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Abstract

Drug repurposing is an attractive option for identifying new treatment stra-

tegies, in particular in extraordinary situations of urgent need such as the

current coronavirus disease 2019 (Covid‐19) pandemic. Recently, the World

Health Organization announced testing of three drugs as potential Covid‐19
therapeutics that are known for their dampening effect on the immune sys-

tem. Thus, the underlying concept of selecting these drugs is to temper the

potentially life‐threatening overshooting of the immune system reacting to

severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) infection. This
viewpoint discusses the possibility that the impact of these and other drugs

on autophagy contributes to their therapeutic effect by hampering the

SARS‐CoV‐2 life cycle.
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1 | INTRODUCTION

Severe acute respiratory syndrome coronavirus‐2
(SARS‐CoV‐2) has gained notoriety for causing the cur-
rently raging coronavirus disease 2019 (Covid‐19) pan-
demic.1 Humongous efforts are ongoing worldwide to
cope with the impact on health and society. Al-
though vaccines could be developed and marketed with
unprecedented swiftness, drug development will take
significantly longer. In light of the obvious exigency, drug
repurposing is a promising strategy that is being followed
by many scientists in preclinical and clinical research.2

For example, the World Health Organization (WHO)
launched the research program “Solidarity” in 2020 to
test four compounds as options for antiviral treatment,
namely remdesivir (originally developed as an inhibitor

of viral RNA polymerase to treat hepatitis C, Ebola, or
Marburg virus infection), interferon β1a (boosting the
host response to viral infection), hydroxychloroquine (a
malaria drug), and a combination of lopinavir and rito-
navir (both HIV drugs). Unfortunately, an interim report
of the study, including 11 330 in‐patients with Covid‐19
at 405 hospitals in 30 countries, revealed little or no
effect.3

A more recent initiative in the Solidarity program eval-
uates three established immune‐modulatory drugs for Covid‐
19 treatment.4 The selection of these drugs was based on a
different rationale, that is, instead of trying to fight the virus
directly, the aim is to confine the damage of an exaggerated
immune response to the own body. A previous study showed
that limiting the host defense can have beneficial effects in
critically ill patients with Covid‐19.5 The selected drugs are
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infliximab, imatinib, and artesunate. The aim of this short
review is to point to a potential involvement of autophagy in
the action of these drugs, which may play a more prominent
role than generally acknowledged. The review additionally
includes the drug ivermectin, which received media
attention as it promising results were reported in clinical
trials,6 and also covers antidepressants.

2 | AUTOPHAGY

In general, autophagy is an evolutionary conserved in-
tracellular degradation process pivotal for cellular protein,
energy, and organelle homeostasis.7 It is active under the
basic condition at a low level ensuring continuous turnover
and can be activated under certain stress conditions such as
proteotoxicity or starvation.8 Material destined for de-
gradation or recycling is engulfed by or transported into a
double‐membrane structure called “autophagosome.”
Through additional membrane remodeling processes, these
autophagosomes fuse with lysosomes producing autolyso-
somes, with prior fusion with late endosomes as a potential
intermediate step.9 As detailed in excellent reviews, this
process is tightly controlled and executed by a vast array of
proteins, ATG proteins in particular, but also EPG proteins
required for the more complex autophagy in multicellular
organisms.7–11 Autophagic flux refers to the activity
through all consecutive steps of autophagy and typically is
defined as a measure of autophagic degradation activity.12

Analytical tools assessing autophagic flux need to be chosen
with great care to avoid erroneous conclusions.13 Several
compounds currently are being developed, targeting dif-
ferent proteins in the autophagic cascade, given its in-
volvement in various physiological and pathophysiological
conditions, including viral infection.14,15

3 | AUTOPHAGY AND
CORONAVIRUSES

The link between autophagy and invading pathogens is
anything but new and both pro‐ and antiviral roles of au-
tophagy were identified.16 For example, evidence suggests
that double‐membrane structures derived from the en-
doplasmic reticulum both are required for the initial steps
of autophagy and serve as replication sites for cor-
onaviruses17–22 (see also Figure 1). Later on, several cor-
onavirus proteins were shown to induce the formation of
double‐membrane structures, such as the nonstructural
proteins 2, 3, 4, and 6.23 The broad activity against cor-
onavirus replication of compounds that interfere with the
generation of these structures further corroborates their
importance.

In contrast to this appearing congruence of viral
mechanisms and early steps of autophagy, there is also
firm evidence that coronaviruses interfere with late steps
of autophagy to evade degradation. Very recently, for
example, ORF3a (the protein derived from open reading
frame 3a) of SARS‐CoV‐2 has been demonstrated to in-
hibit the fusion of autophagosomes with lysosomes,
thereby increasing the number of autophagosomes but
decreasing autophagic flux,24,25 in line with the effect of
coronavirus infection.26,27 However, the exact details of
how coronaviruses in general, and SARS‐CoV‐2 in par-
ticular, are intertwined with autophagy await further
elucidation.23,28,29 Nevertheless, it appears plausible that
coronaviruses may benefit from earlier steps of the au-
tophagic pathway, but are vulnerable to the increased
autophagic flux that clears out viral particles. This is
supported by reports showing that induction of autop-
hagy has the potential to fight coronavirus infection.26,27

FIGURE 1 Severe acute respiratory syndrome coronavirus‐2
(SARS‐CoV‐2) replication and endosomal/autophagic pathways,
simplified scheme. Current knowledge supports both beneficial and
detrimental effects of the autophagic pathway for SARS‐CoV‐2
replication. A major entry route for the virus is endocytic uptake,
which requires lysosomal acidification for viral RNA release. The
autophagic pathway is a multifactorial and multistep pathway with
a vast range of possibilities for pharmacological targeting. In the
more initial phases, phagophores, and double‐membrane vesicles
(DMVs) are formed, most likely from the endoplasmic reticulum,
possibly also promoted by some coronavirus proteins. SARS‐CoV‐2
replication takes place at the endoplasmic reticulum as well, at very
similar, if not identical, membrane structures. SARS‐CoV‐2 inhibits
the last step of autophagy leading to viral degradation, that is, the
fusion of autophagosomes with lysosomes to form autolysosomes,
thus inhibiting autophagic flux. Accordingly, compounds
impacting autophagy are expected to be efficient in fighting
SARS‐CoV‐2 only if they enhance autophagic flux
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Chloroquine inhibits autophagy by interfering with
autophagosome‐lysosome fusion.30 However, chloroquine
and hydroxychloroquine exert additional effects like dis-
organizing the endo–lysosomal system that might have
been the basis for the initial hope put on this drug for
Covid‐19 treatment.31,32 However, with more studies com-
ing up, no overall beneficial effect of this drug on Covid‐19
was apparent,33–35 and the drug now is abandoned in the
WHO Solidarity program. Therefore, it appears likely that
autophagy‐targeting drugs need to promote autophagy
flux rather than other aspects of autophagy. Although
COVID‐19 primarily is a respiratory disease, multiple or-
gans are affected, either through cytokines or directly upon
invasion of SARS‐CoV‐2.36–38 As autophagy is a conserved
mechanism operative in most cells, pharmacological in-
duction of autophagy has the potential to fight SARS‐CoV‐2
in all organs that are reached by the compound. However,
the effect on overall health may depend on existing co-
morbidities, such as cancer, for example, where the effect of
autophagy depends on the circumstances.39,40

4 | ARTESUNATE

Like the other two drugs infliximab and imatinib, artesunate
was added to the WHO Solidarity program because of its
effects on the immune system.4 Artesunate is a derivate of
artemisinin with established antimalaria features, but also
potent anticancer effects. For considering its potential effects
on autophagy, it is important to differentiate general effects
on autophagy from effects on autophagy flux, given the
complex interaction of SARS‐CoV‐2 with autophagy. The
vast majority of publications assessing artesunate for its ef-
fects on autophagy report induction41–44 not all publications,
however, assess autophagic flux following the established
guidelines.13 Nevertheless, some flux assays have been per-
formed such as the use of the late autophagy blockers
chloroquine or bafilomycin A, where artesunate still en-
hances the autophagy marker LC3BII/I.45–47 Although all
these studies support autophagy promoting function of ar-
tesunate, an inhibitory effect of artesunate has been observed
using the tandem fluorescence tagged LC3B stably trans-
fected into HeLa cells,48 which is recognized as a valid
method to determine autophagic flux.13 The reason for this
seeming discrepancy is not known, which makes further
studies mandatory.

5 | INFLIXIMAB

Infliximab is a chimeric antibody targeting TNF‐α used
in clinical practice to treat autoimmune diseases such as
Crohn's disease. Recently, it has been put forward that a

range of drugs, including infliximab, that are either ap-
proved or in a clinical trial with great promise to treat
Crohn's disease induces autophagy as a relevant me-
chanism at least contributing to their effect.49,50 At least
for infliximab, however, there is a scarcity of studies in-
vestigating the effect on autophagy directly,51,52 and no
reports were found presenting autophagic flux assays for
infliximab.

6 | IMATINIB

Imatinib is an ABL tyrosine kinase inhibitor used to treat
chronic myeloid leukemia. Like chloroquine, it is a
cationic amphiphilic drug and thus should have the
potential to inhibit autophagy by accumulating in lyso-
somes and disturbing their function.53 However, several
studies report an autophagy‐inducing effect of imatinib,
including the assessment of autophagic flux using
chloroquine as an inhibitor.54–57 Nevertheless, more
studies are needed applying a broader range of autop-
hagic flux assessments to solidify the conclusion that
imatinib induces autophagy. Furthermore, it has been
argued that compounds prone to induce phospholipi-
dosis such as cationic amphiphilic drugs should be ex-
cluded from drug repurposing for SARS‐CoV‐2
treatment.58 Nevertheless, it should be noted, that sev-
eral other cationic amphiphilic drugs such as some an-
tidepressants also induce autophagic flux.59 Thus, this
compound class may as well elicit more specific effects.

7 | ANTIDEPRESSANTS

Evidence is accumulating that patients with Covid‐19
benefit from antidepressant treatment: A multicentric
observational retrospective study with 7230 adults hos-
pitalized for Covid‐19 reported that those receiving an-
tidepressant treatment had a reduced risk of intubation
or death.60 Similarly, a study with 3238 Covid‐19 patients
revealed a beneficial effect of the antidepressant fluvox-
amine, reducing the need for emergency room observa-
tion or hospitalization.61 A small randomized clinical
trial with 152 COVID‐19 outpatients revealed a lower
likelihood of clinical deterioration for patients receiving
fluvoxamine.62 Furthermore, a recent preclinical study
found the antidepressant fluoxetine as an inhibitor of
SARS‐CoV‐2 in human lung tissue.63 The beneficial ef-
fects of antidepressants frequently are conceptualized as
cytokine effects64 thus reducing the risk of a fatal cyto-
kine storm.65 However, antidepressants are known to
induce autophagy as well.59,66 Thus, their effect on au-
tophagy might not only be important for treating
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depression but also to fight SARS‐CoV‐2. In fact, tricyclic
antidepressants inhibit lysosomal acidic sphingomyeli-
nase, thereby not only enhancing autophagy but also
reducing SARS‐CoV‐2 entry into epithelial cells.67,68

8 | IVERMECTIN

Ivermectin is an antihelmintic macrolide of the aver-
mectin group.69 It is investigated as a potential anti‐
SARS‐CoV‐2 treatment with promising initial results, but
also very recent dispute.6,71 Several mechanisms are
discussed for its apparent antiviral activity70,71 and this
viewpoint argues for adding autophagy to this panel. A
number of publications report an autophagy‐inducing
effect of ivermectin,72–74 including a study carefully de-
termining autophagic flux.75 Therefore, autophagy
should be considered as a mediator of the manifold
effects of ivermectin in general,70 and of its antiviral
activity in particular. Of note, another antihelmintic
drug, niclosamide, not only is known for its autophagy‐
inducing action but also has been demonstrated to
reduce replication of the Middle East Respiratory
Syndrome Coronavirus26 as well as of SARS‐CoV‐2.27

9 | CONCLUSION

The point of this article is to draw attention to autophagy
as a potential contributing mechanism of selected drugs
currently under investigation for repurposing to Covid‐19
treatment. In other words, it is possible that the three
drugs recently added to the WHO Solidarity program
may not just prevent a life‐threatening overreaction of
the body during a SARS‐CoV‐2 infection, but also
actually limit SARS‐CoV‐2 replication through activating
autophagy. The interaction of SARS‐CoV‐2 with the
autophagic pathway is complex (Figure 1), with evidence
for both the virus taking advantage of the autophagic
pathway and trying to tame the full activity of this
pathway to prevent its degradation. It is obvious from
this scenario that it will be essential to learn how exactly
the SARS‐CoV‐2 life cycle is intertwined with the au-
tophagic pathway. Future research should include all
known forms of autophagy, such as macroautophagy,
microautophagy, chaperone‐mediated autophagy, secre-
tory autophagy, and so forth. This also applies to better
understanding the action of to be repositioned or new
drugs at each level of the autophagic pathway.
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