b) TDDFT (S1) and ⊗
SCF (T1) calculations. 

Table 3 
The calculated S1, T1, and ΔEST values by TDDFT (S1) and ⊗ SCF (T1) calculations. All unit is in eV.    

LC-⎤∗HPBE B3LYP M06 Exp. 

S1 T1 ΔEST S1 T1 ΔEST S1 T1 ΔEST S1 T1 ΔEST 

2PTZBN 2.69 2.42 0.27 2.53 2.34 0.19 2.69 2.50 0.19 2.59 2.44 0.15 
2PXZBN 2.83 2.46 0.37 2.50 2.30 0.20 2.73 2.46 0.27 2.60 2.41 0.19 
BN1 2.64 2.38 0.26 2.48 2.33 0.25 2.74 2.47 0.27 2.50 2.39 0.11 
DABNA-1 3.13 2.67 0.46 2.89 2.44 0.45 3.10 2.72 0.38 2.74 2.59 0.15 
BN-DPAC 2.68 2.43 0.25 2.63 2.42 0.21 2.80 2.57 0.23 2.53 2.40 0.13 
BN-DMAC 2.81 2.50 0.31 2.68 2.44 0.24 2.84 2.59 0.25 2.56 2.42 0.14 
Cb-B 3.07 2.70 0.37 2.89 2.58 0.31 3.06 2.73 0.33 2.70 2.58 0.12 
TABNA 3.58 3.12 0.46 3.36 3.06 0.30 3.55 3.19 0.36 3.11 2.90 0.21 
tDABNA 2.99 2.60 0.39 2.88 2.57 0.31 3.04 2.71 0.33 2.80 2.63 0.17 
ADBNA-Me-Mes 2.77 2.50 0.27 2.66 2.47 0.19 2.82 2.56 0.26 2.57 2.39 0.18 
RMSE 0.274 0.096 0.198 0.132 0.092 0.132 0.284 0.151 0.144     

S. Kang and T. Kim                                                                                                                                                                                                   



Heliyon 10 (2024) e30926

6

Table 4 
The calculated S1, T1, and ΔEST values by DFT coupled to STEOM-DLPNO-CCSD calculations. All unit is in eV.    

LC-⎤∗HPBE B3LYP M06 Exp. 

S1 T1 ΔEST S1 T1 ΔEST S1 T1 ΔEST S1 T1 ΔEST 

2PTZBN 2.57 2.45 0.12 2.65 2.44 0.21 2.58 2.36 0.22 2.59 2.44 0.15 
2PXZBN 2.63 2.39 0.24 2.62 2.39 0.23 2.64 2.32 0.32 2.60 2.41 0.19 
BN1 2.60 2.39 0.21 2.78 2.42 0.36 2.75 2.51 0.24 2.50 2.39 0.11 
DABNA-1 2.88 2.69 0.19 2.88 2.70 0.18 2.92 2.75 0.17 2.74 2.59 0.15 
BN-DPAC 2.59 2.4 0.19 2.71 2.62 0.09 2.67 2.51 0.16 2.53 2.40 0.13 
BN-DMAC 2.65 2.42 0.23 2.66 2.50 0.16 2.70 2.51 0.19 2.56 2.42 0.14 
Cb-B 2.87 2.79 0.08 2.88 2.69 0.19 2.92 2.72 0.20 2.70 2.58 0.12 
TABNA 3.21 2.93 0.28 3.30 3.04 0.26 2.91 3.09 − 0.18 3.11 2.90 0.21 
tDABNA 2.74 2.57 0.17 2.84 2.66 0.18 2.88 2.69 0.19 2.80 2.63 0.17 
ADBNA-Me-Mes 2.67 2.50 0.17 2.66 2.50 0.16 2.69 2.41 0.18 2.57 2.39 0.18 
RMSE 0.097 0.084 0.058 0.149 0.106 0.089 0.157 0.116 0.145     

Fig. 4. The regression plots between DFT/STEOM-DLPNO-CCSD calculations and experiments. (a) S1 energy (b) T1 energy (c) ⊗ EST.  

Fig. 5. The absolute errors between DFT/STEOM-DLPNO-CCSD calculations and experiments. (a) S1 energy (b) T1 energy (c) ΔEST.  
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in the order of TD-LC-⎤∗HPBE/STEOM-DLPNO-CCSD > TD-B3LYP/STEOM-DLPNO-CCSD > TD-M06/STEOM-DLPNO-CCSD calcu

lations. This result confirms the superior performance of TD-LC-⎤∗HPBE/STEOM-DLPNO-CCSD calculation in predicting the excited 
state properties of MR-TADF materials. Subsequently, this also clarifies the essential role of TDDFT/STEOM-DLPNO-CCSD calculation 
in understanding the spin-flip transition of MR-TADF materials. Nonetheless, it is worthy noticing that TD-M06/STEOM-DLPNO-CCSD 
calculation shows the larger RMSE for T1 energy, compared to TD-M06 calculation. More surprisingly, TD-M06/STEOM-DLPNO-CCSD 
calculation for TABNA gives an unexpected negative ΔEST, which incorrectly reproduced the experimental value. This abnormal result 
will be discussed and analyzed by further computation in a later study. Although TD-M06/STEOM-DLPNO-CCSD calculation exhibits 
the disadvantageous point, TDDFT/STEOM-DLPNO-CCSD calculation clearly shows the remarkable advantages over TDDFT calcu

lation in understanding the excited states properties of MR-TADF materials. Nonetheless, compared to TD-LC-⎤∗HPBE/STEOM- 
DLPNO-CCSD and TD-B3LYP/STEOM-DLPNO-CCSD calculations, TD-M06/STEOM-DLPNO-CCSD calculation seems to be inadequate 

to quantitatively compute the S1, T1, and ΔEST of MR-TADF materials. Therefore, TD-LC-⎤∗HPBE/STEOM-DLPNO-CCSD and TD- 
B3LYP/STEOM-DLPNO-CCSD calculations are suggested to meaningfully predict the photo-physical properties of MR-TADF mate

rials. Specifically, TD-LC-⎤∗HPBE/STEOM-DLPNO-CCSD calculation must be primarily considered to investigate the excited-state 
properties of MR-TADF materials. 

In conclusion, we can strongly propose that TD-LC-⎤∗HPBE/STEOM-DLPNO-CCSD calculation should be utilized as the efficient 
and powerful methodology to accurately calculate the pivotal excited-state properties of MR-TADF materials. 

4. Conclusion 

TDDFT and TDDFT/STEOM-DLPNO-CCSD calculations were comparably studied to key parameters of excited states in MR-TADF 
materials. Similar to previous reports, it was clarified that TDDFT calculations based on B3LYP, M06, and LC-⎤∗HPBE functionals are 
obviously inadequate to quantitatively compute the S1, T1, and ΔEST of MR-TADF materials. Nevertheless, TDDFT calculation can be 
utilized as a screening tool to qualitatively predict the photo-physical properties of MR-TADF materials. On the contrary, these pa

rameters can be quantitatively predicted based on TDDFT/STEOM-DLPNO-CCSD calculation. More specifically, TD-LC-⎤∗HPBE/ 

STEOM-DLPNO-CCSD calculation gives the most superior quantitative prediction. Therefore, we propose that LC-⎤∗HPBE/DLPNO- 
STEOM-CCSD calculation should be used to describe the exact nature of the excited states of MR-TADF materials. 
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