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Background. In the face of poor prognosis and immunotherapy failure of gastric cancer (GC), this project tried to find new
potential biomarkers for predicting prognosis and precision medication to ameliorate the situation. Methods. To form synthetic
matrices, we retrieved stomach adenocarcinoma transcriptome data from Genotype-Tissue Expression Project (GTEx) and )e
Cancer Genome Atlas (TCGA). Necroptosis-related prognostic lncRNA was identified by coexpression analysis and univariate
Cox regression. )en we performed the least absolute shrinkage and selection operator (LASSO) to construct the necroptosis-
related lncRNA model. Next, the Kaplan–Meier analysis, time-dependent receiver operating characteristics (ROC), univariate
Cox (uni-Cox) regression, multivariate Cox (multi-Cox) regression, nomogram, and calibration curves were made to verify and
evaluate the model. Gene set enrichment analyses (GSEA), principal component analysis (PCA), immune analysis, and prediction
of the half-maximal inhibitory concentration (IC50) in risk groups were also analyzed. For further discussing immunotherapy
between the cold and hot tumors, we divided the entire set into two clusters based on necroptosis-related lncRNAs. Results. We
constructed a model with 16 necroptosis-related lncRNAs. In the model, we found the calibration plots showed a good con-
cordance with the prognosis prediction.)e area’s 1-, 2-, and 3-year OS under the ROC curve (AUC) were 0.726, 0.763, and 0.770,
respectively. Risk groups could be a guide of systemic treatment because of significantly different IC50 between risk groups. Above
all, clusters could help distinguish between the cold and hot tumors effectively and contribute to precise mediation. Cluster 2 was
identified as the hot tumor and more susceptible to immunotherapeutic drugs. Conclusion. )e results of this project supported
that necroptosis-related lncRNAs could predict prognosis and help make a distinction between the cold and hot tumors for
improving individual therapy in GC.

1. Introduction

Regrettably, more often than not, most gastric cancer (GC)
patients are diagnosed at an advanced stage with a poor
prognosis end [1]. As a result, GC is the third most common
cause of cancer death globally (8.2% of 9.6 million cancer
deaths in 2018 worldwide) [2]. Systemic treatments are the
only choice of patients who cannot be surgically treated.
Chemotherapeutics and target therapeutics are common
systemic treatments and are frequently reported with
treatment failure and side reactions [3]. It urges us to find
new exploitable therapeutic strategies. Immunotherapy has
had transformed the treatment landscape for malignancies

and achieved a lot. But just one-third of patients respond to
checkpoint inhibitors in most cancers [4]. Besides failing in
the induction of cell death, the cold tumor, lacking preex-
isting immunity, is also the reason for immunotherapy
resistance [5]. )erefore, it is imperative to study how to
augment immunotherapy in GC.

As most tumors have innate apoptosis resistance, the
induction of other cell death mechanisms, such as nec-
roptosis, has gradually been recognized as promising ther-
apy strategies [4]. Necroptosis, as a novel programmed form
of necrotic cell death different from apoptosis, can enhance
CD8+ leukocyte-mediated antitumor immunity by activat-
ing RIPK1 and RIPK3 within the tumor microenvironment
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(TME) [6]. In another report, a necroptotic cancer cell-
mimicry nanovaccine can potentiate antitumor immunity
in mice by inducing expansion of NKG2D + natural killer
cells and CD8+ T cells [4]. At the same time, necroptosis
works in generating an immunosuppressive TME to
promote malignancies via CXCL1 and Mincle, which also
hints at necroptosis as a potential immunotherapy target
in GC [7].

Long noncoding RNA (lncRNA) can control genes by
influencing their translation or interacting directly with
proteins and other RNA species [8]. Linc00176 releases
miRNAs, such as miR-9 and miR-185, to downregulate
target mRNAs leading to necroptosis of hepatocellular
carcinoma cells. TRINGS, the p53-inducible lncRNA, can
protect cancer cells from necroptosis by inhibiting TRAP-
GSK3β-NF-κB necrotic signaling. Cardiomyocyte nec-
roptosis can be regulated by lncRNA through RIPK1/RIPK3
[9]. Besides, lncRNAs have been reported to promote tu-
mors inflammation and help malignancies evade immune
destruction [10]. )e study of necroptosis-related lncRNA
has not been widely mentioned as a potential therapeutic
target in GC. )erefore, acquiring more necroptosis-related
lncRNAs knowledge can help us understand the roles of
necroptosis and lncRNAs in immunotherapy clearly.

)e distinction between the cold and hot tumors and
turning a cold tumor into a hot tumor will improve the
antitumor effects of immunotherapy. It will bring a
breakthrough in immunotherapy, while the mechanisms of
other cell death remained to be fully elucidated in GC at this
stage. But we still lack a simple and effective method for
distinguishing tumors [5]. As lncRNAs are spoken highly of
acting as new cancer biomarkers in bodily fluids, we tried to
regroup patients based on necroptosis-related lncRNAs and
identify the hot tumor effectively for improving prognosis
and augmenting precise mediation in clinical practice
[10, 11].

2. Materials and Methods

2.1. Acquisition of Information of Patients with GC. For
getting synthetic data matrices about stomach adenomas
and adenocarcinomas and normal stomach tissue, the RNA
transcriptome datasets (HTSeq—Counts and
HTSeq—FPKM) and the relevant clinical information were
downloaded from Genotype-Tissue Expression Project
(GTEx) (https://www.gtexportal.org/) and )e Cancer Ge-
nome Atlas (TCGA) (https://portal.gdc.cancer.gov/). )en
we converted the FPKM value to the TPM value of the
synthetic matrix by data.table, tibble, dplyr, and tidyr R
packages. As a result, we got two synthetic data matrices.)e
Counts value matrix was just for identifying differentially
expressed lncRNAs, while the TPM value matrix was for the
other analyses. To reduce statistical bias in this analysis,
stomach adenomas and adenocarcinomas patients with
missing overall survival (OS) values or short OS values (<30
days) were excluded. With relevant clinical information, we
retrieved 306 patients and divided them into the train risk
group and test risk group randomly by Strawberry Perl and
caret R package. )e ratio was 1:1.

2.2. Selection of Necroptosis-Related Genes and lncRNAs.
)e necroptosis gene set M24779.gmt contains eight nec-
roptosis genes, and it was downloaded from the Gene Set
Enrichment Analysis (GSEA) (http://www.gsea-msigdb.org/
gsea/index.jsp). In addition, with previous reports about
necroptosis, we finally obtained the profile of 67 necroptosis-
related genes (Appendix T1). )en we found 5,022 differ-
entially expressed lncRNAs (Log2 fold change (FC)> 1, false
discovery rate (FDR)< 0.05, and p< 0.05) after screening the
synthetic data matrix by Strawberry Perl and limma R
package [12]. Correlation analysis was performed between
67 necroptosis-related genes and differentially expressed
lncRNAs in the combined matrices. )en, 387 lncRNAs,
with necroptosis-related genes, Pearson correlation coeffi-
cients >0.4, and p< 0.001, were considered necroptosis-
related lncRNAs.

2.3. Establishment and Validation of the Risk Signature.
According to the clinical data of GC cases in the TCGA and
GTEx, univariate Cox proportional hazard regression
analysis was used to screen lncRNAs related to survival from
necroptosis-related lncRNA (p< 0.05). )en, we made the
Lasso regression performed with 10-fold cross-validation
and a p value of 0.05 as well as run for 1,000 cycles. For each
cycle, a random stimulation was set up 1,000 times in order
to prevent overfitting. )en a model was established. )e 1-,
2-, and 3-year time-dependent receiver operating charac-
teristics (ROC) curves of the model were plotted by the
calculation procedure. We calculated the risk score with the
following formula:

risk score � 
n

k�1
coef lncRNAk

 ∗ expr lncRNAk
 , (1)

where the coef (lncRNAn) was the short form of the co-
efficient of lncRNAs correlated with survival and expr
(lncRNAn) was the expression of lncRNAs. According to the
median risk score, subgroups including low- and high-risk
groups were established [12, 13]. We used the chi-square test
to analyze the relationship between the model and clinical
factors in order to evaluate the prognostic value of the
constructed model.

2.4. Independence Factors and ROC. We developed uni-
variate Cox (uni-Cox) and multivariate Cox (multi-Cox)
regression analyses to evaluate whether the risk score and
clinical characteristics were independent variable factors and
made ROC to compare different factors in predicting
outcome.

2.5. Nomogram and Calibration. With rms R package, the
risk score, age, and tumor stage were used to set up a
nomogram for the 1-, 2-, and 3-year OS and correction
curves based on the Hosmer–Lemeshow test to illustrate
whether the prediction outcome showed good consistence
with the practical.
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2.6. Gene Set Enrichment Analyses. With curated gene set
(kegg.v7.4.symbols.gmt), gene set enrichment analyses
(GSEA) software (https://www.gsea-msigdb.org/gsea/login.
jsp) was applied to identify the significantly enriched
pathways between the low- and high-risk groups based on
the criterion: p< 0.05 and FDR< 0.25.

2.7. :e Investigation of the TME and Immune Checkpoints.
According to the result of GSEA, we decided to analyze the
immune-cell factors in risk groups. We could calculate the
immune infiltration statuses among the GC patients from
the TCGA including TIMER, CIBERSORT, XCELL,
QUANTISEQ, MCPcounter, EPIC, and CIBERSORT on
TIMER2.0 (http://timer.cistrome.org/). In another way, we
could download the profile of infiltration estimation for all
TCGA tumors on the same website. Wilcoxon signed-rank
test, limma, scales, ggplot2, and ggtext R packages were
performed in analyzing the differences in immune infil-
trating cell content explored, and the results were shown in a
bubble chart [13]. Besides, we also made comparisons about
TME scores and immune checkpoints activation between
low- and high-risk groups by ggpubr R package.

2.8. Exploration of the Model in the Clinical Treatment.
)en we used the R package pRRophetic to evaluate their
therapy response determined by the half-maximal inhibitory
concentration (IC50) of each GC patient on Genomics of
Drug Sensitivity in Cancer (GDSC) (https://www.
cancerrxgene.org/) [14].

2.9. Clusters Based on 16 Prognostic lncRNAs. For exploring
GC response to immunotherapy, we decided to explore
potential molecular subgroups by ConsensusClusterPlus
(CC) R package based on the prognostic lncRNAs expres-
sion [15]. Principal component analysis (PCA), T-distrib-
uted stochastic neighbor embedding (t-SNE), and
Kaplan–Meier survival were made by Rtsne R package.

Besides, we made immunity analysis and drug sensitivity
comparison by GSVA Base and pRRophetic R package.

3. Results

3.1. Necroptosis-Related lncRNAs in GC Patients. )e flow of
the study was exhibited in Figure 1. From )e Cancer
Genome Atlas (TCGA) and Genotype-Tissue Expression
Project (GTEx) matrix, we obtained 204 normal samples
(174 samples from GTEx) and 343 tumor samples.
According to the expression of 67 necroptosis-related genes
and differentially expressed lncRNAs (|Log2FC|> 1 and
p< 0.05) between normal and tumor samples, we finally got
387 necroptosis-related lncRNAs (correlation coef-
ficients> 0.4 and p< 0.001) [12, 16]. Of them, 194 were
upregulated, and the others were downregulated
(Figure 2(a)). )e network figure and data between nec-
roptosis-related genes, such as AXL and BCL2, and lncRNAs
were shown in Figure 2(b) and Appendix D1.

3.2. Construction and Verification of the Model.
According to univariate Cox (uni-Cox) regression analysis,
we found 16 necroptosis-related lncRNAs significantly
correlated with overall survival (OS) (all p< 0.05) and made
a heat map (Figures 3(a) and 3(b)). To avoid overfitting the
prognostic signature, we performed the Lasso regression on
these lncRNAs and extracted 16 lncRNAs related to nec-
roptosis in GC when the first-rank value of Log(λ) was the
minimum likelihood of deviance (Figures 3(c) and 3(d)).
Besides, we could find 10 lncRNAs were upregulated and the
others were downregulated in the Sankey diagram
(Figure 3(e)).

We calculated risk score with the formula: risk
score � LINC01829 × (0.2597) + LINC02657 × (0.1297)
+ RNF139-AS1 × (−0.1539) + FRMD6-AS2 × (0.0083)
+ AGBL5-IT1 × (−0.4116) + AC116914.1 × (−0.4053) +
AC005165.1 × (0.0228) + AL353804.2 × (−0.0387)
+ AC004596.1 × (−0.5485) + AL355574.1 × (−0.1209) +
AC012409.3 × (0.3441) + AC124067.4 × (−0.0227) +
AC015813.1 × (−0.1553) + AP001189.3
× (0.0173) + AL133245.1 × (−0.3709) + AC069549.1 ×

(0.1690) [13].
With the risk score formula, the distribution of risk

score, the survival status, survival time, and the relevant
expression standards of these lncRNAs of patients were
compared between low- and high-risk groups in the train,
test, and entire sets. )ese all indicated the high-risk group
had worse prognoses (Figures 4(a)–4(l)). Besides, the con-
ventional clinicopathologic characteristics, age, gender,
grade, stage, T, M, and N also performed the same results
(Figure 4(m)).

3.3.ConstructionofNomogram. )ehazard ratio (HR) of the
risk score and 95% confidence interval (CI) were 2.588 and
1.778–3.767 (p< 0.001), respectively, in univariate Cox (uni-
Cox) regression while 2.564 and 1.738–3.782 (p< 0.001),
respectively, in multivariate Cox (multi-Cox) regression
(Figures 5(a) and 5(b)). In addition, we found the other two
independent prognostic parameters, age (1.051 and
1.023–1.080; p< 0.001) and stage (1.523 and 1.018–2.280;
p � 0.041) (Figure 5(b)).

According to three independent prognostic factors, risk
score, age, and TNM stage (all p< 0.05 in multi-Cox), we
built a nomogram for predicting the 1-, 2-, and 3-year OS
incidences of GC patients (Figure 5(c)). We also utilized the
1-, 2-, and 3-year calibration plots to attest that the no-
mogram had a good concordance with the prediction of 1-,
2-, and 3-year OS (Figure 5(d)).

3.4. Assessment of the RiskModel. Time-dependent receiver
operating characteristics (ROC) were utilized to evaluate
the sensitivity and specificity of the model on the prog-
nosis. We also illustrated the outcomes of ROC with the
area under the ROC curve (AUC). )e 1-, 2-, and 3-year
AUC of the train set were 0.754, 0.824, and 0.819, of the
test set were 0.709, 0.701, and 0.713, and of the entire set
were 0.726, 0.763, and 0.770, respectively (Figures 5(e)–
5(g)). At the 3-year ROC of risk model, clinical factors and
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nomogram total score, risk score (0.770), and nomogram
(0.731) showed their predominant predictive ability
(Figure 5(h)).

3.5. GSEA. To investigate differences in biological functions
between risk groups, we utilized GSEA software to explore
the high-risk group in the KEGG pathway in the entire set
(Figure S1A). Seven of the top ten pathways with enrichment
in the high-risk group were highly correlated with tumor
invasion, and the others were correlated with immunity such
as “leukocyte transendothelial migration” (all p< 0.05;
FDR< 0.25; |NES|> 1.5) (Figure 6(a)) [17]. )erefore, we
tried to make an immunity analysis in the model.

3.6. :e Investigation of Immunity Factors and Clinical
Treatment in Risk Groups. More immune cells were asso-
ciated with the high-risk group on different platforms
exhibited at the immune cell bubble chart and in the doc-
ument such as macrophage M1, T cell CD4+ näıve, immune
score at XCELL, T cell CD8+, T cell CD4+ at TIMER, T cell
CD4+ at QUANTISEQ and macrophage at MCPcounter and
EPIC (all p< 0.05) (Figure 6(b)) (Appendix D2). Besides, we
also found that the higher risk score had more association

with immune cells such as dendritic cells resting, which had
been reported as a part of immunotherapy in GC
(Figure 6(c)) [18]. All of these showed the high-risk group
had a higher immune infiltration status. )e high-risk group
had a higher immune score and a higher ESTIMAT (mi-
croenvironment) score, signifying a different TME from the
low-risk group (Figure 6(d)). Most immune checkpoints also
showed better activation in the high-risk group (Figure 6(e)).
It implied that we could choose appropriate checkpoint
inhibitors for GC patients regrouped by the risk mode [19].
Consistent with reports, the high-risk group, with a higher
immune score, had a lower IC50 of 12 immunotherapeutic
drugs such as bryostatin 1 (Figure 6(f )) [20]. What’s more,
we could also find that 16 chemical or targeted drugs, which
applied to GC therapy, showed lower IC50 in the high-risk
group (Figure S2).

3.7. Distinguishing between the Cold and Hot Tumors and
Precision Medicine in Clusters. Referring to previous re-
search, different clusters, known as subtypes, usually showed
different immune microenvironments leading to different
immunotherapeutic responses [21, 22].With 16 necroptosis-
related lncRNAs, we regrouped patients into two clusters by
the ConsensusClusterPlus (CC) R package based on

STAD RNA sequencing data in TCGA (N=30,T=373)
Normal stomach RNA sequencing data in GTEx (N=173)

67 necroptosis genes & 387 related lncRNAs 
correlation coefficients > 0.4 and p <0.001

Entire set (N=306)

Train set (N=154)

Lasoo Cox model construction (16 lncRNAs
significantly linked to OS were selected)

Test set (N=152)

Internal validation

Prognostic value
verification

Nomogram and
assessment

Immunotherapy 
response analysis

Identifying hot 
tumor in clusters

Precision medicine
through clusters

STAD clinical information inTCGA

UniCox regression analysis selected
30 lncRNAs significantly linked to OS

Figure 1: Flow diagram of the study.
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necroptosis-related lncRNAs expression (Figures 7(a) and
S3A) [15]. T-distributed stochastic neighbor embedding (t-
SNE) indicated two clusters could be distinguished clearly
(Figure 7(b)). In addition, we employed principal compo-
nent analyses (PCA) to verify that both risk groups and
clusters have different PCA (Figure 7(c)). Moreover, cluster
1 had better OS (p � 0.006) in the Kaplan–Meier analysis
(Figure 7(d)). GSEA was also employed to investigate
clusters’ biological functions. Seven of the top ten pathways
with enrichment in cluster 2 were related to immunity
(p< 0.05; FDR< 0.25; |NES|> 1.9), such as “natural killer
(NK) cell-mediated cytotoxicity” (Figures 7(e) and
Figure S1B). NK cells and their cytotoxicity acted as an
important role in immunity and cancer [23]. To verify its
relations with risk, a chart was also made. Cluster 1 was
significantly associated with the low-risk group, and cluster 2
was associated with the high-risk group (∗∗ means
p< 0.01) (Figure 7(f)). )e results below about cluster 2
might contribute to patients’ immunotherapy in risk groups.
Concerning the comparison of the single sample GSEA
(ssGSEA) scores for immune cells and immune functions, 15
immune cells, such as CD8+ T cells, and 12 immune
functions, such as inflammation-promoting, had more re-
lations with cluster 2 (Figure 7(g)). Cluster 2 was more
highly infiltrated by immune cells based on analyses of the
different platforms (Figure 7(h)) (Appendix D3). Cluster 2
had a higher immune score and a higher ESTIMAT (mi-
croenvironment) score, signifying a different TME from
cluster 1 (Figure 7(i)). Almost all the immune checkpoints
expressed more activity in cluster 2, such as HAVCR2
(TIM3), LAG3, and CD274 (PD-L1) (Figure 7(j)). CD8+

T cells, the function of inflammation-promoting, high im-
mune score, activation of TIM3, LAG3, and PD-L1 played
vital roles in the hot tumor. )erefore, we could consider
cluster 2 as the hot tumor while cluster 1 as the cold tumor
[5, 24]. It might result in different immunotherapeutic re-
sponses [22, 25]. With the notion of the cold and hot tumors,
cluster 2 was more susceptible to immunotherapy. With
drug sensitivity comparison, we found nine immunother-
apeutic drugs, such as shikonin, showed different IC50 solely
in clusters as well as 16 chemical or targeted drugs that
applied to systemic treatments in GC (Figure 7(k) and
Figure S3B) [26, 27]. Because of clusters based on these
lncRNAs, we might further study immunotherapy responses
and potentiate precise medication in GC patients.

4. Discussion

Immunotherapy can ameliorate the situation of frequently
reported treatment failure, but it is not a panacea for all
diseases [4]. Because of immunosuppressive TME, some
patients had poor immunotherapy responses. )erefore, we
introduced the notion that cold and hot tumors refer to an
immune-based classification of tumors rather than con-
ventional cancer-based for improving immunotherapy. )e
highly infiltrated tumor with a high immune score usually is
regarded as the hot tumor while the noninfiltrated tumor
with a low immune score as the cold tumor. )e higher
activity of checkpoints, such as TIM3 and LAG3, is also the
one of characteristics of the hot tumor. In the face of the hot
tumor, we can treat patients with T-cell-targeting immu-
notherapies, microbiome modulation, or other
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Figure 2: Identification of necroptosis-related lncRNAs in patients with GC. (a))e volcano plot of 387 differentially expressed necroptosis
genes. (b) )e network between necroptosis genes and lncRNAs (correlation coefficients> 0.4 and p< 0.001).
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Figure 3: Extraction of necroptosis-related lncRNAs prognostic signature in GC. (a) )e prognostic lncRNAs extracted by univariate Cox
regression analysis. (b) )e expression profiles of 30 prognostic lncRNAs. (c) )e 10-fold cross-validation for variable selection in the
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Figure 4: Prognosis value of the 16 necroptosis-related lncRNAs model in the train, test, and entire sets. (a–c) Exhibition of necroptosis-
related lncRNAsmodel based on risk score of the train, test, and entire sets, respectively. (d–f) Survival time and survival status between low-
and high-risk groups in the train, test, and entire sets, respectively. (g–i))e heat map of 16 lncRNAs expression in the train, test, and entire
sets, respectively. (j–l) Kaplan–Meier survival curves of OS (survival probability) of patients between low- and high-risk groups in the train,
test, and entire sets, respectively. (m) Kaplan–Meier survival curves of OS (survival probability) prognostic value stratified by age, gender,
grade, stage, T, N, or M between low- and high-risk groups in the entire set.
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immunotherapeutic drugs. But it is not easy for the cold
tumor because it fails to unleash preexisting immunity with
low degree T cells. CD8+T cells can kill cancer cells by
releasing PRF1, GNLY, or GZM and break tolerance as a
preexisting immune response, enhancing immunotherapy
via the PD-1/PD-L1 immune inhibitory axis. So it is wise to
turn a cold tumor into a hot tumor rather than just give other
treatments [5, 28].

In the study, we built 16 necroptosis-related lncRNAs
mode and tried to identify the cold and hot tumors. Patients
were regrouped into low- and high-risk groups by the model
and made some analyses such as Kaplan–Meier analysis,
GSEA, and IC50 prediction. Although we found risk groups
could be a guide in predicting prognoses and systemic
treatments, we could not identify the hot tumor by risk
groups. Referring to reports, molecular subtypes, also known
as clusters, are associated with tumor immune suppression
and microenvironments [1, 29]. Different subtypes have
different immune and TME scores leading to different
prognoses and immunotherapy responses [22, 25]. )us, we
divided patients into two clusters based on the expression of
these lncRNAs [15]. As expected, the two clusters had dif-
ferent immune microenvironments. Cluster 1 had an

immunosuppressive TME. At the same time, there were
more CD8+ Tcells highly infiltrated, more active function of
inflammation-promoting, higher immune score, and higher
activity of TIM3, LAG3, and PD-L1 in cluster 2, which could
be identified as the hot tumor definitely [5, 24].What’s more,
cluster 2 was more sensitive to immunotherapeutic drugs.
Necroptosis-related lncRNAs could not only predict prog-
nosis but also be a guide for individual therapy. Above all,
these lncRNAs, as liquid biopsies, could distinguish between
the cold and hot tumor briefly and effectively compared with
the tumor biopsy by imaging mass cytometry or other ex-
periments [28].

Besides, in the Sankey diagram, we found some of these
lncRNAs were related to star genes such as BCL2. FRMD6-
AS2 and LINC02657 were associated with AXL, which
contributed to immunotherapy by reprogramming the
immunological microenvironment and PD-1 inhibitors
[30]. BCL2, as a hot point of PD-1 immunotherapy, cor-
related with AC012409.3 and AC069549.1. It also could
reactive apoptosis to overcome immunotherapy failure and
keep durable antitumor responses [31]. RNF31 was a po-
tential immunotherapy target of GC andmight be regulated
by AC004596.1 [32]. TRAF2, associated with AL355574.1,
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Figure 5: Nomogram and assessment of the risk model. (a, b) Uni- and multi-Cox analyses of clinical factors and risk score with OS. (c))e
nomogram that integrated the risk score, age, and tumor stage predicted the probability of the 1-, 2-, and 3-year OS. (d) )e calibration
curves for 1-, 2-, and 3-year OS. (e–g) )e 1-, 2-, and 3-year ROC curves of the train, test, and entire sets, respectively. (h) )e 3-year ROC
curves of risk score, nomogram total score, and clinical characteristics.
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could augment immunotherapy by increasing the suscep-
tibility of tumors [33]. FRMD6-AS2 suppressed tumor
growth, migration, and invasion via the Hippo signaling
pathway [34]. And Hippo signaling pathway is engaged in
programmed cell death by regulating kinds of target such as
YAP [35]. LINC02657 was reported that its overexpression
would keep cancer cells from programmed cell death by
regulating SART3 [36]. )e other lncRNAs were firstly
discovered. Newly acquired necroptosis-related lncRNAs
knowledge could help us develop a better mechanistic
understanding of GC, which would bring a breakthrough
into clinical practice.

)ere were still some shortcomings and deficiencies
though we had utilized many methods to asset our model.
As a retrospective study, it was susceptible to the inherent
biases of this research paradigm [37]. Although the ac-
tivation of checkpoints performed significantly between
risk groups and clusters, we could not make a comparison
of corresponding checkpoint inhibitors IC50, such as PD-
1 inhibitors, as a result of insufficient data on GDSC. We
had performed internal validation by the test and entire
sets in the model, but it was difficult to do external val-
idation for prognoses. Even if we had retrieved all

information of GSE84437 series and GSE62254 series
matrices from Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/), we could not get appro-
priate information of lncRNAs because commercial
microarray data had biases and limitations compared with
GTEx and TCGA. However, the immune cell bubble and
the immune cell heat map showed the results from
multiple platforms, which might be recognized as external
validation in a sense. Given the above analyses and pre-
vious reports, we felt that our model was reasonable and
acceptable for future clinical tests [13, 38]. Collecting
more clinical datasets could help reassert the value of these
necroptosis-related lncRNAs, which would be in our
plans.

In addition, both necroptosis and lncRNAs work in
inducing cell death. Necroptosis can induce cancer cell
death, bypassing apoptosis because of modality in a caspase-
independent fashion [7]. LncRNAs can regulate apoptosis-
related signaling pathways [39]. Clarifying their relations
and mechanisms through experiments will be helpful for
effectively killing cancer cells while leaving the healthy cells
intact [7, 10]. It will make progress not only in immuno-
therapy but also in cancer research.
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Figure 7: Distinction between cold and hot tumors and immunotherapy prediction. (a) Patients divided into two clusters by Con-
sensusClusterPlus. (b))e t-SNE of two clusters. (c))e PCA of risk groups and clusters. (d) Kaplan–Meier survival curves of OS in clusters.
(e) GSEA of cluster 2. (f ))e relationship between risk groups and clusters. (g))e ssGSEA scores of immune cells and immune functions in
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difference of 32 checkpoints expression in clusters. (k) Nine immunotherapeutic drugs solely showing significant IC50 difference.
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5. Conclusions

Necroptosis-related lncRNAs could predict prognosis and
help propose an exploitable therapeutic strategy by identi-
fying the cold and hot tumors, which would make great
progress in individual therapy and improve patients’
prognoses. Targeting necroptosis and lncRNAs will be a
promising pathway for overcoming systemic treatments
failure and expanding the field of immunotherapy. )ere-
fore, the mechanisms and relationships, among necroptosis,
lncRNAs, immunity, and GC, were worth being fully elu-
cidated and validated.
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