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Abstract

Meta-analyses of genome-wide association studies (GWAS), which dominate genetic discovery 

are based on data from diverse historical time periods and populations. Genetic scores derived 

from GWAS explain only a fraction of the heritability estimates obtained from whole-genome 

studies on single populations, known as the ‘hidden heritability’ puzzle. Using seven sampling 

populations (N=35,062), we test whether hidden heritability is attributed to heterogeneity across 

sampling populations and time, showing that estimates are substantially smaller from across 
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compared to within populations. We show that the hidden heritability varies substantially: from 

zero (height), to 20% for BMI, 37% for education, 40% for age at first birth and up to 75% for 

number of children. Simulations demonstrate that our results more likely reflect heterogeneity in 

phenotypic measurement or gene-environment interaction than genetic heterogeneity. These 

findings have substantial implications for genetic discovery, suggesting that large homogenous 

datasets are required for behavioural phenotypes and that gene-environment interaction may be a 

central challenge for genetic discovery.
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human reproduction; age at first birth; educational attainment; gene-environment interaction; 
missing heritability; hidden heritability

Introduction

Meta-analyses of genome-wide association studies (GWAS), which dominate genetic 

discovery are based on diverse data sources that span vast historical time periods and 

populations.1 The proportion of phenotypic variance accounted for by single-nucleotide 

polymorphisms (SNPs) that reach genome-wide significance, and the polygenic scores 

constructed from all SNPs using GWA study results, however, represent only a fraction of 

heritability estimates derived from twin and other whole-genome studies.2,3

To understand this disparity, it is essential to explain three central ways to measure 

heritability (see Box 1 for detailed definitions). First, narrow-sense heritability stems from 

family-based studies and often twin research (h2
family) and produces the highest heritability 

estimates. These studies demonstrated a genetic basis for anthropometric traits such as 

height and body mass index (BMI), but also behavioral phenotypes such as educational 

attainment and human reproductive behavior (i.e., number of children, age at first birth).4–

6A recent meta-analysis of twin studies from 1958-20124 estimated, for instance, 

heritability for educational attainment as 52% (N=24,484 twin pairs) and 31% for 

reproductive traits (N=28,819 twin pairs).

GWAS heritability estimates (h2
GWAS) estimate the proportion of phenotypic variance 

accounted for by genetic variants known to be robustly associated with the phenotype of 

interest and produce the lowest estimates. The polygenic score from a recent meta-GWAS of 

educational attainment with over 300,000 participants explains around 4% of the variance7 

with another GWAS for age at first birth explaining only 1%.8

Yang and colleagues argued that most genetic effects are too small to be reliably detected in 

GWAS of current sample sizes and proposed an alternative approach: whole-genome 

restricted maximum likelihood estimation (GREML) performed by GCTA software.9,10 

This third measure is often referred to as SNP- or chip-based heritability (denoted by h2
SNP), 

and is the proportion of phenotypic variance explained by additive genetic variance jointly 

estimated from all common variants on standard GWAS chips. These estimates are typically 

between h2
family and h2

GWAS estimates. Contrary to the low h2
GWAS estimates of between 
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1–4% for these phenotypes, the SNP-heritability has been estimated as 22% for educational 

attainment, 15% for age at first birth and 10% for number of children.11,12

This stark discrepancy in heritability estimates has spawned debates about ‘missing 

heritability’ (the difference between h2
GWAS and h2

family) and ‘hidden heritability’ 

(difference between h2
GWAS and h2

SNP ) (for full definitions see Box 1 3).2,13–16 ‘Missing 

heritability’ has been linked to fundamental differences in study designs between family and 

whole-genome studies2, non-additive genetic effects13,14 and inflated estimates from twin 

studies due to shared environmental factors 17. Empirical evidence for either of these 

reasons is scarce. A recent investigation on height and BMI, however, demonstrates that the 

inclusion of rare genetic variants can increase the heritability estimate based on whole-

genome methods.15 The underlying reason for the discrepancy of ‘hidden heritability’ 

between h2
SNP versus h2

GWAS estimates are less well understood.18

Here, we interrogate the common assumption underlying GWA studies’ meta-analyses, that 

genetic effects are ‘universal’ across environments. The large GWAS meta-analyses required 

to detect SNP associations consist of a wide array of samples across historical periods and 

countries, representing heterogeneous populations subject to diverse environmental 

influences. Heterogeneity across environments can emerge for different reasons such as 

differences in population structure, genotype or phenotype measurement, heterogeneous 

imputation quality across sampling populations or sensitivity of the phenotype to 

environmental change. Demographic research has shown that education and reproductive 

behavior are strongly modified by environmental changes such as female educational 

expansion or the introduction of effective contraception.19 If genetic effects are not 

universal but rather heterogeneous across populations, heritability estimates from GWAS 

meta-analyses should produce weaker signals and we would witness a reduction in both the 

discovery rate and the variance explained from SNPs across populations.20

We conduct a mega-analysis using whole-genome methods which entails pooling all cohorts 

to estimate genetic relatedness not only within, but also across populations. We utilize 

models based on GREML estimation10 using primary data from seven pooled sampling 

populations. This allows us to estimate the average common SNP-based heritability (h2
SNP) 

between and within environments. We subsequently apply gene-environment interaction 

models, adding a within population matrix to estimate the average SNP-based heritability 

within populations in our data and decompose the variance explanation of common SNPs 

within and between sampling populations and birth cohorts.10,21 If SNP-based heritability 

is significantly higher within than across environments, we conclude that this is evidence for 

hidden heritability due to heterogeneity across the sample population or cohort. We applied a 

G×P model when stratifying by sampling populations, a G×C model when stratifying by 

birth cohorts born before or after the strong fertility postponement during 20th century (see 

Material and Methods), and the G×P×C model when stratifying by both (see Material and 

Methods for details). We define the various genetic variance components of the models 

explicitly, and will refer to  as the sum of all genetic effects relative to the phenotypic 

variance within the respective model specification. We quantify the hidden heritability due to 
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heterogeneity as the discrepancy between  from the baseline model and  from the 

interaction models.

Our approach allows us to decompose average heritability levels across historical cohorts 

and countries into a genetic component that is either ‘universal’ across all environments or 

‘environmentally specific’, enabling a test of whether the same genes are explaining variance 

in the phenotype to the same extent in different geographical (country) and historical (birth 

cohort) environments. To test for alternative explanations for heterogeneity across sampling 

populations, such as genotyping error, we conduct a series of simulation studies to evaluate 

the role of gene-environment interaction in contrast to alternative explanations (for details 

and results see Discussion and Material and Methods). A recent study used bivariate 

GREML models to investigate genetic heterogeneity in height and BMI between two 

populations in the US and Europe, providing evidence for homogeneity in both phenotypes.

22 We expect negligible gene-environment interaction for these anthropometric traits and 

compare findings for these homogeneous phenotypes to those from behavioural phenotypes 

(education, human reproductive behavior) using the same modeling framework.

Results

SNP-based heritability across model specifications by phenotypes

When we ignore environmental differences, h2
SNP in the standard GREML model (G) is 

significant for all phenotypes, but at different levels (Figure 1 and Supplementary Tables 1-5 

for full model estimates). For height, h2
SNP is estimated as 0.40 (SE 0.01), meaning that 

40% of the variance in height can be attributed to common additive genetic effects. h2
SNP is 

smaller for BMI (0.17 SE 0.01) and years of education (0.16 SE 0.01) and low for both 

reproductive behavior outcomes, NEB (0.03 SE 0.01) and AFB (0.08 0.02).

More importantly, however, for our question, h2
SNP in all phenotypes increases if we include 

stratified GRMs in addition to the baseline GRM (e.g., yielding the G×C model when 

stratifying by birth cohorts, the G×P model when stratifying by sampling populations, and 

the G×P×C model when stratifying by both). Particularly for the complex behavioral 

outcomes of education and reproductive behavior, the increase is substantial. For education, 

h2
SNP increases by 80% (up to 0.28 SE 0.03) in the G×P×C model compared to the standard 

GREML model (G). For AFB, the increase is 60% (0.13 SE 0.04) and for NEB it is as high 

as 342% (0.13 SE 0.03). In contrast, the increase in the full G×P×C model was considerably 

smaller at 12% (0.44 SE 0.03) for height and 30% (0.22 SE 0.03) for BMI.

Best model by phenotype

Based on likelihood ratio tests, we identified the best fitting while parsimonious model (in 

Figure 4 marked as BM; for full results see Supplementary Table 6). For height, the best 

fitting model includes no gene-environment interaction and therefore corroborates previous 

findings from the literature. 36

For BMI, and the reproductive phenotypes of AFB and NEB, the G×P specification shows 

the best model fit. This indicates significant heterogeneity interaction across sampling 
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populations, while there is no evidence for heterogeneity by birth cohort. For BMI, additive 

SNP variance effective between and within populations (i.e., the blue column that assumes it 

is effective across the defined environments or ‘universal’ respectively; ), 16% of the 

variance in the phenotype and an additional 5% can be explained on average within 

populations (  green column). For AFB, around 6% of the variance can be 

explained by universal genetic effects while 7% are environmentally specific, and for NEB 

only 1% of the variance can be explained between populations, with 12% within them. 

Finally, for education, the best-fitting model (G×P×C) implies that both sampling 

population and birth cohort moderate genetic effects from the whole genome and that there 

are genetic effects unique to sampling populations within the defined birth cohorts. In 

contrast to reproductive behavior, however, 12% of the overall variance can still be explained 

by additive common genetic effects even between populations. Additionally, there is 2% 

variance explained within birth cohorts (  red column), 6% within populations and 

8% which is unique within populations and birth cohorts (  orange column).

Quantifying ‘universal effects’ and ‘hidden heritability’ due to heterogeneity

Figure 2 visualizes: (i) the ‘universal effects’ or ratio for genetic variance captured by the 

normal GRM in the best fitting model (i.e., blue column,  in the model with the best 

fit) and the total  (i.e., across all genetic components in the best fitting model). It also 

shows (ii) in red the ‘hidden heritability’ due to heterogeneity (i.e., the differences in total 

 between the best fitting model and the baseline model, divided by the total  of the 

best fitting model) for all phenotypes.

The Figure illustrates hidden heritability due to heterogeneity particularly for the complex 

phenotypes we are most interested in, namely: education and the reproductive outcomes of 

AFB and NEB. For education, only 55% of  in the best fitting model is ‘universal’ or 

effectively both within and between environments. A standard GREML model (G) would 

only capture around 63% of  in the best fitting model resulting in 37% hidden 

heritability. For reproductive behavior, this becomes even stronger. For NEB only 6% of 

 of  of the best fitting model is universal, with 75% hidden in the baseline model. 

For AFB, 45% of  is universal with around 40% of the  hidden in the baseline 

model. For height, in contrast, we see that the  in the best fitting model is effectively 

between environments and we find no evidence for hidden heritability. For BMI, around 

75% of  in the best fitting model is effectively between and within environments (i.e., 

universal). The standard GREML model (G) for BMI thus captures 80% of  from the 

best fitting model with 20% hidden heritability.

Discussion

Using whole-genome data from seven populations, we demonstrate heterogeneity in genetic 

effects across populations and birth cohorts for educational attainment and human 
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reproductive behavior in a mega-analysis framework. Our findings imply substantial ‘hidden 

heritability’ due to heterogeneity for educational attainment (37%) and reproductive 

behavior (40% for AFB and 75% for NEB) in the cohorts under study. Comparative analysis 

with anthropometric traits (height and BMI) corroborates previous findings from whole-

genome methods of a more homogeneous genetic architecture of these phenotypes across 

environments (while for BMI GWA studies also find evidence for gene-environment 

interaction across birth cohorts in the HRS 38,39).

Our findings indicate that the lower predictive power of polygenic scores from large GWA 

studies compared to SNP-based heritability on single or very few populations partly reflects 

the fact that genetic effects are (to some extent) not universal but rather specific to data 

sources for these complex traits. Estimates are well in line with the 36-38% loss in 

polygenic score R2 across data sets reported for education.40 They demonstrate therefore 

that the reference SNP-based heritability for the predictive power of polygenic scores 

obtained from the GWAS meta-analyses amongst several populations is smaller than SNP-

based heritability obtained from single populations. While the need for statistical power 

often still necessitates large-scale GWAS meta-analysis combining multiple and diverse data 

sources, our findings also suggests that large homogeneous data sources such as the UK 

Biobank with around 500,000 genotyped individuals may trigger genetic discovery for 

behavioral outcomes. Drawing conclusions or making predictions out of one discovery 

sample alone, however, may be inaccurate, since SNPs may have different effects in 

different samples, or the phenotype may reflect different behavioral aspects.

Complementary simulation studies corroborate the interpretation that our findings are 

mainly driven by gene-environment interaction in contrast to heterogeneity in residual 

environmental variance – including measurement error – or genetic heterogeneity (e.g., 

genotyping platform, genetic architecture, imputation quality) across the data sources we 

pooled (see Material and Methods). When applying our models to simulated phenotypes 

without gene-environment interaction but rather to different levels of heritability due to 

varying residual variance, we find no systematic inflation of the G×P component in our 

models. Furthermore, we estimated both models including and excluding the causal 5000 

SNPs our simulations have been based on. When causal SNPs are removed, estimates are 

based on correlated SNPs, which are in linkage disequilibrium (LD). To the extent that the 

structure in the genetic data we use is heterogeneous across populations for above reasons, 

we can expect that our models interpret it as heterogeneous genetic effects resulting in 

hidden heritability. However, results in- and excluding causal SNPs are nearly identical, so 

that we cannot expect heterogeneity drive our findings. However, in the total absence of 

gene-environment interaction, estimates show a slight inflation in the G×P model (5%) (see 

Material and Methods for all simulation studies). First, the substantial findings of hidden 

heritability between 40–75% for behavioral phenotypes largely exceeds this potential 

inflation, corresponding with simulations of a genetic correlation between 0.5–0.8 across 

populations for the behavioral phenotypes. Second, we conducted permutation analyses, 

generating a random gene-environment interaction, not stratifying by population or birth 

cohorts. Here we found no inflation for age at first birth by a randomly generated matrix 

included in the models (  0.000001, SE 0.03, p-value 0.50), nor for number of children 
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ever born (  0.003, SE 0.02, p-value 0.43) nor education (  0.000001, SE 0.02, p-

value 0.50; not listed). It remains vital to conclude that although the estimates of hidden 

heritability provided in our study are in a single design – in contrast to comparing GWAS 

and whole-genome methods – estimates do not represent generalizable values of hidden 

heritability for these traits. The estimates might be slightly inflated and also dependent on 

the number of cohorts combined for a study as well as the respective level of heterogeneity 

across them.

Contrary to our expectations, we did not find any evidence for gene-environment interaction 

across birth cohorts for human reproductive behavior. This is particularly surprising since 

across time there have been substantial environmental changes such as the introduction of 

effective contraception, social norms around the timing of childbearing and educational 

expansion – all factors which strongly modify reproductive behavior. 19 In contrast, we find 

cohort specific genetic effects on educational attainment. This contributes to solving the 

puzzle of missing heritability in educational attainment, since twin studies with higher 

heritability estimates are also conducted within homogeneous birth cohorts.

Our findings expose the challenges in detecting genetic variants associated with human 

reproductive behavior or other complex phenotypes in GWAS meta-analyses of multiple 

cohorts. First, SNP-based heritability within populations is comparably small and second, 

we find limited evidence that genetic effects underlying reproductive behavior in one 

country predicts the underlying behavior in another. Our findings likely reflect the 

interrelated behavioral nature of reproduction and education, which appears to be more 

sensitive to cultural and societal heterogeneity than for example anthropometric traits such 

as height or BMI. It has also been shown that pleiotropic genes affecting age at first birth 

and schizophrenia have different effects across populations.41 Recently, social scientists 

have made considerable efforts to integrate molecular genetics into their research.7,8,12 

When considering the highly socially- and biologically-related phenotype of reproductive 

behavior outcomes, environmental factors are critical in understanding how genetic factors 

are modified in relation to fecundity and infertility.

Finally, our study also has several important limitations. First, it is possible that 

heterogeneity in the phenotypic measures influences the patterns we observed. While we 

find no evidence that our models interpret changing relative environmental contributions to 

trait variation as gene-environment interaction, we cannot rule out the possibility that the 

trait definitions differ across environments. We consider this a minor issue for reproductive 

behavior. While measures are not perfectly harmonized across birth cohorts (for e.g., some 

questionnaires for example explicitly ask for number of still-births and others do not), in 

LifeLines and TwinsUK, we compared the live birth measures with number of children ever 

born and, as expected, given the low mortality rate in both populations, less than 0.2% of the 

children had not reached reproductive age. Moreover, the correlation between number of 

children ever born and number of children reaching reproductive age was 0.98. We therefore 

do not expect a large bias due to the exclusion of stillbirths in some countries (for details see 

Supplementary Note 1). Nevertheless, we cannot reject the possibility that heterogeneity in 

the measure of education remains even after homogenizing it with the standard ISCED scale. 

Tropf et al. Page 7

Nat Hum Behav. Author manuscript; available in PMC 2018 March 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



In this case, we would argue that large parts of the gene-environment interaction pattern we 

observe for education are due to interaction within populations by birth cohorts where we 

hypothetically have homogeneous measures. Furthermore, different cross-national 

definitions of education represent a case of gene-environment interaction. Finally, our 

statistical findings of heterogeneity are of major importance in shaping our expectations 

about the ability to locate genetic loci associated with education in GWAS meta-analyses 

despite their causal mechanisms.

Second, notwithstanding the fact that our simulation studies show no inflation of hidden 

heritability due to differences in the genetic structure across populations, it is plausible that 

empirical phenotypes are heterogeneous in reference to rare genetic variants which are not 

considered in our models and not present in our data. This is an issue demanding further 

consideration in future research. We are suitably cautious that part of the hidden heritability 

in our models might be driven by rare, population-specific variants. Previous studies of 

height and BMI show that rare variants explain a significant part of phenotypic variance,15 

while our models show the least heterogeneity across populations for these phenotypes.

Third, the models we apply average within environmental effects across populations. An 

optimal study design would be a multivariate genetic modeling approach, which estimates 

SNP-based heritability for each population and the genetic correlations across them. This 

approach, however, is feasible for traits with strong or moderate heritability such as height 

and BMI,22 but lack statistical power28 for phenotypes with small SNP-based heritability 

such as reproductive behavior11 in the current samples. The models we propose allow us to 

investigate and compare gene-environment interaction across a range of phenotypes. 

Multivariate models may become feasible in the future with larger homogeneous data 

sources, and will also enable us to disentangle shared genetic effects across these 

phenotypes. 8,42,43

Finally, in the current modeling approach, we cannot include childless individuals in the 

modeling of AFB, and future research in quantitative genetics may aim to integrate censored 

information in their modeling approaches, as is standard in demographic research (for 

further discussion see 11,44,45).

In conclusion, our study uncovers challenges for investigations into the genetic architecture 

of human reproductive behavior and education and suggests that gene-environment 

interaction is the main driver of heterogeneity across populations. These challenges, thus, 

can be overcome by interdisciplinary work between both geneticists and social scientists 

using ever-larger datasets, with combined information and substantive knowledge of 

complex phenotypes and environmental conditions. 46,47

Material & Methods

Data

We pooled a series of large datasets consisting of unrelated genotyped men and women 

(individuals with a >0.05 relatedness as estimated using common SNP markers were 

removed) from six countries and seven sampling populations in the US (HRS (N=8,146), 
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ARIC (N=6,633)), the Netherlands (LifeLines (N=6,021)), Sweden (STR/SALT (N=6,040)), 

Australia (QIMR (N=1,167)), Estonia (EGCUT (N=3,722)); and the UK (TwinsUK 

N=3,333)), for a total sample size of N=35,062 (see Supplementary Note 1 for further 

details).

We used genotype data from all cohorts, imputed to the 1000 genome panel. We then 

selected HapMap3 SNPs with an imputation score larger than 0.6, excluded SNPs with a 

missing rate greater than 5%, a lower minor allele frequency than 1% and those which failed 

the Hardy-Weinberg equilibrium test for a threshold of 10−6. We subsequently applied these 

criteria again after merging each dataset. We utilized 847,278 SNPs in analyses. The 

software PLINK23 was used for quality control and merging.

Phenotypes

The phenotypes under study are education, human reproductive behavior (number of 

children ever born (NEB) and age at first birth (AFB)), height, and BMI. We received 

measures of height and BMI from all cohorts in centimeters and kg/m2 respectively or 

already Z-transformed by sex and birth cohort. For education and human reproductive 

behavior, we received the phenotypes which cohorts have used in the respective large-scale 

GWAS meta-analyses, or constructed them based on raw data and Z-transformed the 

phenotypes for sex and birth cohorts by dataset.7,24

The number of years of education was constructed based on educational categories with the 

typical years of education in the countries following the standard ISCED scale.7,12 The 

number of children ever born (NEB) measures number of children a woman has given birth 

to or a man has fathered. This measure was available in all cohorts, although in ARIC and 

TwinsUK, only available for women. Information on age at first birth (AFB) was available 

for all cohorts except for ARIC and HRS. We focus only on individuals who reached the end 

of their reproductive period of 45 for women and 50 for men (for more details see 

Supplementary Note 2). Reproductive phenotypes are frequently recorded, virtually immune 

to measurement error and used as key parameters for demographic forecasting.25

GREML Models

We first describe the baseline GREML model, which assumes the absence of gene-

environment interactions. We then extend this model to a GCI-GREML model 10,21 

including genetic relatedness matrices where we stratify data by environments, setting 

pairwise relatedness for individuals in different environments to zero.10 Doing so allows us 

to test whether the pairwise genetic relatedness is a better predictor of pairwise phenotypic 

similarity if both individuals live in the same environment, and thus test for gene-

environment interaction. We define the various genetic variance components of the models 

explicitly, and will refer to  as the sum of all genetic effects relative to the phenotypic 

variance within the respective model specification.
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Baseline model (GREML)

The genetic component underlying a trait is commonly quantified in terms of SNP-based 

heritability as the proportion of the additive genetic variance explained by common SNPs 

across the genome over the overall phenotypic variance  of the trait: 9

The phenotypic variance is the sum of additive genetic and environmental variance, i.e. 

 where  is the additive genetic variance explained by all common SNPs 

across the genome and  is residual variance. The methods we applied have been detailed 

elsewhere.9,10,26–28 Briefly, we applied a linear mixed model:

where y is an N×1 vector of dependent variables, N is the sample size, β is a vector for fixed 

effects of the M covariates in N×M matrix X (including the intercept and potential 

confounders such as birth year), g is the N×1 vector with each of its elements being the total 

genetic effect of all common SNPs for an individual, and e is an N×1 vector of residuals. We 

have  Hence, the variance matrix V of the observed 

phenotypes is:

To estimate the GRM, 847,278 HapMap3 SNPs were used to capture common genetic 

variation in the human genome. 29 For each individual (j and k), the corresponding element 

of the GRM is defined as:

where xij denotes the number of copies of the reference allele for the ith SNP for the jth 

individual and pi the frequency of the reference allele and K the number of SNPs. If two 

individuals had a genetic relatedness greater than 0.05, one was excluded from the analyses 

to avoid bias due to confounding by shared environment amongst close relatives. GCTA was 

used for the construction of the GRM and GREML analyses. 10

In the baseline model we apply this approach to the pooled data sources without 

environmental strata. Hence, the baseline model creates a reference point for SNP-based 

heritability in the mega-analysis.
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Gene × sampling population (G×P) GCI-GREML model

In the case where genetic effects are heterogeneous across sampling populations, SNP-based 

heritability estimates obtained from the baseline model will be deflated when sampling 

populations are pooled. We therefore apply a gene × sampling population model (G×P) to 

simultaneously estimate within and between variance explanations of common SNPs (see 

also 10,21 for GCI-GREML models).

The G×P model jointly estimates global genetic effects for the outcome variables effective 

between and within samples  and the averaged additional genetic effects within 

sampling populations :

where A is the genetic relatedness matrix and AG×P is a matrix only with values for pairs of 

individuals within Populations 1–7:

The sum of both variance components  are therefore expected to correspond 

with the results of a meta-analysis of the sample-specific  of sufficient sample size. We 

quantify the hidden heritability due to heterogeneity as the discrepancy between 

from the baseline model and  from the G×P model.

Gene × demographic birth cohort (G×C) GCI-GREML model

We are likewise interested in gene-environment interaction across birth cohorts. Fertility 

behavior and educational attainment have dramatically changed during the 20th century.
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19,30 Figure 3 shows the trends in age at first birth (AFB) during the 20th century for the 

countries in our study (see Supplementary Note 3 for details on the data sources). We see the 

well-established U-shaped pattern of a falling AFB in the first half of the 20th century 

followed by an upturn in the trend of AFB towards older ages. This widespread fertility 

postponement19 – referred to as the Second Demographic Transition 31 – was related to the 

spread of effective contraception, a drop in the NEB, changes in the economic need for 

children and female educational expansion.19,32

Environmental changes occurred at different periods in each country, with Australia having 

the earliest onset of fertility postponement (1939) and Estonia having the latest due to post-

socialist transitions (1962; see Supplementary Table 7 for all turning points and details). To 

test for gene-environment interaction, we grouped the birth cohorts into environmentally 

homogeneous conditions by those born before and after each country-specific fertility 

postponement turning point. To investigate the moderating effect of turning points, we 

follow the previous modeling strategy, but divide individuals into these turning point birth 

cohorts.

The G×C model is a joint model estimating the universal genetic effects for the traits 

effective between and within samples  and the averaged additional genetic effects within 

defined birth cohorts 

where A is the genetic relatedness matrix and AG×C is a matrix only with values for pairs of 

individuals within the same demographic birth Cohorts c1– c2:

Genes × Population × Demographic birth cohorts (G×P×C) GCI-GREML model

In the G×P×C model, we included both interaction terms mentioned above and an additional 

interaction term AG×P×C which is equal to zero for all pairs of individuals living in different 

time periods or in different cohorts represented by:

where A is the genetic relatedness matrix, AG×P is a matrix only with non-zero values for 

pairs of individuals within populations from the G×P Model, AG×C is a matrix only with 

non-zero values for pairs of individuals within the same demographic periods from the G×C 
Model, and AG×P×C is a matrix only with values for pairs of individuals with both the same 

demographic periods and the same populations.
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Control variables

All phenotypes have been Z-transformed by sampling population, birth year and sex. We 

furthermore added fixed effects for sex, birth year, sampling population (with reference 

category Lifelines, the Dutch dataset) and the first 20 principal components calculated from 

the GRM across all populations to account for population stratification.33 For the interaction 

model with birth cohorts, we included an additional fixed effect for the respective birth 

cohort turning point. In the G×P×C model, we additionally controlled for the interactions 

between the respective sampling population and the birth cohort division.

Model-fitting approach

The variance components are estimated using GREML estimation. When comparing the 

respective model specifications, to determine the best-fitting model, we rely on a model-

fitting approach that compares the full model with reduced models that constrain specific 

effects to be zero. Since the models are nested, we perform likelihood-ratio tests and prefer 

the more parsimonious models if there is no significant loss in model fit (where the test 

statistic is distributed as a mixture of chi-squared with a probability of 0.5 and 0 10; p-values 

from these tests are provided in Supplementary Tables 1-5). 10 This strategy is also robust 

against the violation of the assumption of requiring a normal distribution of the dependent 

variable – as for example in the case of NEB (number of children ever born).34

Simulation Study

We conducted a series of simulation studies to illustrate how our models interpret gene-

environment interaction and to evaluate the role of potential alternative sources of 

heterogeneity in our data. All simulation studies are detailed in Supplementary Note 4 (for 

the theory behind them see 21). First, we were interested in how the model construes 

heterogeneity in heritability levels across populations. Since heritability is a ratio of the 

proportion of total phenotypic variance that is attributable to additive genetic effects, 

differences in the residual variance for example due to heterogeneous phenotypic 

measurement error can lead to different levels of heritability across populations, even though 

genetic effects are perfectly correlated. In contrast to twin studies, we are not interested in 

comparing levels of heritability across populations, but in the question of whether genes 

have the same effect on the phenotype across environments. We thus decompose the 

heritability in the pooled data into additive genetic variance, both within and between 

environments.

In simple terms, we simulated phenotypes without gene-environment interaction across 

sampling populations and with gene-environment interaction across sampling populations 

based on 5000 SNPs that were in approximate linkage equilibrium (pairwise r2 between 

SNPs below 0.05) and repeated this across 50 replications. First, to test for a model without 

gene-environment interaction, we set  of the trait to 0.50 and the genetic correlations 

across environments to 1 (Supplementary Note 4 Sim 1). Second, we repeated the 

simulations with varying residual phenotypic variance across populations 35, resulting in 

simulated  between 0.25–0.625, but still with a genetic correlation of 1 across 

populations (Supplementary Note 4 Sim 2). Third, to illustrate weak levels of gene-
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environment interaction, we simulated  to be 0.50 and the genetic correlations of traits 

across populations to be 0.80 (Supplementary Note 4 Sim 3). Finally, to illustrate stronger 

gene-environment interaction, we simulated  to 0.50 and the genetic correlations of 

traits across populations to 0.50 (Supplementary Note 4 Sim 4).

The stacked bars in Figure 4 depict the average estimates of the four types of simulations for 

the simulated 50 phenotypes for the baseline model and the G×P model (individual 

estimates are presented as black dots for the full model and stripes in the bars represent 

variance components). Examining the first model (Sim 1) assumed no gene-environment 

interaction by sampling populations and thus homogeneous heritability,  as  (blue 

bar) is estimated at 0.324 and therefore around three fifths of the simulated heritability of 

0.50 since the GRM is based not only on quantitative trait loci. Central to our approach is 

that for the phenotypes with no G×P interaction, the variance explanation that is effective 

both within and between populations  is nearly identical to the baseline model 

(0.318). The gene-environment interaction term  estimates a small additional 

explanation of variance within populations of on average 0.026, with the full model estimate 

of  within populations at 0.344  Importantly, the same holds if we 

simulate differences in  across populations due to varying residual variance. Sim 2 in 

Figure 4 shows an average  of 0.205 and the G×P interaction model estimates of 

‘universal’ genetic variance  of 0.200, with a gene-environment interaction term 

 of 0.0217. We therefore conclude that the model does not interpret heterogeneity 

in heritability levels due to differences in the residual variance as gene-environment 

interaction.

Sim 3 and 4 in Figure 4 depict how gene-environment interaction across sampling 

populations affects model estimates in scenarios of cross population genetic correlations of 

0.80 (weak) and 0.50 (strong) gene-environment interaction respectively, with the same 

population specific  of 0.50 as in Sim 1. First, we observe that  in the baseline 

models are deflated in the pooled data  and therefore only capture 

around four-fifths and one-third of the estimates in the absence of G×P. Second, when 

taking G×P into account, the full model estimate reaches the same level as the baseline 

model in the absence of G×P  due to a larger fraction of 

genetic variance explained within populations  and do not appear 

to be inflated whatsoever. Third, the genetic variance explained effectively within and 

between populations in the G×P model is even smaller than in the baseline model 

. Therefore, while in the case of a genetic correlation of 0.5 across 
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populations, within population estimates of  capture around one third of the overall 

heritability; the shared genetic variance explanation across populations would be only 

around 19% (=0.059/0.315) of this value.

Based on the findings from Sim 4 for example, we would expect that in the case of meta-

analyses of population specific GWAS on the gene-environment interaction phenotypes, that 

genome-wide significant SNPs could explain only up to 10% of the variance while  of 

within populations could explain on average 32%. Around 68% of  ((1-10/32)*100) 

would therefore be ‘hidden’ in the mega-analysis due to heterogeneity and in this case due to 

gene-environment interaction.

Figure 5 shows hidden heritability estimates for the simulations without gene-environment 

interaction (Sim 1) and with gene-environment interaction (Sim 3 and Sim 4). We were 

furthermore interested to what extent genetic heterogeneity across populations such as 

differences in genetic measurement, in linkage disequilibrium across sampling populations, 

or heterogeneous imputation quality across population can lead to observed heterogeneity or 

deflate  in pooled data sources. To investigate this we removed the 5000 causal SNPs 

from the genetic data, which was the basis of how we simulated the phenotypes. We then re-

estimated the GRM and repeated the analyses on Sim 1 of phenotypes without gene-

environment interaction and homogeneous heritability across populations (depicted in 

Figure 5 as Sim 1 LD). If the causal SNPs are removed, estimates are based on correlated 

SNPs which are in linkage disequilibrium (LD). To the extent that the structure in the 

genetic data we use is heterogeneous across populations due to the aforementioned reasons, 

we can expect that our models interpret it as heterogeneous genetic effects resulting in 

hidden heritability.

In Figure 5, we see that hidden heritability is estimated to be around 68% for a genetic 

correlation of 0.50, around 20% for a genetic correlation of 0.80 and around 5% for the 

model without gene-environment interaction as well as a model based on SNPs in LD with 

the causal SNPs. This allows us to draw two conclusions. First, in the complete absence of 

gene-environment interaction (Sim 1), our models interpret, on average across 50 

simulations, that 5% of the heritability in the G×P model is hidden in a standard model with 

a statistically significant G×P term in 10 simulation studies (10/50 = 20%; not listed) at the 

5%-level. This is important to keep in mind when analyzing our phenotypes of interest. To 

evaluate phenotype specific model inflations, we conducted complementary permutation 

analyses generating a matrix with randomly stratified environments to see how estimates are 

inflated in the real data for specific phenotypes. This will be reported when discussing the 

findings. Second, we find no difference in inflation between the simulations including and 

excluding causal SNPs (Sim 1 LD and Sim 1). We conclude from this that heterogeneity in 

the genetic structure of the populations does not affect our interpretation of gene-

environment interaction in comparison to the standard model. This is likely due to the fact 

that we only look at common SNPs and applied rigorous quality control. To investigate 

whether gene-environment interaction is present for education and human reproductive 
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behavior, we applied the above models as well as G×C and G×P×C models to these 

phenotypes in seven sampling populations.

Sex differences

Previous whole-genome studies find no evidence for gene-sex interaction of common 

genetic effects on BMI, height36 and also human reproductive behavior8 (note that a family 

based study shows evidence for sexual dimorphism in childlessness37). We also tested for G 

x Sex interaction within sampling populations in our data, as:

where AG×P is the genetic relatedness matrix only with values for pairs of individuals within 

the same population and AG×P×sex is a matrix with only values for pairs of individuals of the 

same sex and same sampling population.

Decomposing the genetic variance of all five phenotypes, height, BMI, education, number of 

children ever born (NEB) and age at first birth (AFB) into within population effects shared 

between sexes  and the averaged additional genetic effects within sexes , 

we find no evidence for sex-specific effects  for education (p-value 0.49), AFB 

(p-value 0.5), NEB (p-value 0.41) or height (p-value 0.5). Only for BMI do we find evidence 

of around a 3% sex-specific variance explanation (p-value 0.046; for full results see 

Supplementary Table 8). Given that we focus on education and reproductive behavior, we 

applied all models to pooled data including both sexes, keeping in mind the findings for 

BMI.

Data availability

We utilize publicly available dbGaP data from the Atherosclerosis Risk in Communities 

(ARIC) Study (dbGaP phs000090.v1.p1), and Health and Retirement Study (HRS: dbGaP 

phs000428.v1.p1). Access to individual-level phenotypic, genetic data from the QIMR, 

EGCUT, STR/SALT, TwinsUK and the LifeLines Study is available with the obtainment of 

a research agreement (see also Supplementary Note 1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Definitions of heritability

Heritability

Heritability is the proportion of the phenotypic variance accounted for by genetic effects 

and narrow sense heritability refers to the additive genetic variance component (for 

discussion also see 5,48). There are several ways to estimate heritability. First, the highest 

and prominent estimates are derived from family-based studies (h2
family), such as twin 

studies, where, typically, the genetic resemblance between relatives is mapped to 

phenotypic similarity, taking unique- and shared-environment effects into account. Under 

several assumptions, estimates of h2
family ought to reflect only additive-genetic effects. A 

second method is the proportion accounted for by genetic variants known to be robustly 

associated with the phenotype of interest, derived from a GWAS (genome-wide 

association study) (h2
GWAS). This measure tends to produce the lowest levels. Finally, 

there is the proportion of phenotypic variance jointly accounted for by all variants on 

standard GWAS chips. This is sometimes referred to as the SNP- or chip-based 

heritability (h2
SNP). Typically, h2

SNP is substantially larger than h2
GWAS and provides an 

‘upper level estimate’ of the genetic effects that could be identified with a well-powered 

GWAS. The h2
GWAS increases in tandem with GWAS sample sizes and is expected to 

approach h2
SNP asymptotically under the assumption that the phenotype of interest is 

homogeneous in its genetic architecture across different environments.

Missing heritability

The gap between the h2
family and h2

GWAS is referred to as ‘missing heritability’.2 

Potential reasons for missing heritability are for example non-additive genetic effects 

(although empirical evidence on this is scarce), 8,13 large effects of rare variants, 15 and 

potentially inflated estimates from twin studies due to shared environmental factors. 17 

The missing heritability is commonly defined as the sum of the still-missing and hidden 

heritability, which we define below.16

Still-missing heritability

Yang and colleagues 9 argued that most genetic effects are too small to be reliably 

detected in GWAS of current sample sizes which is why they proposed the whole-

genome restricted maximum likelihood estimation performed by GCTA software. 49 

Studies applying these whole-genome methods typically produce estimates that lie 

between twin studies and polygenic scores h2
GWAS < h2

SNP < h2
family. The discrepancy 

h2
SNP < h2

family has been referred to as ‘still-missing heritability’.3 A stylized fact is that 

for many traits the still-missing heritability is roughly equal to h2
SNP.50 It is generally 

assumed that by genotyping rarer and structural variants, the still-missing heritability will 

decrease, as the denser arrays will increase h2
SNP.

Hidden heritability

Since we expect to be able to almost fully capture h2
SNP in the long run, the discrepancy 

between h2
SNP and h2

GWAS is sometimes referred to as ‘hidden heritability’.16 The 

current study is mainly interested in the question of how h2
SNP changes, depending on 
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whether we examine differences within or between populations. Here we focus on hidden 

heritability as the genetic variation due to heterogeneity that cannot possibly be explained 

by SNP associations based on meta-analyses of multiple populations. Since h2
GWAS is 

usually inferred from meta-analyses that include multiple populations, heterogeneity in 

genetic effects on a phenotype between these populations could deflate h2
GWAS and 

would also deflate h2
SNP – which is typically obtained within single populations. Within 

a single design we therefore demonstrate how one estimate of h2 depends upon 

population heterogeneity. Missing heritability is thus commonly defined as the sum of the 

still-missing and hidden heritability.16 As indicated, the hidden portion will decrease as 

sample sizes grow and the still-missing portion will decrease with denser forms of 

genotyping.
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Figure 1. Stacked Bar Charts of average between  and within  variance 
explanation by common SNPs estimated for Height, BMI, education, age at first birth (AFB) and 
number of children (NEB) in four model specifications (G, G×P, G×C, G×P×C).
The best model (BM in white, in chart) is based on likelihood ratio tests comparing the full 

model with one constraining the respective variance component to 0; see Supplementary 

Table 6.  = proportion of observed variance in the outcome associated with genetic 

variance across all environments,  = proportion of observed variance in the 

outcomes associated with additional genetic variance within populations,  = 

proportion of observed variance associated with additional genetic variance within 

demographic birth cohorts,  = proportion of observed variance associated with 

additional genetic variance within populations and demographic birth cohorts. Models 

specifications G, G×P, G×C, G×P×C refer to the model specifications including the 

respective variance components as well as those of lower order – see Material and Methods. 

For detailed results see Supplementary Table 1-5.
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Figure 2. Bar Charts of average % of hidden heritability due to heterogeneity (% of h2
SNP of the 

best fitting model which is not captured in standard GREML models) and of universal genetic 
effects (% of h2

SNP of the best fitting model which is effectively identical across the defined 
environments)
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Figure 3. Trends in mean age at first birth of women indicating environmental changes across 
cohorts (1903-1970) from the US, UK, Sweden, the Netherlands, Estonia and Australia.
Trends in the mean age at first birth of women are based on aggregated data obtained from 

Human Fertility Database and the Human Fertility Collection (for details see Supplementary 

Note 3). For Estonia, from 1962 onwards, we used estimated age at first births based on 

women older than 40. For Australia, no official data was available and the trends have been 

estimated from the QIMR dataset, averaged for each decade.
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Figure 4. Stacked Bar Charts of average between  and within  variance explanation 
by common SNPs estimated across 50 simulated phenotypes in two model specifications 
(standard GREML model and the gene-environment interaction model by study population 
(G×P) and for four simulated phenotypes.
Sim 1 with homogeneous SNP-based heritability 0.5 without gene-environment interaction, 

Sim 2 heterogeneous SNP-based heritability between 0.25-0.625 without gene environment 

interaction, Sim 3 with homogeneous SNP-based heritability 0.5 with gene-environment 

interaction (genetic correlation of 0.8 across populations) and Sim 4 with homogeneous 

SNP-based heritability 0.5 with gene-environment interaction (genetic correlation of 0.5 

across populations). Individual model estimates are represented by black dots, individual 

components in the G×P models in gray stripes.

Tropf et al. Page 25

Nat Hum Behav. Author manuscript; available in PMC 2018 March 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. Bar Charts of average % of hidden heritability due to heterogeneity (% of h2
SNP of the 

best fitting model which is not captured in standard GREML models) for Sim 1 including and 
excluding causal variants (Sim LD), for Sim 3 and 4. Individual estimates are represented by 
black dots.
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