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Objective: To investigate the effects of nicotinamide adenine dinucleotide (NAD+) on the
pathogenesis of the animal model for multiple sclerosis (MS)-experimental autoimmune en-
cephalomyelitis (EAE).
Methods: EAE model was induced by myelin oligodendrocyte protein (MOG 35-55). Clinical
scores of EAE were measured in mice with or without NAD+ treatment. Hematoxylin and
Eosin (HE) and Luxol Fast Blue (LFB) staining were performed to assess inflammation and
demyelination, respectively. Expressions of target proteins were measured by Western blot.
The numbers of myeloid-derived suppressor cells (MDSCs) were measured by immunoflu-
orescent staining and flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was
used to measure the expressions of inflammatory cytokine in serum.
Results: NAD+ treatment could decrease inflammatory cells and demyelination foci, at-
tenuate the clinical scores of EAE and slightly delay disease onset. Western blot showed
that NAD+ treatment up-regulated the expression of phosphorylated-STAT6 (p-STAT6) and
SIRT1. Besides, NAD+ treatment up-regulated the expression of p-IκB and down-regulated
the expression of p-NF-κB. In addition, NAD+ treatment could increase the numbers
of CD11b+ gr-1+ MDSCs and the expression of Arginase-1. Moreover, NAD+ treatment
up-regulated the expressions of IL-13 and down-regulated the expression of IFN-γ and
IL-17.
Conclusions: The present study demonstrated that NAD+ treatment may induce the CD11b+

gr-1+ MDSCs to attenuate EAE via activating the phosphorylation of STAT6 expression.
Therefore, NAD+ should be considered as a potential novel therapeutic strategy for MS.

Introduction
Multiple sclerosis (MS) is a complex chronic autoimmune disease, involving central nervous system (CNS)
demyelination and inflammation [1]. There are approximately 2.5 million people suffering from MS all
over the world, while in Western countries, 1 in 1000 people suffer from MS [2,3]. At present, the treat-
ment of MS is mainly anti-inflammatory, but it is only effective in relapse and remission period [4]. In
addition, some of these agents (such as Tysabri) may have severe immunosuppressive side effects [5].
Thus, developing novel therapeutic strategies has been an urgent problem for patients with MS.

Experimental autoimmune encephalomyelitis (EAE) is the most widely used mouse model of MS,
which is mediated by cells of the innate immune system and autoimmune CD4+ T cells [6]. The
histopathological and clinical similarities between EAE and MS enable the findings obtained from EAE
model to be extrapolated to MS patients [7]. Recent studies have shown that myeloid-derived suppressor

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

1

http://orcid.org/0000-0002-1459-1118
mailto:cxy1016cxy@163.com


Bioscience Reports (2020) 40 BSR20200353
https://doi.org/10.1042/BSR20200353

cells (MDSCs)—a heterogeneous population of myeloid cells plays important role in shaping T-cell responses [1,8].
MDSCs are usually identified in mice by the co-expression of the CD11b and Gr-1 surface markers. MDSCs are
reported to attenuate the clinical course of EAE [9,10]. In addition, study has found that STAT6 could promoted
the expansion of MDSCs in the lamina propria and spleen of ApcMin/+ mice [11]. However, the regulatory effect of
STAT6 on MDSCs in EAE remains unclear.

SIRT1 is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase that catalyzes the removal
of acetyl groups from a variety of protein substrates [12]. Previous study showed that SIRT1 induction can attenuate
the course of EAE [13]. However, the underlying mechanism has not been well elucidated. Interestingly, Liu et al. [14]
found that SIRT1 exerting an anti-acute gouty arthritis effect by activating the PI3K/Akt/STAT6 pathway. Combining
these published evidences, we speculated that SIRT1 induction may induce the CD11b+ gr-1+ MDSCs to attenuate
EAE by STAT6.

Thus, the aim of the present study was to investigate the effects of NAD+ on the pathogenesis of EAE. We estab-
lished an EAE model and investigate the possible mechanisms of NAD+ in attenuating the course of EAE from the
perspective of MDSCs for the first time. We proposed a novel molecular mechanism of the NAD+ in the improvement
of EAE, in which NAD+ treatment may induce MDSCs to attenuate EAE via activating the phosphorylation of STAT6
expression.

Materials and methods
Animals
C57BL/6 female mice (6–8 weeks, weighing 20 +− 2 g) were purchased from Beijing Vital River Laboratory Animal
Technology Co. Ltd (Beijing, China). They were housed in groups of four to six per cage in laminar flow hoods in a
pathogen-free environment (55 +− 10% humidity, 22 +− 2◦C and 12–12 h/light–dark cycle) with free access to stan-
dard laboratory water and diet. The animals were acclimatized for 1 week before the experiments. All experiments
including animal experiments were carried out at the Hebei Medical University. The experiments were performed in
accordance with the guidelines for animal care and the experimental protocols were approved by Ethics Review Com-
mittee of the Hebei Medical University (number 20191018). All animals were anesthetized by sodium pentobarbital
injection and killed by asphyxiation in a carbon dioxide chamber.

Induction of EAE
EAE model was induced following the procedure as described previously [15,16]. The mice received a subcutaneous
injection at four sites on the flanks with 200 μg of mouse myelin oligodendrocyte protein (MOG 35-55) (XIAN
LINTAI Bioscience and Technology Co., Xi’an, China) in 0.1 ml phosphate buffer saline (PBS), emulsified in 0.1 ml
complete Freund’s adjuvant (CFA) (Difco, St. Louis, MO) containing 400μg of Mycobacterium tuberculosis H37Ra.
Furthermore, an intraperitoneal injection of 0.5 ml pertussis toxin (PT) (List Biological Labs, Inc, San Josa, CA) was
given at the beginning of the induction and 48 h later.

We scored the behavioral deficits daily for all of the mice in a double-blind manner in a weaver method with
15-point behavioral scoring scale as described previously [17,18]. The 15-point scale was the sum of the disease state
for the tail (scored 0–2) and all the four limbs (scored 0–3). For the tail, a score of 0 represented no signs, 1 represented
a half paralyzed tail and 2 represented a fully paralyzed tail. For the four limbs, each assessed separately, 0 signified
no signs, 1 represented a weak or altered gait, 2 represented paresis, while a score of 3 denoted a fully paralyzed limb.
Thus, a fully quadriplegic animal would attain a score of 14 and mortality would be given a score of 15.

The NAD was administered by referring to previous reports [13,19]. NAD+ (250 mg/kg, diluted in PBS) treatment
(NAD+ group) of EAE mice was started at the day of inoculation and given everyday until end of study. EAE model
group was subcutaneously administered PBS (EAE model group) daily from the day of inoculation.

Hematoxylin and Eosin staining
Mice spinal cords or spleen were fixed, embedded in paraffin. Sections were dewaxed in xylene and rehydrated in
a series of alcohol solutions. After washing in distilled water for a short time, the sections were stained in Harris
Hematoxylin solution for 5 min, washed in tap water and counterstained in Eosin–Phloxine solution for 2 min.

Luxol Fast Blue staining
Luxol Fast Blue (LFB) staining was performed as previously reported [20]. Briefly, tissue slides were rehydrated and
incubated in 0.1% LFB solution (60◦C, 2 h). Sections were processed using 95 and 70% ethanol to remove excess
stain and observe myelin staining. To increase the color contrast of the myelin, gray matter was distinguished from

2 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2020) 40 BSR20200353
https://doi.org/10.1042/BSR20200353

white matter by 0.05% lithium carbonate. Sections were then washed with distilled water, dehydrated quickly with
100% ethanol and cleared in dimethyl benzene, covered and observed under a microscope (Olympus, Japan). Scores
between 0 and 3 were used to evaluate demyelination. A score of 3 was defined as totally normal myelin sheath,
whereas 0 was defined as complete demyelination. Scores of 1 or 2 were defined as one-third or two-thirds myelination
of the corpus callosum, respectively.

Immunofluorescent staining
Tissue sections were dewaxed by xylene and dehydrated by graded alcohol. After washing with distilled water, tissue
sections were heated by high pressure in Ethylene Diamine Tetraacetic Acid (EDTA) antigen repair buffer (pH 8.0) for
antigen retrieval. After the slices were cooled at room temperature, sections were incubated with primary antibodies
(1:500, 4◦C, overnight) and secondary antibodies (37◦C, 50 min), respectively. Then paraffin sections were incu-
bated with 4′,6-Diamidino-2-phenylindole (DAPI, Beyotime Biotechnology, China) for 10 min in the dark. Finally,
paraffin sections were sealed in anti-fluorescence. Images were acquired on a laser scanning confocal microscope
FV12-IXCOV (OLYMPUS, Japan). Green fluorescence represented CD11b and red fluorescence represented Gr-1.
The mean optical density was calculated by Image-J to analyze the positive expression.

Antibodies and flow cytometry
The numbers of CD11b+ gr-1+ MDSCs were measured by flow cytometry using anti-CD11b and anti-Gr-1 antibodies.
Anti-CD11b and anti-Gr-1 were purchased from eBioscience. Samples were acquired using a BD LSR II Fortessa
instrument and analyzed with FlowJo software (TreeStar). All samples are analyzed in single. In each experiment, at
least three to four samples were analyzed for each group.

Enzyme-linked immunosorbent assay
The antibodies against IFN-γ, IL-13 and arginase-1 in blood serum samples were investigated by a commercial
Enzyme-linked immunosorbent assay (ELISA) test kit (Biochek, Holland). The test procedure was performed ac-
cording to the manufacturer’s protocol. The absorbance at 450 nm was read by an ELISA reader spectrophotometer
(ELX800, Bio-Tek Inst Inc, U.S.A.). The presence of antibody in blood serum samples was determined by calculating
sample to positive control ratio. The result was accepted as positive when samples had S/P ratio of greater than 0.50.
If the S/P ratio of samples were less than 0.50, it was considered as negative.

Western blot
Total proteins were extracted from the mouse spinal cords, and BCA method was used for protein quantification.
Equal amounts of proteins (20 μg) of each sample were separated by sodium dodecyl sulfate/polyacrylamide gel elec-
trophoresis and then transferred on to the polyvinylidene fluoride (PVDF) membranes (Millipore, U.S.A.). PVDF
membrane was blocked in 5% skim milk at 37◦C for 2 h, and subsequently incubated at 4◦C overnight with anti-
bodies against phosphorylated-STAT6 (p-STAT6), t-STAT6, arginase-1, IL-17, IFN-γ or β-ACTIN/GAPDH (all in
1:1000 dilutions, Cell Signaling Technology, Danvers, Massachusetts). Next, PVDF membrane was incubated with
corresponding horseradish peroxidase–conjugated (HRP)-linked secondary IgG antibodies (1:10000 dilutions, Santa
Cruz, U.S.A.) for 2 h at room temperature. The signal was detected with a Super Signal Protein Detection kit (Pierce
Biotechnology, U.S.A.).

Statistical analysis
All statistical analyses were performed by using SPSS version 22.0 (SPSS Institute, IL, U.S.A.). Results from each
experiment were expressed as the mean +− standard deviation of three separate experiments. Student’s t test was used
for comparison between the two groups. Statistical significance was set at P<0.05.

Results
NAD+ treatment attenuated EAE
To evaluate the effects of NAD+ on EAE, C57BL/6 mice were used to construct EAE models. After construction of
EAE models, LFB and Hematoxylin and Eosin (HE) staining were performed to assess inflammation and demyelina-
tion, respectively. As shown in Figure 1A,B, a significant increase in demyelination foci and inflammatory cells were
observed in the EAE model mice compared with normal mice. In addition, the numbers of macrophage and CD4+ T
lymphocytes were significantly enhanced in the EAE model mice compared with normal mice (all P<0.001) (Figure
1C,D). These results showed the successful construction of EAE models.
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Figure 1. NAD+ treatment attenuated EAE

(A) LFB staining (×200) of the spinal cords in each group. (B) HE staining (×200) of mice spinal cords in each group. Blue arrow

represented inflammatory cell infiltration. (C) Digital images of mice spinal cords’ sections after CD68 immunofluorescence staining

and the quantification of the expression of CD68. (D) Digital images of mice spinal cords sections after CD4+ immunofluorescence

staining and the quantification of the expression of CD4+. Data presented were the mean +− standard deviation (n=10 mice/group).

*P<0.05, **P<0.001.

After EAE models were treated with NAD+, we observed that the significant increase in demyelination foci and
inflammatory cells in the spinal cords of EAE model mice were attenuated by NAD+ treatment (Figure 1A,B). In
addition, NAD+ treatment significantly reduced the elevated macrophage and CD4+ T lymphocytes numbers in EAE
model mice (all P<0.05) (Figure 1C,D). We observed that the onset of clinical signs in NAD+ group was delayed
significantly (Figure 2). The mean day of onset for NAD+ group was 16.5 days post-EAE induction, whereas the
EAE model group exhibited clinical symptoms as early as day 10, with mean onset at 12.3 day post-immunization.
Taken together, the results indicated that NAD+ treatment could decrease inflammatory cells and demyelination foci,
attenuate the clinical scores of EAE and slightly delaydisease onset.
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Figure 2. Clinical scores of NAD+ and EAE group

In each experiment, disease incidence was 100% in EAE group and 60% in NAD+ group (n=10 mice/group).

Figure 3. NAD+ treatment activated the p-STAT6 expression and suppressed NF-κB pathway in spinal cord

(A) Western blot analysis of p-STAT6 and SIRT1 expression in each group. (B) Western blot analysis of p-NF-κB and p-IκB expression

in each group. Data presented were the mean +− standard deviation. **P<0.001.

NAD+ treatment activated the phosphorylation of STAT6 and suppressed
NF-κB pathway
In order to illuminate the possible mechanisms of NAD+ on EAE, we next examined the effects of NAD+ on STAT6
and NF-κB in spinal cord. The results showed that the expression level of SIRT-1 and p-STAT6 in NAD+ group were
significantly higher than that in EAE model group (P<0.05) (Figure 3A). In addition, NAD+ treatment up-regulated
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the expression of p-IκB and down-regulated the expression of p-NF-κB (Figure 3B). These results indicated that
NAD+ treatment could activate the phosphorylation of STAT6 and suppressed NF-κB pathway in EAE.

NAD+ treatment induced CD11b+ gr-1+ MDSCs
We examined the numbers of CD11b+ gr-1+ MDSCs in spleen of each group by immunofluorescent staining and
flow cytometry. The results showed that the numbers of CD11b+ gr-1+ MDSCs in NAD+ group were significantly
higher than that in EAE model group (P<0.05) (Figure 4A,B). The expressions of Arginase-1 were measured using
immunofluorescent staining in the spinal cord and spleen of mice. As expected, we found that NAD+ treatment
significantly enhanced the expressions of Arginase-1 (P<0.05) (Figure 4C,D). In addition, Western blot (Figure 4E)
and ELISA (Figure 4F) also showed that NAD+ treatment significantly enhanced the expressions of Arginase-1 in
spinal cord and serum, respectively. These results indicated that NAD+ treatment could induce CD11b+ gr-1+ MDSCs.

NAD+ treatment regulated inflammatory response of Th1, Th2 and Th17
cells
We also characterized inflammatory cytokine expression in each group. Serum collected from EAE model mice dis-
played elevated levels of IFN-γ and IL-17 while NAD+ treatment significantly reduced these inflammatory cytokine
levels (Figure 5A,B). Moreover, the expressions of IL-13 in serum of NAD+ group were significantly higher than that
in EAE model group (Figure 5C). These results indicated that NAD+ treatment regulated inflammatory response of
Th1 and Th2 cells.

Discussion
MS is a chronic immune-mediated disease of the CNS [21]. Current treatments for MS are based on
anti-inflammation, which unfortunately are only partially effective [4]. Thus, developing novel therapeutic strategies
has been an urgent problem for patients with MS. SIRT1 is an NAD+-dependent protein deacetylase that catalyzes the
removal of acetyl groups from a variety of protein substrates [12]. Previous study showed that SIRT1 induction can
attenuate the course of EAE [13]. However, the underlying mechanism has not been well elucidated. In the present
study, we established an EAE model and investigate the possible mechanisms of NAD+ in attenuating the course of
EAE. The highlights of present study are the following: first, we demonstrated that NAD+ treatment could activate the
phosphorylation of STAT6. Second, we demonstrated that NAD+ treatment induced CD11b+ gr-1+ MDSCs. Third,
we found that NAD+ treatment regulated inflammatory response of Th1 and Th2 cells. Finally, we proposed a novel
mechanism for NAD+ attenuate EAE, in which NAD+ treatment may induce the CD11b+ gr-1+ MDSCs to attenuate
EAE via activating the phosphorylation of STAT6 expression.

In the present study, we first verified the effect of NAD+ on the course of EAE. The results showed that NAD+

treatment could attenuate the clinical scores of EAE, slightly delay disease onset and decrease inflammatory cells
and demyelination foci. Similarly, Tullius et al. [19] demonstrated that NAD+ could block EAE by inducing immune
homeostasis via CD4+IFNγ+IL-10+ T cells and reverse disease progression by restoring tissue integrity through neu-
roregeneration and remyelination. Besides, the study performed by Wang et al. [13] had indicated that NAD+ treat-
ment attenuated pathological injuries of EAE mice. Although studies reported the effects of NAD+ in EAE, underlying
mechanism remained controversial. Thus, we further investigated possible mechanism of NAD+ treatment attenuated
EAE.

STAT6 is a member of the STAT family and plays important roles in cell differentiation and immune responses
induced by growth factors, cytokines and other cell activators [22]. Previous study showed that SIRT1 plays an
anti-inflammatory role through the PI3K/Akt/STAT6 pathway in acute gout [14]. However, the regulatory effect of
SIRT1 on STAT6 in EAE remains unclear. Therefore, the present study investigated the effects of NAD+ on STAT6 in
EAE model. Interestingly, the results illuminated that NAD+ treatment could activate the phosphorylation of STAT6.
p-STAT6 was observed in intestinal epithelial cells of patients with inflammatory bowel disease [23]. Thus, the above
findings indicated that NAD+ treatment may attenuate EAE via activating the phosphorylation of STAT6 expression.

MDSCs are immunosuppressive cells which could inhibit acute inflammatory reactions, trigger the resolution of
inflammation and initiate the repair processes [24]. Recent studies have shown that MDSCs play important role in
shaping T-cell responses [25,26]. MDSCs suppressed T-cell responses by several mechanisms including the produc-
tion of IL4-dependent arginase [27,28]. Our studies demonstrate that NAD+ treatment increased the numbers of
CD11b+ gr-1+ MDSCs and the expression of Arginase-1. Although, several studies demonstrated that MDSCs could
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Figure 4. NAD+ treatment increased the number of CD11b+ gr-1+ MDSCs in spleen

(A) Digital images of mice spinal cords’ sections after CD11b and Gr-1 immunofluorescence staining and the quantification of the

expression of CD11b and Gr-1. Green fluorescence represented CD11b and red fluorescence represented Gr-1. (B) Splenocytes

were stained with CD11b and Gr-1 Ab and then analyzed by flow cytometry. Representative histograms shown. (C) Digital images

of mice spinal cords’ sections after Arginase-1 immunofluorescence staining and the quantification of the expression of arginase-1.

Green fluorescence represented CD11b and red fluorescence represented Arginase-1. (D) Digital images of mice spleen sections

after arginase-1 immunofluorescence staining and the quantification of the expression of arginase-1. (E) Western blot analysis

of Arginase-1 expression in spinal cord. (F) Serum expression level of Arginase-1 analyzed by ELISA (n=10 mice/group). Data

presented were the mean +− standard deviation. *P<0.05, **P<0.001.
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Figure 5. NAD+ treatment regulated inflammatory response of Th1, Th2 and Th17 cells

(A) Serum expression level of IFNγ analyzed by ELISA (n=10 mice/group). (B) Serum expression level of IL-17 analyzed by ELISA

(n=10 mice/group). (C) Serum expression level of IL-13 analyzed by ELISA (n=10 mice/group). Data presented were the mean +−
standard deviation. *P<0.05, **P<0.001.

attenuate the clinical course of EAE [9,10]. STAT6 was reported to promote the expansion of MDSCs in the lam-
ina propria and spleen of ApcMin/+ mice [11]. However, the regulatory effect of STAT6 on MDSCs in EAE remains
unclear.

MDSCs used inducible nitric oxide synthase (NOS2) and Arginase-1 to control T-cell responses [29]. Th1 cytokines
(such as IFN-γ and TNF-α) induce NOS2, whereas Th2 cytokines (such as IL-4 and IL-13) up-regulate Arginase-1
[30]. In order to verify our hypothesis, we further characterized inflammatory cytokine expression in NAD+ and EAE
model groups. The results showed that NAD+ treatment regulated inflammatory response of Th1 and Th2 cells and
promote IL-13 and inhibit IFN-γ secretion in EAE mice. These findings indicated that NAD+ treatment may atten-
uate EAE by induction of CD11b+ gr-1+ MDSCs via regulating inflammatory response of Th1 and Th2 cells. More
importantly, studies reported that STAT6 was reported to be involved in the regulation of the Th1/Th2 immune re-
sponse [31]. This indicated that NAD+ treatment may attenuate EAE by regulating inflammatory response of Th1 and
Th2 cells via activating the phosphorylation of STAT6. Taken together, our studies demonstrate that NAD+ treatment
may attenuate EAE by inducing of CD11b+ gr-1+ MDSCs via activated the phosphorylation of STAT6.

Conclusions
The present study further confirmed the effects of NAD+ on the pathogenesis of EAE. Our studies demonstrate that
NAD+ treatment attenuated the course of EAE and activated the phosphorylation of STAT6 expression. Additionally,
NAD+ treatment induced CD11b+ gr-1+ MDSCs and inhibited inflammatory responses by regulating Th1, Th2 and
Th17 cells. Taken together, our studies demonstrated that NAD+ treatment may attenuate EAE by inducing of CD11b+

gr-1+ MDSCs via activated the phosphorylation of STAT6. Therefore, NAD+ may be considered as a potential novel
therapeutic strategy for MS.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was supported by the National Natural Science Foundation of China [grant number 81873759].

Author Contribution
Conceptualization: L.G., J.W. and B.L. Methodology: J.W., G.-J.T. and X.-L.G. Formal analysis: J.W. and M.-Y.Q. Histological
staining and analysis: N.Z. and J.-N.X. Writing – original draft preparation: J.W. Writing – review and editing: L.G. and B.L.

Ethics Approval
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The protocol for
this investigation in patients was approved by Ethics Committee of Hebei Medical University.

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Bioscience Reports (2020) 40 BSR20200353
https://doi.org/10.1042/BSR20200353

Informed Consent
Written informed consent was obtained from each subject.

Abbreviations
CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; ELISA, enzyme-linked immunosorbent assay;
IFN-γ , interferon γ; IκB , inhibitor of kappa B; IL , interleukin; LFB, Luxol Fast Blue; MDSC, myeloid-derived suppressor cell;
MS, multiple sclerosis; NAD+, nicotinamide adenine dinucleotide; NOS2, nitric oxide synthase; PBS, phosphate buffer saline;
PVDF, polyvinylidene fluoride; p-STAT6, phosphorylated-STAT6; SIRT1, sirtuin 1.

References
1 Cantoni, C., Cignarella, F., Ghezzi, L., Mikesell, B., Bollman, B., Berrien-Elliott, M.M. et al. (2017) Mir-223 regulates the number and function of

myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 133, 61–77,
https://doi.org/10.1007/s00401-016-1621-6

2 El-Etr, M., Vukusic, S., Gignoux, L., Durand-Dubief, F., Achiti, I., Baulieu, E.E. et al. (2005) Steroid hormones in multiple sclerosis. J. Neurol. Sci. 233,
49–54

3 de Roquemaurel, A., Galli, P., Landais, A., Avendano, S. and Cabre, P. (2019) Fingolimod for the treatment of multiple sclerosis in French West Indies, a
real-world study in patients from African ancestry. J. Neurol. Sci. 402, 180–187, https://doi.org/10.1016/j.jns.2019.05.027

4 Kaneko, S., Wang, J., Kaneko, M., Yiu, G., Hurrell, J.M., Chitnis, T. et al. (2006) Protecting axonal degeneration by increasing nicotinamide adenine
dinucleotide levels in experimental autoimmune encephalomyelitis models. J. Neurosci. 26, 9794–9804,
https://doi.org/10.1523/JNEUROSCI.2116-06.2006

5 Cheung, A.C., Lazaridis, K.N., LaRusso, N.F. and Gores, G.J. (2017) Emerging pharmacologic therapies for primary sclerosing cholangitis. Curr. Opin.
Gastroenterol. 33, 149, https://doi.org/10.1097/MOG.0000000000000352

6 Saligrama, N., Zhao, F., Sikora, M.J., Serratelli, W.S., Fernandes, R.A., Louis, D.M. et al. (2019) Opposing T cell responses in experimental autoimmune
encephalomyelitis. Nature 572, 481–487, https://doi.org/10.1038/s41586-019-1467-x

7 Yan, Z., Yang, W., Parkitny, L., Gibson, S.A., Lee, K.S., Collins, F. et al. (2019) Deficiency of Socs3 leads to brain-targeted EAE via enhanced neutrophil
activation and ROS production. JCI Insight 5, https://doi.org/10.1172/jci.insight.126520

8 Ioannou, M., Alissafi, T., Lazaridis, I., Deraos, G., Matsoukas, J., Gravanis, A. et al. (2012) Crucial role of granulocytic myeloid-derived suppressor cells
in the regulation of central nervous system autoimmune disease. J. Immunol. 188, 1136–1146, https://doi.org/10.4049/jimmunol.1101816

9 Zhu, B., Bando, Y., Xiao, S., Yang, K., Anderson, A.C., Kuchroo, V.K. et al. (2007) CD11b+ Ly-6Chi suppressive monocytes in experimental autoimmune
encephalomyelitis. J. Immunol. 179, 5228–5237, https://doi.org/10.4049/jimmunol.179.8.5228

10 Zhu, B., Kennedy, J.K., Wang, Y., Sandoval-Garcia, C., Cao, L., Xiao, S. et al. (2011) Plasticity of Ly-6Chi myeloid cells in T cell regulation. J. Immunol.
187, 2418–2432, https://doi.org/10.4049/jimmunol.1100403

11 Jayakumar, A. and Bothwell, A.L. (2017) Stat6 promotes intestinal tumorigenesis in a mouse model of adenomatous polyposis by expansion of MDSCs
and inhibition of cytotoxic CD8 response. Neoplasia 19, 595–605, https://doi.org/10.1016/j.neo.2017.04.006

12 Ciriello, J., Tatomir, A., Hewes, D., Boodhoo, D., Anselmo, F., Rus, V. et al. (2018) Phosphorylated SIRT1 as a biomarker of relapse and response to
treatment with glatiramer acetate in multiple sclerosis. Exp. Mol. Pathol. 105, 175–180, https://doi.org/10.1016/j.yexmp.2018.07.008

13 Wang, J., Zhao, C., Kong, P., Sun, H., Sun, Z., Bian, G. et al. (2016) Treatment with NAD+ inhibited experimental autoimmune encephalomyelitis by
activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice. Int. Immunopharmacol. 39, 287–294,
https://doi.org/10.1016/j.intimp.2016.07.036

14 Liu, L., Zhu, X., Zhao, T., Yu, Y., Xue, Y. and Zou, H. (2019) Sirt1 ameliorates monosodium urate crystal–induced inflammation by altering macrophage
polarization via the PI3K/Akt/STAT6 pathway. Rheumatology 58, 1674–1683, https://doi.org/10.1093/rheumatology/kez165

15 Axtell, R.C., de Jong, B.A., Boniface, K., van der Voort, L.F., Bhat, R., De Sarno, P. et al. (2010) T helper type 1 and 17 cells determine efficacy of
interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat. Med. 16, 406–412, https://doi.org/10.1038/nm.2110

16 Qin, H., Yeh, W.I., De Sarno, P., Holdbrooks, A.T., Liu, Y., Muldowney, M.T. et al. (2012) Signal transducer and activator of transcription-3/suppressor of
cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc. Natl. Acad. Sci. U.S.A. 109, 5004–5009,
https://doi.org/10.1073/pnas.1117218109

17 Goncalves DaSilva, A. and Yong, V.W. (2009) Matrix metalloproteinase-12 deficiency worsens relapsing-remitting experimental autoimmune
encephalomyelitis in association with cytokine and chemokine dysregulation. Am. J. Pathol. 174, 898–909,
https://doi.org/10.2353/ajpath.2009.080952

18 Weaver, A., Goncalves da Silva, A., Nuttall, R.K., Edwards, D.R., Shapiro, S.D., Rivest, S. et al. (2005) An elevated matrix metalloproteinase (MMP) in an
animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. FASEB J. 19, 1668–1670, https://doi.org/10.1096/fj.04-2030fje

19 Tullius, S.G., Biefer, H.R., Li, S., Trachtenberg, A.J., Edtinger, K., Quante, M. et al. (2014) NAD+ protects against EAE by regulating CD4+ T-cell
differentiation. Nat. Commun. 5, 5101, https://doi.org/10.1038/ncomms6101

20 Qu, X., Guo, R., Zhang, Z., Ma, L., Wu, X., Luo, M. et al. (2015) bFGF protects pre-oligodendrocytes from oxygen/glucose deprivation injury to
ameliorate demyelination. Cell. Mol. Neurobiol. 35, 913–920, https://doi.org/10.1007/s10571-015-0186-6

21 Ontaneda, D., Thompson, A.J., Fox, R.J. and Cohen, J.A. (2017) Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of
function. Lancet North Am. Ed. 389, 1357–1366, https://doi.org/10.1016/S0140-6736(16)31320-4

22 Shen, C.-H. and Stavnezer, J. (1998) Interaction of stat6 and NF-κB: direct association and synergistic activation of interleukin-4-induced transcription.
Mol. Cell. Biol. 18, 3395–3404, https://doi.org/10.1128/MCB.18.6.3395

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

9

https://doi.org/10.1007/s00401-016-1621-6
https://doi.org/10.1016/j.jns.2019.05.027
https://doi.org/10.1523/JNEUROSCI.2116-06.2006
https://doi.org/10.1097/MOG.0000000000000352
https://doi.org/10.1038/s41586-019-1467-x
https://doi.org/10.1172/jci.insight.126520 \ignorespaces 
https://doi.org/10.4049/jimmunol.1101816
https://doi.org/10.4049/jimmunol.179.8.5228
https://doi.org/10.4049/jimmunol.1100403
https://doi.org/10.1016/j.neo.2017.04.006
https://doi.org/10.1016/j.yexmp.2018.07.008
https://doi.org/10.1016/j.intimp.2016.07.036
https://doi.org/10.1093/rheumatology/kez165
https://doi.org/10.1038/nm.2110
https://doi.org/10.1073/pnas.1117218109
https://doi.org/10.2353/ajpath.2009.080952
https://doi.org/10.1096/fj.04-2030fje
https://doi.org/10.1038/ncomms6101
https://doi.org/10.1007/s10571-015-0186-6
https://doi.org/10.1016/S0140-6736(16)31320-4
https://doi.org/10.1128/MCB.18.6.3395


Bioscience Reports (2020) 40 BSR20200353
https://doi.org/10.1042/BSR20200353

23 Wick, E.C., LeBlanc, R.E., Ortega, G., Robinson, C., Platz, E., Pardoll, D.M. et al. (2011) Shift from pStat6 to pStat3 predominance is associated with
inflammatory bowel disease-associated dysplasia. Inflamm. Bowel Dis. 18, 1267–1274, https://doi.org/10.1002/ibd.21908

24 Salminen, A., Kaarniranta, K. and Kauppinen, A. (2018) The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Res.
Rev. 48, 1–10, https://doi.org/10.1016/j.arr.2018.09.001

25 Cantoni, C., Cignarella, F., Ghezzi, L., Mikesell, B., Bollman, B., Berrien-Elliott, M.M. et al. (2017) Mir-223 regulates the number and function of
myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta. Neuropathol. (Berl.) 133, 61–77,
https://doi.org/10.1007/s00401-016-1621-6

26 Ioannou, M., Alissafi, T., Lazaridis, I., Deraos, G., Matsoukas, J., Gravanis, A. et al. (2012) Crucial role of granulocytic myeloid-derived suppressor cells
in the regulation of central nervous system autoimmune disease. J. Immunol. 188, 1136–1146, https://doi.org/10.4049/jimmunol.1101816

27 Gabrilovich, D.I., Ostrand-Rosenberg, S. and Bronte, V. (2012) Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253,
https://doi.org/10.1038/nri3175

28 Holmgaard, R.B., Zamarin, D., Li, Y., Gasmi, B., Munn, D.H., Allison, J.P. et al. (2015) Tumor-expressed IDO recruits and activates MDSCs in a
Treg-dependent manner. Cell Rep. 13, 412–424, https://doi.org/10.1016/j.celrep.2015.08.077

29 Bogdan, C. (2001) Nitric oxide and the immune response. Nat. Immunol. 2, 907, https://doi.org/10.1038/ni1001-907
30 Bronte, V., Serafini, P., Mazzoni, A., Segal, D.M. and Zanovello, P. (2003) L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends

Immunol. 24, 301–305, https://doi.org/10.1016/S1471-4906(03)00132-7
31 Klein, W., Tromm, A., Folwaczny, C., Hagedorn, M., Duerig, N., Epplen, J. et al. (2005) The G2964A polymorphism of the STAT6 gene in inflammatory

bowel disease. Dig. Liver Dis. 37, 159–161, https://doi.org/10.1016/j.dld.2004.10.011

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

https://doi.org/10.1002/ibd.21908
https://doi.org/10.1016/j.arr.2018.09.001
https://doi.org/10.1007/s00401-016-1621-6
https://doi.org/10.4049/jimmunol.1101816
https://doi.org/10.1038/nri3175
https://doi.org/10.1016/j.celrep.2015.08.077
https://doi.org/10.1038/ni1001-907
https://doi.org/10.1016/S1471-4906(03)00132-7
https://doi.org/10.1016/j.dld.2004.10.011

