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It is well known that infection of an or-
ganism, whether plant, animal, or bacte-
rium, with a virus can prevent or partially
inhibit infection with another virus with-
in the same host, resulting in viral inter-
ference. Although originally described for
plant viruses in 1929 [1], similar observa-
tions were made for bacteriophage [2]
and a plethora of animal viruses in the
1940s and 1950s [3]. In fact, Jenner re-
ported in 1804 that herpetic infections
may prevent the development of vaccinia
lesions [4], in perhaps the first report of
viral interference. These original reports
have been well supported through exper-
imental studies in animals, as well as ep-
idemiological and modeling studies, for a
variety of viruses, including influenza
virus.

During the influenza season, numer-
ous strains of influenza A and B viruses
can cocirculate within populations. For
example, in the United States, influenza
A(H3N2) viruses cocirculated with influ-
enza B viruses, while influenza A(H1N1)
pdm09 viruses were reported only rarely
during the 2014–2015 season [5]. Com-
plicating the situation is the cocirculation

with other respiratory viruses [6], several
of which have been hypothesized to influ-
ence influenza virus infection in humans
[7] or directly shown to cause viral inter-
ference in animal models [8–10]. Howev-
er, there is little information about viral
interference among human influenza A
and B viruses in relevant animal models,
including the duration and extent of tem-
porary immunity, if it occurs. The studies
by Laurie et al in this issue of The Journal
of Infectious Diseases fill this gap in
knowledge and provide important new
information on the importance of time
and viral strain in viral interference dur-
ing influenza virus infections.
To understand the impact of cocircu-

lating human influenza A and B viruses
on viral interference, Laurie et al coinfect-
ed ferrets with combinations of influenza
A and B viruses that circulated in 2009
and 2010, with intervals of 1–14 days be-
tween primary and secondary viral chal-
lenge. Two of the intervals (days 1 and 3)
represented the start and peak of virus
shedding in the upper respiratory tract;
day 5 corresponded to decreased viral
shedding, day 7 represented the end of
viral shedding, while days 10 and 14 repre-
sented a time when the adaptive immune
response was activated. Viral shedding,
as defined by reverse transcription–
polymerase chain reaction (RT-PCR)–
determined copy number in nasal wash
specimens, was monitored by real-time
PCR. Intriguingly, they observed several
patterns of viral shedding after challenge:
(1) prevention of secondary infection, (2)

coinfection, (3) shortened secondary in-
fection, (4) delayed secondary infection,
and (5) no effect as compared to the con-
trol group. These patterns were influ-
enced not only by the interval between
primary and secondary viral challenge,
but also by the viral strain. Interference
was only observed if primary infection
occurred up to 7 days before secondary
challenge, suggesting that continued
shedding of the primary virus may in-
duce a temporary state of immunity that
is not seen if secondary infection occurs
10–14 days after primary infection. This
occurred with both antigenically related
and antigenically unrelated viruses. The
finding that the outcome was dependent
on the viral combinations suggests that
different influenza viruses induce differ-
ing levels of temporary immunity, with
the A(H1N1)pdm09 virus being the most
effective in this study, followed by influen-
za B virus and influenza A(H3N2) virus.

Why are these studies so exciting? In
addition to providing important new
insights into the phenomenon of viral
interference during influenza virus infec-
tion, they were performed with circulat-
ing human influenza virus strains in
ferrets, arguably one of the best animal
models for studying human influenza vi-
ruses. This increases the potential impact
of the study findings. The studies also
generate a number of new questions that
must be explored. What is the nature of
the temporary immunity that is induced
during the primary infection, and why
are some influenza virus strains better
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able to induce such immunity? What is it
about the A(H1N1)pdm09 virus that
makes it the most potent at inhibiting
subsequent infections? Is this property
common to all A(H1N1) strains, or
there something unique to the pandemic
virus, which was introduced relatively re-
cently to humans as compared to the
A(H3N2) and influenza B viruses? Are
coinfections more common than previ-
ously appreciated, and are we missing
them during routine surveillance? Rou-
tine surveillance typically involves per-
forming real-time RT-PCR for the viral
matrix (M) gene, which would indicate
whether a person is infected but not the
strain with which they are infected. Cur-
rently, only a subset of laboratories rou-
tinely subtype influenza A viruses, so
there is a potential for missed identifica-
tion of coinfections, whichmay give rise to
novel reassortants. This information has
important public health ramifications.

Another question of importance to
public health is which of the viruses gen-
erated during these coinfection studies
are capable of transmitting to naive ani-
mals. This would be an important fol-
low-on study. Finally, these experiments
lead one to wonder whether live attenuat-
ed vaccines, which also induce localized

innate immune responses, may result in
viral interference to homologous and het-
erosubtypic viruses within the first few
days after administration.
Overall, the studies by Laurie et al pro-

vide an intriguing glimpse at the tip of the
iceberg of virus-virus interactions and
raise a question that is of interest not
only for virologists, but also for infectious
diseases researchers, public health author-
ities, and clinicians: how does one microbe
influence the susceptibility or resistance to
other circulating microbes? This impor-
tant question that can only be answered
through subsequent research.
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