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Abstract

We report that regions-of-interest (ROIs) associated with idiosyncratic individual

behavior can be identified from functional magnetic resonance imaging (fMRI) data

using statistical approaches that explicitly model individual variability in neuronal acti-

vations, such as mixed-effects multilevel analysis (MEMA). We also show that the

relationship between neuronal activation in fMRI and behavioral data can be modeled

using canonical correlation analysis (CCA). A real-world dataset for the neuronal

response to nicotine use was acquired using a custom-made MRI-compatible appara-

tus for the smoking of electronic cigarettes (e-cigarettes). Nineteen participants

smoked e-cigarettes in an MRI scanner using the apparatus with two experimental

conditions: e-cigarettes with nicotine (ECIG) and sham e-cigarettes without nicotine

(SCIG) and subjective ratings were collected. The right insula was identified in the

ECIG condition from the χ2-test of the MEMA but not from the t-test, and the

corresponding activations were significantly associated with the similarity scores

(r = �.52, p = .041, confidence interval [CI] = [�0.78, �0.17]) and the urge-to-

smoke scores (r = .73, p <.001, CI = [0.52, 0.88]). From the contrast between the

two conditions (i.e., ECIG > SCIG), the right orbitofrontal cortex was identified from

the χ2-tests, and the corresponding neuronal activations showed a statistically mean-

ingful association with similarity (r = �.58, p = .01, CI = [�0.84, �0.17]) and the

urge to smoke (r = .34, p = .15, CI = [0.09, 0.56]). The validity of our analysis pipe-

line (i.e., MEMA followed by CCA) was further evaluated using the fMRI and behav-

ioral data acquired from the working memory and gambling tasks available from the

Human Connectome Project.
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1 | INTRODUCTION

Recently, there has been growing interest in the use of functional

magnetic resonance imaging (fMRI) data to investigate the

relationship between the brain and behavior (Hubbard, Cyrus

Arman, Ramachandran, & Boynton, 2005; Kohn, Coen-Cagli, Kanit-

scheider, & Pouget, 2016; Lamichhane, Westbrook, Cole, &

Braver, 2020; Rousselet & Pernet, 2012; Zhou, Li, Zhou, Li, &

Cui, 2018). In this approach, to identify the regions-of-interest

(ROIs) in the brain that are potentially associated with behavioral

data, statistical parametric maps are estimated using a general lin-

ear model (GLM) for individual fMRI data at the first level. Group

inference is then conducted at the second level by applying statis-

tical models such as Student's t-tests and analysis of variance

(ANOVA) to the fMRI data obtained from a group of subjects

(Mumford & Nichols, 2009). Consequently, the ROIs that show

statistically significant neuronal activations across groups are

identified from possible contrasts between experimental condi-

tions. ROIs are also used to evaluate the links between the

corresponding neuronal activations and non-neuronal data such as

behavioral data and/or individual traits (Hubbard et al., 2005; Kohn

et al., 2016). However, these conventional statistical approaches

(i.e., t-tests and ANOVA) do not explicitly include a variable to

model between-subject variability despite the fact that between-

subject variance within the same experimental group/condition

is potentially much larger than within-subject variance (Chen, Saad,

Nath, Beauchamp, & Cox, 2012; Lindquist, Spicer, Asllani, &

Wager, 2012).

It is possible that individual traits and behavioral patterns lead to

subject-specific variability in neuronal activations at the first level in

addition to producing an estimation error for the effect size. This

subject-specific variability can contribute to significant variability in

effect sizes across subjects within the same group and/or experimen-

tal condition. Thus, the between-subject variability in neuronal activa-

tions is key to predicting individual-specific non-neuronal data

(Lindquist et al., 2012). In this context, mixed-effects models that

consider both within- and between-subject variability (Beckmann,

Jenkinson, & Smith, 2003; Friston et al., 2002; Mumford & Nichols,

2009; Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004) are

useful for acquiring valid and precise estimates of group inference

(Lindquist et al., 2012). Thus, we were motivated to evaluate a mixed-

effects multilevel analysis (MEMA) model based on the homogeneity

of the effect estimates defined by comparing the between-subject

variance with the within-subject variance (Chen et al., 2012) used

to identify brain regions associated with the idiosyncrasies of the

participants.

A variety of regression models have been employed to examine

the brain–behavior relationship. Traditional simple or multiple

regression analyses have been used to test the relationship between

neuronal activations captured by fMRI and related behavioral data

(Anders, Lotze, Erb, Grodd, & Birbaumer, 2004; Clark, 2002;

de Hollander, Forstmann, & Brown, 2016; Lindquist, 2008; Valente,

Castellanos, Vanacore, & Formisano, 2014). Recently, regression

approaches based on multivariate neuronal activation patterns

rather than conventional univariate activations have been used to

predict behavior and/or cognitive data (Dosenbach et al., 2010;

Haynes, 2015; Norman, Polyn, Detre, & Haxby, 2006). More

recently, a growing number of neuroimaging studies have focused

on the prediction of individual behavior and/or cognitive scores

using machine-learning approaches (Arbabshirani, Plis, Sui, &

Calhoun, 2017; Cui & Gong, 2018; Dosenbach et al., 2010; Gabrieli,

Ghosh, & Whitfield-Gabrieli, 2015; Sui et al., 2018). An example of

these multivariate machine-learning-based regression approaches is

canonical correlation analysis (CCA), which enables two sets of mul-

tivariate variables to be investigated by maximizing the correlation

between them (Hotelling, 1935; Ter Braak, 1986). For example, the

CCA approach has been suggested as a viable option to determine

the link between neuronal activations estimated from fMRI data and

subjective behavioral and/or (pre-)clinical data (Smith et al., 2015;

Wang et al., 2020; Zhuang et al., 2019).

In this study, we hypothesized that the use of a MEMA model

to identify ROIs from fMRI data based on both between-subject and

within-subject variability followed by the use of CCA could be

employed to examine the possible association between brain ROIs

and idiosyncratic data such as individual behavioral data. To evalu-

ate our hypothesis using the data acquired in a real-world scenario,

fMRI and associated behavioral data were collected in the context

of nicotine craving. Previous studies on the neuronal circuitry of nic-

otine craving have identified representative brain regions such as

the insula (Benowitz, 2010; Moran et al., 2018; Naqvi, Rudrauf,

Damasio, & Bechara, 2007) and the orbitofrontal cortex (Franklin

et al., 2007; Jasinska, Zorick, Brody, & Stein, 2014). For example,

Naqvi et al. (2007) reported that people with lesions of the insula

were able to quit tobacco smoking easily with no reported conscious

urges. Furthermore, it appears that the neuronal response to nico-

tine in the insula region is highly heterogeneous across subjects due

to individual traits, the strength of nicotine craving in participants

on the day of the experiment (Gilbert et al., 1998), and the amount

of nicotine absorbed (Farsalinos, Yannovits, Sarri, Voudris, &

Poulas, 2018).

To collect fMRI data and associated behavioral data related to

nicotine craving, we designed an MRI-compatible apparatus for the

smoking of an electronic cigarette (e-cigarette) so that we could sys-

tematically switch between nicotine-present and nicotine-absent con-

ditions while simultaneously acquiring the fMRI data. We evaluated

the efficacy of our analysis approach (i.e., MEMA followed by CCA) in

the context of nicotine craving using the neuronal activations

obtained from the fMRI data and behavioral data represented by the

subjective ratings collected from the participants while they used

the e-cigarette smoking apparatus. We also applied our analysis

approach to working memory (WM) and gambling (GB) task fMRI data

from the Human Connectome Project (HCP) dataset (Barch

et al., 2013; Van Essen et al., 2012) to evaluate the efficacy of our

approach for a large public dataset.
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2 | MATERIALS AND METHODS

2.1 | Overview

Figure 1 illustrates the overall process for our study using e-cigarette

data. Once the fMRI and behavioral data were acquired using our

MRI-compatible e-cigarette apparatus, the fMRI data were prepro-

cessed and analyzed using a GLM for each of the experimental condi-

tions at the first level. At the second level, the MEMA was applied

utilizing both beta weights (i.e., the estimated voxel-wise effect sizes

from the GLM) and their variance across participants to estimate the

between-subject variability compared to within-subject variability as a

proxy for the homogeneity of the effect sizes. The homogeneity was

measured using χ2-tests, and the ROIs were identified accordingly

based on voxel clusters with a high level of significance. CCA was

then employed to investigate the relationship between the neuronal

activations in each of the ROIs and the behavioral data across subjects

in a leave-one-subject-out cross-validation (LOOCV) framework. The

ROIs identified from the t-tests were also evaluated using CCA in the

LOOCV framework for comparison. We also applied our approach to

the fMRI data in the HCP dataset to further validate our method

(MEMA followed by CCA) in a 2 � 5 nested cross-validation frame-

work (see Section 2.9).

2.2 | Participants

The entire study protocol was approved by the Institutional Review

Board at Korea University and all participants provided signed written

consent. Healthy right-handed current e-cigarette users were rec-

ruited using word-of-mouth, flyers distributed across campus, and the

internet. Volunteers were prescreened for eligibility by phone and

then interviewed in person. To be included in the study, they had to

meet the following criteria: aged >19 years, continuous use of e-

cigarettes for at least the last 3 months with a minimum nicotine con-

centration in the e-liquid of 12 mg/ml (Hobkirk et al., 2018), and a

minimum e-liquid consumption of 30 ml/month. Potential participants

were excluded if they had a history of brain trauma, any neurological

condition, a Fagerström Test of Nicotine Dependence (FTND) score

of <4 (Heatherton, Kozlowski, Frecker, & Fagerstrom, 1991; Kim, Yoo,

Tegethoff, Meinlschmidt, & Lee, 2015; Lee, Kim, & Kim, 2012), a Penn

State Electronic Cigarette Dependence Index (PSECDI; Foulds

et al., 2015) of <4, or any contraindication on an MRI scan. Thirty-two

male participants were recruited and participated in a non-MRI ses-

sion in the laboratory to evaluate the efficacy of our MRI-compatible

e-cigarette apparatus. Nineteen of the subjects also participated in an

MRI session to investigate their neuronal responses to e-cigarette use

during another visit.

Before attending the non-MRI and MRI sessions, participants

were asked to abstain from smoking both tobacco cigarettes and e-

cigarettes for at least 3 hr to increase their nicotine craving (Schuh &

Stitzer, 1995). Carbon monoxide (CO) levels in their exhaled breath

were assessed using a piCO Smokerlyzer (Bedfont Scientific, Ltd.,

Rochester, UK) both when the subjects arrived at the experiment site

to confirm that they had abstained from smoking (CO level <10 ppm)

and after each of the non-MRI and MRI sessions to confirm that e-

cigarette smoking does not increase CO levels. All participants

reported that they had abstained from smoking for at least 3 hr prior

to arrival. Table 1 presents the demographic and smoking information

for the participants.

A set of questionnaires were given to participants before and

after the non-MRI and MRI experiments to evaluate their craving for

nicotine. These included the Questionnaire on Smoking Urges (QSU;

Cox, Tiffany, & Christen, 2001), the Minnesota Nicotine Withdrawal

Scale (MNWS; Hughes & Hatsukami, 1986), and a short version of the

Shiffman–Jarvik Withdrawal Scale (SJWS; Shiffman & Jarvik, 1976). A

craving scale (CRS) was also used as an intuitive measure of subjective

craving, with a visual analogue scale between 0 and 10 (Fregni,

Fecteau, & Pascual-Leone, 2008). Additional measures were used to

evaluate the participants' mood, including the Perceived Stress Scale

(PSS; Cohen, Kamarck, & Mermelstein, 1994), the Beck Depression

Inventory (BDI; Beck, Steer, & Carbin, 1988), the Beck Anxiety Inven-

tory (BAI; Julian, 2011), and the Multidimensional Mood State Ques-

tionnaire (MDBF; Steyer, Eid, & Schwenkmezger, 1997). Refer to the

Supporting Information for more details on the experiment (“MRI-

compatible e-cigarette apparatus” and “Experimental paradigm”).

2.3 | Imaging parameters

Blood-oxygenation-level-dependent (BOLD) fMRI data were acquired

using a 3-T MRI scanner (Tim Trio, Siemens, Erlangen, Germany) with

a 12-channel head coil and a standard gradient-echo echo-planar-

F IGURE 1 Overall process of the study. More detailed
information can be found in the Methods, including “Overview.”
ECIG, e-cigarette with nicotine; SCIG, sham e-cigarette without
nicotine; α, familywise error rate; LOOCV, leave-one-subject-out
cross-validation; MEMA, mixed-effects multilevel analysis

5376 JO ET AL.



imaging pulse sequence (repetition time = 2,000 ms, echo

time = 30 ms, flip angle = 90�, field of view = 240 � 240 mm2, voxel

size = 3.75 � 3.75 � 4.0 mm3, 36 interleaved axial slices with no

gap). The cardiac and respiratory signals were simultaneously acquired

with the BOLD fMRI data. The T1-weighted structural MRI volume

was acquired as anatomical images using a magnetization-prepared

rapid gradient-echo (MP-RAGE) pulse sequence (repetition

time = 1,900 ms, echo time = 2.52 ms, flip angle = 9�, field of

view = 256 � 256 mm2, voxel size = 1.0 � 1.0 � 1.0 mm3, 176 sagit-

tal slices with no gap).

2.4 | Preprocessing of the fMRI data

The standard preprocessing pipeline available in the “afni_proc.py”
script of the Analysis of Functional Neuroimages (AFNI) software (afni.

nimh.nih.gov/afni) was used in this study. This pipeline included des-

piking (using “3dDespike”), slice timing correction (“3dTshift”), physio-
logical noise reduction (“3dretroicor”), co-registration of EPI volumes to

the anatomical images of the corresponding subject using the local

Pearson's correlation cost function (“align_epi_anat.py” with an “lpc”
option), mapping to the Montreal Neurological Institute (MNI) coordi-

nate space with the MNI_avg152T1 + tlrc template (“@auto_tlrc”), cen-
soring the EPI volumes with frame-wise displacement (FD) of over 0.5

with severe head motion (Power et al. 2019), spatial smoothing using a

Gaussian kernel with a blur size of 6 mm full-width at half-maximum

(FWHM), and regressing out low-frequency fluctuations in the BOLD

fMRI data using nuisance regressors from the 0th to the highest order

polynomials, which were estimated from the length of a run varying

depending on the smoking duration (“3dDetrend”).

2.5 | Individual-level analysis using a general
linear model

The preprocessed BOLD fMRI volumes were concatenated across the

two runs and analyzed using a GLM for individual-level analysis (using

“3dREMLfit” for generalized least squares-based estimation in AFNI).

The ANATICOR was used to de-noise the BOLD signal from the

cardiorespiratory data using the “@ANATICOR” script in AFNI (Jo, Saad,

Kyle Simmons, Milbury, & Cox, 2010), and the six motion parameters

and their first-order derivatives (i.e., task-unrelated nuisance regressors

in the GLM) were also regressed out of the BOLD signal. The contrasts

in the effect sizes between the task-related inhaling/exhaling periods

with smoke versus without smoke (e.g., T4 � T2 vs. T2 � T1 for ECIG

and T10 � T8 vs. T8 � T7 for SCIG in Figure S2) were used to obtain

the effect sizes (i.e., beta values) of the BOLD responses associated

with smoking an e-cigarette. The hemodynamic responses of the tasks

(i.e., task-related regressors) were modeled using these task periods

convolved with the canonical hemodynamic response function (using

the option, “-stim_times WAV” in the 3dDeconvolve command of

AFNI). The length of the fMRI runs varied depending on the inhaling/

exhaling periods of the participants (mean ± SD: 380.5 ± 54.4 TRs), in

which the length of the ECIG and SCIG blocks was 43.0 ± 8.8 TRs and

37.0 ± 8.6 TRs, respectively.

2.6 | Group inference using mixed-effects
multilevel analysis

Using the individual beta-value maps, MEMA was employed for group

inference. In the MEMA framework, the individual effect size is

expressed at the second level as follows:

yi ¼ α0þδiþεi, yi �N α0,τ
2þσ2i

� �
, ð1Þ

where yi is the effect size (i.e., the beta value β) of an experimental

condition or the contrast of experimental conditions from the GLM

for subject i (i=1, 2, …, P), αo is the group-level effect across all

P subjects, δi is the deviation of subject i from the group effect, which

follows a normal distribution with mean αo and variance τ2, that is,

N α0,τ2
� �

, εi is the estimation error (i.e., residual) of β for the ith sub-

ject, which follows N 0,σ2i
� �

, and σ2i represents the within-subject vari-

ability for an individual GLM. To test the homogeneity of the effect

sizes across subjects, Q-statistics (Cochran, 1954), which represent an

approximate χ2 distribution with P�1ð Þ degrees of freedom and are

often referred to as Cochran's χ2 test (Viechtbauer, 2010), can be used

(Chen et al., 2012):

TABLE 1 Demographic information
and nicotine dependence for the
participants (mean ± SD)

Non-MRI experiment
(n = 32)

MRI experiment
(n = 18)

p-value from
two-sample
t-testa

Age (years) 25.54 ± 2.64 25.42 ± 2.71 .87

E-cigarette use (months) 13.35 ± 9.67 13.52 ± 8.64 .95

FTND 4.71 ± 1.23 4.68 ± 1.29 .67

PSECDI 9.62 ± 3.57 9.31 ± 3.76 .79

CO level (ppm) Pre-experiment 8.12 ± 5.48 6.92 ± 5.53 .13

Post-experiment 7.51 ± 4.80 6.37 ± 4.86 .35

Abbreviations: CO, carbon monoxide; FTND, Fagerström Test of Nicotine Dependence; PSECDI, Penn

State Electronic Cigarette Dependence Index; SD, Standard Deviation.
aThe participants who participated in the MRI experiment were a subset of the participants who

participated in the non-MRI experiment.
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Q¼
XP
i¼1

yi�μð Þ2
σ2i

ð2Þ

where μ is the weighted mean of the individual effect sizes divided by

the inverse of the within-subject variability, assuming no between-

subject variability (τ2 ¼0Þ. Thus, the Q score represents the sum of

squares of the deviation of the individual-level effect size in compari-

son to the group-level effect size normalized by within-subject

variability. As a result, the null hypothesis can be defined as the

between-subject variability not being substantially greater than the

within-subject variability:

H0 : τ
2 ¼0, ð3Þ

where τ2 ¼max 0, Q� P�1ð ÞP
i

1
σ2
i

�
P
i

1
σ2
i

� �2

=
P
i

1
σ2
i

0BBB@
1CCCA (see “Appendix A. Mixed-

effects multilevel analysis for fMRI data” for more details). The MEMA

model reduces to a fixed-effects model in this null hypothesis (Chen

et al., 2012). This null hypothesis is rejected and an alternative hypothe-

sis is accepted when there is substantial between-subject variability

compared to within-subject variability (Higgins & Thompson, 2002). In

this scenario, a brain region where τ2 is substantially large indicates the

presence of heterogeneity across subjects due to substantial differ-

ences in their effect sizes. Therefore, it is believed that Q-statistics

provide a statistical framework for defining an ROI whose neuronal

activations (i.e., effect sizes) are potentially linked to subjective behav-

ioral data and/or psychological processes of interest that vary

between subjects (Chen et al., 2012; Lindquist et al., 2012).

The MEMA implemented in AFNI (3dMEMA) was used in our study

to identify ROIs with substantial heterogeneity in their neuronal activa-

tions across all 18 subjects associated with the ECIG and SCIG blocks

independently and with the contrast between them. Multiple comparison

correction was conducted using Monte-Carlo simulations (“3dClustSim”
in AFNI) with a voxel-wise uncorrected p-value threshold that resulted in

a voxel cluster with a corrected p-value (α) of <.05 at the cluster level.

More specifically, the cluster correction was performed for all ROIs

identified using the t-tests and χ2-tests. The uncorrected p-value used

for the cluster-based multiple comparison correction was selected by

considering whether the uncorrected p-value would still provide a sta-

tistical power greater than .8 given our sample size (Hintze, 2008;

Suresh & Chandrashekara, 2012). The ROIs (i.e., the clusters of brain

regions) that remained from this multiple comparison correction were

subject to subsequent analysis using CCA.

2.7 | CCA of the link between brain and
behavioral data

CCA (Hotelling, 1935; Ter Braak, 1986) is a machine-learning method

that can be used to investigate the relationship between two sets of

multivariate variables, such as brain data and behavioral data (Smith

et al., 2015; Wang et al., 2020). Suppose that X (P� l) and Y (P�m)

are two sets of l- and m-dimensional variables from P subjects; the

CCA finds the tunable parameter sets (i.e., canonical weights) a (l�1)

and b (m�1) by maximizing the correlation between the two sets of

multivariate variables as follows:

ρ¼ argmax
a,b

Xa, Ybð Þ ð4Þ

Once a and b are found, the multivariate variables U≜Xa (P�1) and

V ≜Yb (P�1) are the first pair of canonical variates. In subsequent

CCA, another set of parameters for a and b can also be found with

the constraint that the second pair of canonical variates are orthogo-

nal to the first pair. This process of finding another set of canonical

variates can continue until the maximum number of sets, min l,mð Þ, of
the canonical variates and the canonical weights are found. See

“Appendix B. Canonical correlation analysis (CCA)” for more details.

2.8 | CCA in a leave-one-subject-out cross-
validation framework

A LOOCV approach (Esterman, Tamber-Rosenau, Chiu, &

Yantis, 2010; Varoquaux et al., 2017) was adopted for the CCA frame-

work to avoid potential overfitting when the dataset for all subjects

was used (Dinga et al., 2019; Le Floch et al., 2012). Thus, the data for

one subject were used as validation to evaluate the performance of

the CCA model trained using the data from the remaining subjects

(i.e., n¼P�1). Refer to the Supporting Information “CCA in leave-

one-subject-out cross-validation (LOOCV) for e-cigarette data” for

more details. The CCA function “canoncorr.m” implemented in

MATLAB R2018a was used, and the p-values of the Pearson's linear

correlations between pairs of canonical variates were corrected using

a null distribution obtained from 5,000 random permutations with

pseudo-randomly shuffled subject indices for the brain data

(Nichols & Holmes, 2002). In addition, bootstrapping was conducted

10,000 times using subject indices with replacement, and a 95% confi-

dence interval (CI) for the correlation coefficients was used to deter-

mine significant relationships between the brain and behavioral data

(Kim et al., 2019; Pernet, Wilcox, & Rousselet, 2013; Terhune, Russo,

Near, Stagg, & Kadosh, 2014). The median absolute deviation (MAD)

was calculated for each of the canonical variates for the neuronal acti-

vations and behavioral data to exclude potential outliers (Kim

et al., 2019; Leys, Ley, Klein, Bernard, & Licata, 2013; Seo, 2006).

2.9 | Evaluation of our analysis pipeline using the
HCP dataset

In the analysis using our collected fMRI data acquired from our MRI-

compatible e-cigarette apparatus, the same dataset used for the

MEMA was used for the CCA due to the relatively small sample size.

Thus, there was the potential for circular analysis even though the

data for the CCA model training and the test data were separated by
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an LOOCV framework. In order to mitigate this potential issue and

the weak form of cross-validation (i.e., LOOCV) (Varoquaux et al.,

2017; Vu et al., 2020), we also evaluated our analysis pipeline using

the task fMRI (tfMRI) data available from the HCP dataset. Of the

seven tasks in the HCP, the WM and GB tasks were adopted because

we thought that the between-subject heterogeneity compared to

within-subject homogeneity in their neuronal activations may be sub-

stantial for the working memory performance and gambling outcomes

compared to more straightforward tasks such as motor tasks. The

selection of the two tasks was also partly because there are two dis-

tinct conditions in each of the two tasks (i.e., 2-back vs. 0-back in

WM; reward vs. punishment in GB) similar to our e-cigarette data

(i.e., the ECIG vs. SCIG conditions).

The analysis pipeline of the MEMA followed by CCA was con-

ducted in a 2 � 5 nested CV framework (with two outer folds and five

inner folds) and consisted of two stages: (1) application of the MEMA

to one of the two folds in an outer loop in order to identify the ROIs;

(2) application of the CCA to one remaining fold in order to learn and

evaluate the relationship between the neuronal activations and the

behavioral data based on the five-fold CV in an inner loop (i.e., 4 folds

were used to train the CCA model parameters and the one remaining

fold was used to test the trained CCA model). Please refer to the

Supporting Information for more details on the HCP dataset (“WM

and GB tasks, and the associated behavioral data”) and the

preprocessing and individual-level analysis used to obtain neuronal

activations (“Preprocessing of the tfMRI data and estimation of neuro-

nal activations”).

2.10 | ROIs from MEMA

The participants for each of the WM (n = 537) and GB (n = 874)

tasks were pseudo-randomly divided into two folds. The MEMA was

applied to each of the two folds using both their beta-valued maps

and the corresponding t-statistics maps from the individual-level

GLM. The statistically significant clusters of brain regions from the

Student's t-test (p-value <10�4 for WM and p-value <10�10 for GB

with a minimum of 40 connected voxels) and from the χ2-test

(p-value <.01 for WM and p-value <.005 for GB with a minimum of

40 connected voxels) were then identified. The anatomical label of

the significant clusters was obtained from the 116 regions in the

Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer

et al., 2002).

This application of MEMA to each of the two randomly divided

participant subgroups (i.e., two folds) and the identification of signif-

icant clusters with their AAL information was repeated 10 times.

The reproducibility of the clusters identified from the t-test and χ2-

test was then evaluated using the 20 sets of significant clusters for

each of the statistical tests. More specifically, if any of the

116 regions in the AAL were identified in over 80% of the 20 sets of

t-test and χ2-test from MEMA (i.e., at least 16 sets), the

corresponding AAL regions were considered to be reproducible from

the corresponding statistical test and were defined as ROIs. Conse-

quently, the significant clusters in each of the reproducible ROIs

were subjected to the CCA using the beta-values of the clusters and

behavioral data of the participants that belong to the one remaining

fold that was not used for the MEMA.

The application of the CCA only to the reproducibly significant

clusters for each of the statistics from the MEMA was because we

wanted to reduce the overall computational load. This approach can

prevent exhaustive analyses when we (a) apply the CCA with five-fold

CV in an inner loop to each of the clusters identified from the MEMA

using the dataset in an outer loop, (b) perform the analysis using

switched inner and outer folds, and (c) repeat the 2 � 5 nested CV

10 times.

2.11 | CCA to identify the link between the brain
and behavioral data

In an inner loop of the 2 � 5 nested CV using two randomly divided

sub-groups, the CCA model was trained and tested in the five-fold CV

using half of all of the subjects in the inner loop. In detail, the brain

and behavioral data from four folds were used to train the CCA model

and the data from the one remaining fold were used to evaluate the

trained CCA model as an independent set. Principal component analy-

sis (PCA) was applied to multivoxel beta values across the four folds

of the CCA training data to reduce the dimensions of the brain data

for each of the clusters with strong statistical evidence (ranging from

153 to 1,134 voxels). This was because the number of voxels in the

clusters was substantially higher than the two-dimensional behavioral

data (i.e., accuracy and RT for WM; percentage of rewards in compari-

son to punishment and RT for GB), which can potentially cause the

CCA model to overfit the data. Four thresholds for the number of

principal components (PCs; eigenvectors from eigen-decomposition

using the beta-values of the voxels in the cluster across the partici-

pants) were considered: (a) the number of PCs that corresponds to a

cumulative explained variance of ≈90%, (b) 50 PCs, (c) 100 PCs, and

(d) 150 PCs.

In the test phase, the PCs obtained using the training data were

applied to the data in the one remaining test fold, and consequently

the trained CCA model was tested. This was repeated five times using

each of the five folds as test data and the remaining four folds as

training data. Correlation analysis using the canonical variates of the

neuronal activations and canonical variates of the behavioral data was

conducted for the training and test data. Correlational analysis using

the canonical variates of neuronal activations and each of the two

types of behavioral data was also performed. The resulting p-values

were corrected based on a null distribution obtained from random

permutations (n = 10,000). When the correlation coefficients

between the canonical variates of the neuronal activations in the

identified ROIs and the canonical variates of the behavioral data were

consistently significant over three of the four scenarios for dimension

reduction, the corresponding associations were reported.
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3 | RESULTS

3.1 | Behavioral and psychological data

Table 2 shows that smoking an e-cigarette using our MRI-compatible

apparatus alleviated the nicotine craving (pcorrected <10�3) and

enhanced the mood of the participants, possibly because of the effect

of nicotine absorption. The similarity, urge-to-smoke, and smoking

duration scores obtained during the fMRI runs were comparable with

those from the non-MRI sessions (Figure 2), which demonstrates the

validity of our e-cigarette smoking apparatus in an MRI environment.

The significant differences in the behavioral and psychological data

between the ECIG and SCIG conditions indicate that our apparatus

correctly delivered the nicotine-containing smoke or nicotine-free

smoke to participants depending on the experimental condition.

3.2 | ROIs from Student's t-tests and χ2-tests

Figure 3 presents the ROIs identified using Student's t-tests and χ2-

tests across the experimental conditions. The uncorrected p-values

for the cluster-based multiple comparison correction of the χ2-tests

and the Student's t-test were p = 10�8 and p = .001, respectively,

and the corresponding statistical power was .98 and .99, respectively.

In the ECIG condition, the left cerebellum, left inferior frontal gyrus,

right middle temporal gyrus, right angular gyrus, and precuneus were

identified using Student's t-tests, whereas the left temporal pole, right

cerebellum, right insula, left hippocampus, and left thalamus were

identified using χ2-tests. In the SCIG condition, the left angular gyrus

and right middle temporal gyrus were identified with t-tests, and the

right thalamus, left inferior frontal gyrus, and left thalamus were iden-

tified with χ2-tests (α <.05 or equivalently, t-score >3.97, p <10�3 with

a minimum of 63 connected voxels for the Student's t-tests; χ2-scor-

e=71.93, degrees of freedom [d.f.]=17, p <10�8 with a minimum of

40 connected voxels for the χ2-tests). In the contrast of the two con-

ditions (i.e., ECIG>SCIG), the supplementary motor area from the t-

tests and the left middle temporal gyrus, right orbitofrontal cortex

(OFC), and right middle temporal gyrus from the χ2-tests were identi-

fied (α <.05 or equivalently, t-score >3.22, p <.005 with a minimum of

123 connected voxels for the t-tests; χ2-score >35.72, d.f.=17,

p <.005 with a minimum of 63 connected voxels for the χ2-tests). No

clusters were found for the opposite contrast (i.e., ECIG < SCIG) even

with a marginal threshold (uncorrected p <.05). Table 3 summarizes

the details of the identified ROIs.

3.3 | Interpreting the ROIs based on the
homogeneity of the effect sizes

Figure 4a presents the variability of the beta-value estimates (blue)

across subjects (defined as between-subject variability) for each of

the voxels within an ROI found from the contrast of the conditions

TABLE 2 Summary statistics for the questionnaires obtained from the participants (mean ± SD)

Non-MRI experiment (n = 32) MRI experiment (n = 18)

Pre-experiment Post-experiment p-value Pre-experiment Post-experiment p-value

CRS 6.52 ± 1.98 3.49 ± 2.49 <10�3 7.30 ± 1.66 2.77 ± 1.99 <10�3

MNWS 9.09 ± 5.21 3.66 ± 3.10 <10�3 11.37 ± 4.99 3.79 ± 2.35 <10�3

QSU 3.70 ± 1.54 1.95 ± 1.06 <10�3 4.46 ± 1.09 2.53 ± 1.07 <10�3

SJWS Craving 5.46 ± 1.25 3.09 ± 1.33 <10�3 5.83 ± 0.91 3.29 ± 1.16 <10�3

Physical symptoms 2.09 ± 1.13 1.83 ± 1.12 .82 2.12 ± 1.03 1.75 ± 0.99 .67

Stimulation/sedation 3.28 ± 1.95 2.55 ± 1.59 .76 3.26 ± 1.66 2.47 ± 1.35 .18

Psychological symptoms 3.68 ± 0.87 2.55 ± 0.73 <10�3 3.98 ± 0.91 2.59 ± 0.88 <10�3

Appetite 2.34 ± 1.82 2.03 ± 1.53 .72 2.68 ± 2.00 2.10 ± 1.59 .66

Overall average 3.89 ± 0.77 2.58 ± 0.65 <10�3 4.09 ± 0.61 2.61 ± 0.69 <10�3

BDI 7.39 ± 4.66 3.32 ± 2.71 <10�3 6.95 ± 4.35 3.47 ± 3.36 <10�3

BAI 6.71 ± 4.36 3.97 ± 2.99 <10�3 5.42 ± 4.35 2.63 ± 2.75 <10�3

PSS 16.39 ± 5.59 14.10 ± 4.61 .64 18.16 ± 4.97 14.58 ± 4.63 .06

MDBF Good–bad 15.22 ± 3.38 18.97 ± 2.33 <10�3 13.57 ± 2.83 18.26 ± 2.83 <10�3

Awake–tired 16.56 ± 4.43 19.59 ± 3.49 .03 14.32 ± 2.85 18.21 ± 3.34 <10�3

Calm–nervous 18.03 ± 4.92 22.69 ± 3.24 <10�3 17.74 ± 4.39 22.68 ± 3.56 <10�3

Total 49.81 ± 10.63 61.25 ± 7.25 <10�3 45.63 ± 7.60 59.16 ± 8.34 <10�3

Note: Values in bold represents p-value less than .05. The scores before and after the experiment were compared using paired t-tests and the

corresponding p-values were Bonferroni-corrected.

Abbreviations: BAI, Beck Anxiety Inventory; BDI, Beck Depression Inventory; CRS, Craving Scale; MNWS, Minnesota Nicotine Withdrawal Scale; MDBF,

Multidimensional Mood State Questionnaire; PSS, Perceived Stress Scale; QSU, Questionnaire of Smoking Urges; SD, standard deviation; SJWS, Shiffman–
Jarvik Withdrawal Scale-Short Version.

5380 JO ET AL.



(i.e., ECIG > SCIG) and the corresponding t-scores (red; the marker

and whiskers denote the mean and two standard deviations, respec-

tively). It is evident that all of the voxels of the three ROIs found using

the χ2-tests had a substantial level of variability in their beta values

across subjects (i.e., τ2) compared to the mean beta value, which

resulted in low t-scores overall (red). In contrast, all of the voxels of

F IGURE 2 Similarity, urge-to-smoke, and smoking duration scores obtained from the non-MRI and MRI sessions stratified by experimental
condition (bars and error bars represent mean and standard error of the mean, respectively; p-values are Bonferroni-corrected)

F IGURE 3 ROIs identified from the t-tests and χ2-tests of the MEMA for the experimental conditions ECIG, SCIG, and ECIG > SCIG. The
ROIs were identified from cluster-based multiple comparison correction (α <.05) using the uncorrected p-values (t-test: 10�3; χ2-test: 10�8, 10�8,
and .0005 for ECIG, SCIG, and ECIG > SCIG, respectively) from the conditions to achieve a power of >0.8 given our sample size. The three
numbers in each bracket indicate the MNI coordinates (i.e., [x, y, z]) of the maximum t-score or χ2-score within the ROI. No cluster was found in
the ECIG < SCIG contrast. ECIG, e-cigarette with nicotine; SCIG, sham e-cigarette without nicotine; L, left; R, right; IFG, inferior frontal gyrus;
MFG, middle frontal gyrus; MTG, middle temporal gyrus; OFC, orbitofrontal cortex; SMA, supplementary motor area; d.f., degree-of-freedom

JO ET AL. 5381



the SMA identified in the t-tests had substantially lower variability in

the beta values across subjects (and thus lower τ2 values), which

resulted in higher t-scores from the t-test compared to the voxels

found in the χ2-tests. Figure 4b displays the beta values and their

variability (i.e., the residual variance of the GLM, σ2i ) in the peak voxels

that exhibited the highest effect size for each of the χ2-test and t-test

scores for each of the subjects (defined as within-subject variability).

Interestingly, the homogeneity of the beta values, which was defined

as the inverse of the total variance (i.e., the sum of the between-subject

variability, τ2 and within-subject variability, σ2i ) was substantially lower

for the ROIs identified in the χ2-tests than for those identified in the

t-tests.

3.4 | Relationship between the neuronal
activations in the ROIs and behavioral data

Using the CCA, significant associations between the neuronal activa-

tions and behavioral data were found from the ROIs identified only

from the χ2-tests. Figure 5 presents the scatter plots for the canonical

variates of the behavioral data and the neuronal activations from the

right insula, an ROI identified under the ECIG condition. The two

canonical variates exhibited a significant association (ρ=0.78,

pcorrected <.001, 95% CI= [0.66, 0.88]). The insula activations had a

significant negative association with the similarity score (r=�.52,

pcorrected= .041, 95% CI= [�0.78, �0.17]) and a significant positive

association with the urge-to-smoke score (r= .73, pcorrected= .001,

95% CI= [0.52, 0.88]) only in the ECIG condition. Smoking duration

had no significant association with the neuronal activations of the

right insula.

Figure 6 shows that the right OFC, an ROI found in the contrast

of the conditions, had a significant association with the canonical vari-

ates of the behavioral data (ρ=0.73, pcorrected= .002, 95% CI= [0.56,

0.91]). The neuronal activations in the right OFC were negatively cor-

related with the similarity score (r=�.58, pcorrected= .01, 95% CI=

[�0.84, �0.17]) and demonstrated a weakly positive correlation with

the urge-to-smoke score (r= .34, pcorrected= .15, 95% CI= [0.09,

0.56]). Smoking duration had no meaningful association with the neu-

ronal activations of the right OFC (r=�.38, pcorrected= .13, 95% CI=

[�0.70, 0.15]).

3.5 | ROIs from the tfMRI data in the HCP dataset

Figure 7 shows the brain regions identified for the WM task using

(a) t-test and (b) χ2-test applied to all 537 subjects. Table S1 provides

detailed information on the identified clusters. Using 2 � 5 nested CV

across the subjects, 27 reproducible ROIs were identified from the

TABLE 3 Brain regions identified from t-tests and χ2-tests by applying the MEMA to fMRI data obtained from the ECIG and SCIG conditions
and their contrast

Statistics Condition Brain region Voxel count

t-score

(d.f. = 17)

χ2 score

(d.f. = 17)

MNI coordinate

(x, y, z [mm])

Student's t ECIG

(α <.05; p <.001)

L cerebellum 187 7.70 47.04 �21, �78, �39

L IFG 132 7.04 55.97 �57, 27, 12

R MTG 118 6.37 44.16 69, �36, �3

R angular gyrus 92 5.43 38.17 48, �60, 30

Precuneus 91 5.61 27.90 6, �75, 39

SCIG (α <.05; p <.001) L angular gyrus 167 5.66 43.83 �48, �57, 27

R ITG 92 7.96 37.48 63, 0, �27

ECIG > SCIG (α <.05; p <.005) SMA 319 �5.50 12.78 0, 3, 51

χ2 ECIG (p <10�8) L temporal pole 112 3.11 73.24 �30, 15, �27

R cerebellum 57 1.41 73.73 54, �60, �36

R insula 45 2.32 72.23 39, 3, 3

L hippocampus 44 1.94 74.99 �27, �21, �3

L thalamus 40 1.60 76.67 �9, �3, �6

SCIG (p <10�8) R thalamus 173 2.50 91.72 15, �18, �6

L IFG 79 2.99 80.91 �27, 24, �12

L thalamus 71 1.89 85.68 �9, �3, 3

ECIG > SCIG (p <5 � 10�4) L MTG 33 �1.79 59.77 �24, 18, �36

R OFC 24 2.20 72.69 9, 15, �21

Note: The χ2 score ranges between 0 and 100.

Abbreviations: d.f., degrees of freedom; ECIG, e-cigarette with nicotine; IFG, inferior frontal gyrus; L, left; ITG, inferior temporal gyrus; MNI, Montreal

Neurological Institute; MTG, middle temporal gyrus; OFC, orbitofrontal cortex; SMA, supplementary motor area; R, right; SCIG, sham e-cigarette without

nicotine.
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t-test (p <10�4, t[268] >3.95) across the motor area, visual area, parie-

tal areas, and cerebellum regions (Figure 7c). From the χ2-test (p <.01,

χ2(268) >324.78), four reproducible ROIs (i.e., the right orbital area of

the superior frontal gyrus [oSFG], the orbital area of the inferior

frontal gyrus [oIFG], the rectus gyrus, and insula) were identified over

80% of the analyses (Figure 7d). Table S2 summarizes these ROIs.

Figure 8 presents the brain regions identified for the GB task

using (a) t-test and (b) χ2-test applied to all 874 subjects. Detailed

F IGURE 4 Evaluation of the identified ROIs from the contrast of the experimental conditions (ECIG > SCIG) based on (a) the estimate of the
effects across the subjects at each voxel of an ROI (i.e., between-subject variability) and (b) residual variance (σ2i ) at the peak voxel (maximum χ2

score) of an ROI for each subject. The corresponding t-scores or χ2-scores are also shown (red). The mean and two standard deviations of the
values are presented as a marker and the whiskers in the error bar plot, respectively (blue). In (a), the blue dashed line is the average effect
estimate across all voxels within an ROI, and the red dashed line is the average t-score across all voxels. In (b), the red dashed line is the χ2-score
at the peak voxel. In addition, the homogeneity of the effect sizes for the ith subject (i.e., 1= τ2þσ2i

� �
, where τ2 and σ2i are the between-subject

and within-subject variabilities, respectively) modeled in the χ2 statistics is represented as the radius of the circle in (b). Note that the radius size
for the ROIs found from the χ2-tests in (b) was 15 times larger than the original level of homogeneity. The right MFG exhibited the maximum χ2

score among the voxels in the SMA cluster found from the t-tests (the bottom row in b). L, left; R, right; MTG, middle temporal gyrus; OFC,
orbitofrontal cortex; SMA, supplementary motor area; MFG, middle frontal gyrus
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information on these brain regions is provided in Table S1. Using

2 � 5 nested CV across the subjects, 30 reproducible ROIs were iden-

tified from the t-test (p <10�10, t[436] >6.63), including the right SFG,

the middle frontal gyrus (MFG), oSFG, MFG, and the bilateral occipital

gyrus (Figure 8c). From the χ2-test (p <.005, χ2(437) >515.81),

18 reproducible ROIs were found, including the left MFG, IFG, insula,

F IGURE 5 Relationship between the neuronal activations of the right insula identified from the ECIG condition using the χ2 statistics from
the MEMA and behavioral data from the CCA. (Top row) Relationship between the canonical variates of the two datasets (leftmost column) and
between the canonical variates of the neuronal activations and each of the behavioral scores (orange box indicates a significant relationship
between them, that is, pcorrected <.05 and 0 =2 95% CI). (Bottom two rows) Bootstrapping results (95% CI in red; estimated correlation coefficient
in blue) and the p-value for the estimated correlation coefficients corrected with a random permutation (significant cases denoted in bold). Refer
to the Section 2.8 for more details. ECIG, e-cigarette with nicotine; SCIG, sham e-cigarette without nicotine; CI, confidence interval

F IGURE 6 Relationship between the neuronal activations of the right orbitofrontal cortex identified from the ECIG > SCIG condition using
the χ2 statistics from the MEMA and behavioral data from the CCA. (Top row) Relationship between the two canonical variates (leftmost column)
and between the canonical variates of the neuronal activations and each of the behavioral scores (an orange box indicates a significant
relationship, that is, pcorrected <.05 and 0 =2 95% CI and a dashed orange box indicates a weak relationship, pcorrected >.05 and 0 =2 95% CI). (Bottom
row) Bootstrapping results (95% CI in red; estimated correlation coefficients in blue) and the p-value of the estimated correlation coefficients
corrected with a random permutation (significant cases denoted in bold and weak associations denoted in italics). Refer to the Section 2.8 for
more details. ECIG, e-cigarette with nicotine; SCIG, sham e-cigarette without nicotine; CI, confidence interval

5384 JO ET AL.



and bilateral occipital gyrus (Figure 8d). Table S3 summarizes

these ROIs.

3.6 | Association between brain and behavioral
data identified from CCA

Table S2 summarizes the canonical correlation coefficients (CCs; ρ)

for each of the reproducible ROIs across the four PC scenarios for the

WM task. The canonical CCs in the training phase were almost all 1.0

when all of the voxels in the ROI were used, possibly due to over-

fitting. However, the canonical CCs decreased as the number of PCs

was reduced. Figure9 presents those CCA results that were consis-

tently found to be significant in the test phase for at least three of the

four PC scenarios. Using the t-test, the left superior parietal gyrus

(SPG) and the right Crus 1 in the cerebellum exhibited significant posi-

tive correlations between the canonical variates of the neuronal acti-

vations and the canonical variates of the behavioral data for both the

training and test phases. However, a significant association between

the behavioral data and the canonical variates of the neuronal activa-

tions was found in only one of the four PC scenarios for the SPG,

while no significant association was found for the Crus 1 in

the cerebellum. In addition, the corresponding positive/negative asso-

ciation was not consistent between the training and test phase. On

the other hand, using the χ2-test, the right oIFG and the right insula

exhibited a significant correlation between the canonical variates of

the neuronal activations and the canonical variates of the behavioral

data. Moreover, both types of behavioral data showed a significant

association (positive for accuracy and negative for RT across the train-

ing/test phases) with the canonical variates of the neuronal activa-

tions for both ROIs in three of the four PC scenarios (pcorrected <.05).

Table S3 summarizes the canonical CCs for each of the reproduc-

ible ROIs across the four PC scenarios for the GB task. Figure 10 illus-

trates the CCA results that were consistently found to be significant

in the test phase for at least three of the four PC scenarios from the

GB task. Using the t-test, the right orbital/medial area of the SFG,

the right MFG, and the bilateral anterior cingulate cortex (ACC)

showed significant positive correlations between the canonical vari-

ates of the neuronal activations and the canonical variates of the

behavioral data for both the training and test data (Figure 10a). How-

ever, the association between both types of behavioral data and the

canonical variates of the neuronal activations was not consistently

found to be significant in the test data. On the other hand, using the

χ2-test, the left orbital area of the MFG (oMFG), the triangular area of

F IGURE 7 Regions-of-interest (ROIs) for the working memory (WM) task from the HCP tfMRI data: (a) Student's t-test (p <10�4, t[536]
= 3.92) for working memory (WM) contrast (2-back > 0-back [correct > error]). (b) χ2-test (p <.01, χ2(536) >615.10) for WM contrast (refer to
Table S2 for more details). (c) The overlapped ROIs identified with t-test (p <10�4, t(268) >3.95) across 20 holdout sets consisting of half of the
total number of subjects; 27 regions (AAL atlas) were identified in over 80% of the sets. (d) The overlapped ROIs identified with χ2-test (p <.01,
χ2(268) > 324.78) across 20 different sets (refer to Table S3 for more details). The orbital area of the superior frontal gyrus, the orbital area of the
inferior frontal gyrus, the rectus, and the insula were frequently identified in over 80% of the sets. The red line indicates 80% of all sets. L, left; R,
right; AG, angular gyrus; CAL, calcarine; CN, caudate nucleus; CUN, cuneus; FFG, fusiform gyrus; tIFG, triangular part of inferior frontal gyrus;
INS, insula; ITG, inferior temporal gyrus; IOG, inferior occipital gyrus; IPG, inferior parietal gyrus; LING, lingual gyrus; MFG, middle frontal gyrus;
MOG, middle occipital gyrus; oIFG, orbital part of inferior frontal gyrus; oSFG, orbital part of superior frontal gyrus; SPG, superior parietal gyrus;
SOG, superior occipital gyrus; PCUN, precuneus; PrCG, precentral gyrus; PoCG, postcentral gyrus; REC, rectal gyrus
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the IFG (tIFG), and the oIFG exhibited a significant association

between at least one of the two types of behavioral data and the

canonical variates of the neuronal activations for both the training

and test phases (Figure 10b). The neuronal activations of two ROIs,

tIFG, and oIFG, were negatively correlated with the RT and positively

correlated with the contrast of the percentage across several PC sce-

narios (pcorrected <.05). In contrast, the neuronal activations of the

oMFG were positively correlated with the contrast of RT

(i.e., RTReward � RTPunishment) and negatively correlated with the con-

trast of the reward trial percentage (minus the punishment trial per-

centage) and across all PC scenarios (pcorrected <.05).

4 | DISCUSSION

4.1 | Summary of the study

We presented an analytical pipeline using MEMA followed by CCA to

investigate the relationship between brain data and associated behav-

ioral data and demonstrated its efficacy in the context of nicotine crav-

ing for a small dataset. We designed an MRI-compatible e-cigarette

apparatus that allowed us to deliver smoke with (ECIG) or without

(SCIG) nicotine while fMRI data were acquired. The MEMA was applied

to the fMRI data for group inference and the ROIs associated with the

experimental conditions (ECIG, SCIG, and ECIG vs. SCIG) were identi-

fied based on χ2-tests and t-tests. The ROIs identified in this manner

were further justified by applying CCA using the corresponding neuro-

nal activations and the collected behavioral data. From the CCA results,

the right insula was identified in the ECIG condition using the χ2-tests

but not from the t-tests. Furthermore, the neuronal activations of the

right insula were significantly associated with the similarity and urge-to-

smoke scores. From the contrast of the two conditions (ECIG > SCIG),

the right OFC was identified only in the χ2-tests, and the corresponding

neuronal activations had a statistically meaningful association with the

similarity and urge-to-smoke scores. We also demonstrated the efficacy

of our analysis pipeline using tfMRI data acquired for the WM and GB

tasks from the HCP for a large dataset. To our knowledge, our study is

the first to show the efficacy of MEMA using real fMRI data in the con-

text of nicotine craving, WM, and GB task processes.

4.2 | Utility of χ2-tests and t-tests in mixed-effects
multilevel analysis

In Equation (2), the Q score increases when the between-subject vari-

ability yi�μð Þ2 of the estimated effect sizes across the subjects starts

F IGURE 8 Regions-of-interest (ROIs) for the gambling (GB) task from the HCP tfMRI data. (a) Student's t-test (p <10�10, t[873] = 6.54) for
gambling contrast (reward > punishment). (b) χ2-test (p <.005, χ2(873) > 984.38) for gambling contrast (refer to Table S3 for more details). (c) The
overlapped ROIs identified with t-test (p <10�10, t[436] > 6.63) across 20 different sets; 30 regions were identified in over 80% of the sets.
(d) The overlapped ROIs identified with χ2-test (p <.005, χ2(436) > 515.81) across 20 different sets (refer to Table S3 for more details); 18 regions

were identified in over 80% of the sets. The red line indicates 80% of all trials. L, left; R, right; AG, angular gyrus; CAL, calcarine; CN, caudate
nucleus; CUN, cuneus; FFG, fusiform gyrus; tIFG, triangular part of inferior frontal gyrus; INS, insula; ITG, inferior temporal gyrus; IOG, inferior
occipital gyrus; IPG, inferior parietal gyrus; LING, lingual gyrus; MFG, middle frontal gyrus; MOG, middle occipital gyrus; oIFG, orbital part of
inferior frontal gyrus; oMFG, orbital part of middle frontal gyrus; mSFG, medial superior frontal gyrus; oSFG, orbital part of superior frontal gyrus;
SPG, superior parietal gyrus; SOG, superior occipital gyrus; PCUN, precuneus; PrCG, precentral gyrus; PoCG, postcentral gyrus
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to exceed the amount of within-subject variability σ2i due to measure-

ment error (Chen et al., 2012). Thus, the Q-statistic, which approxi-

mates the χ2-distribution, is inherently advantageous in identifying

ROIs that are linked to the indefinite, implicit, and idiosyncratic nature

of the subjects (such as behavioral, psychological, and personal traits;

for example, the similarity, urge-to-smoke, and smoking duration

scores employed in the present study) that are consistent within a

subject and vary across subjects. In fact, the Q-statistic has been

suggested as a valid approach for defining an ROI that could be used

to find an association between a subject's BOLD responses and their

behavioral measures, avoiding the problematic practice of defining

ROIs based on the statistical significance of the activation strength

alone (Lindquist et al., 2012). Based on our obtained results, the ROIs

identified using the t-tests exhibited a substantially higher homogene-

ity in their beta values across subjects compared to the ROIs from the

χ2-tests (Figure 4). This suggests that the ROIs found using the t-tests

F IGURE 9 HCP working memory (WM) task. Correlation coefficients (a) between the canonical variates of the neuronal activations and the
canonical variates of the behavioral data and (b) between the canonical variates of the neuronal activations and both types of behavioral data.
Data from the training and test phases of the canonical correlation analysis (CCA) for each of the regions-of-interest (ROIs) that were identified in
at least three of the four PC scenarios in the test phase using either t-tests or χ2-tests are shown. The higher the number of PCs used in the CCA,
the higher the canonical correlation coefficient (ρ), particularly for the training phase (red: regression line; green: 95% CI). The dark gray colored
subplots indicate that the test ρ in over 90% of the 20 holdout sets were statistically significant (corrected p <.05 using 10,000 random
permutations). The red bars indicate that the correlation coefficients between the canonical covariates of the neuronal activations and the
corresponding behavioral data were significant (corrected p <.05 using 10,000 random permutations). Refer to the Section3.6 for more detail. L,
left; R, right; PC, principal component; CI, confidence interval; SPG, superior parietal gyrus; Crus1, cerebellum Crus 1; oIFG, orbital part of inferior
frontal gyrus; INS, insula; ΔAcc, difference of accuracy (accuracy of 2-back� accuracy of 0-back); ΔRT, difference in the median reaction time
(RT of 2-back�RT of 0-back)
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are advantageous in explaining the effects that are distinct, explicit,

and common across all subjects (such as the experimental conditions

ECIG and SCIG in the present study).

Consequently, we suggest that MEMA is a viable statistical

approach to identifying ROIs that are associated with subjective

behavioral data and potentially alternative nonbrain data such as psy-

chological data with the help of multivariate machine-learning

approaches (e.g., CCA). Based on our experimental data on nicotine

use, the ROIs identified from the t-test did not include the insula, and

no ROI was significantly correlated with the behavioral data for

F IGURE 10 HCP gambling (GB) task.
(a) CCA results obtained from Student's t-
tests and (b) χ2-tests. Refer to the legend for
Figure 9 for a description of the figure and
the Section 3.6 for an interpretation of the
results. L, left; R, right; PC, principal
component; CI, confidence interval; ACC,
anterior cingulate cortex; moSFG, mid orbital
part of superior frontal gyrus; ΔRT, difference
of median reaction time (“RT of reward
trials” � “RT of punishment trials”); ΔPerc,
difference in the percentage of trials
(“Percentage of reward trials” � “Percentage
of punishment trials”)
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smoking. Interestingly, the ROIs identified based on the χ2-test in the

MEMA included the insula and OFC, which have previously been

associated with nicotine craving (Adinoff, 2004; Fedota &

Stein, 2015; Jasinska et al., 2014; Naqvi et al., 2007). In the present

study, the corresponding neuronal activations were significantly cor-

related with the behavioral data related to nicotine craving.

The variability in neuronal activations of ROIs can be attributed

to the heterogeneity of BOLD responses (Handwerker, Ollinger, &

D'Esposito, 2004) or neurophysiological and/or neuropsychological

conditions that are potentially associated with behavioral data, such

as the degree of nicotine craving (Benowitz, 2010). The tobacco

smoking of the participants prior to the MRI sessions was screened

using CO levels. However, ensuring that the participants had

abstained from e-cigarette use (and nicotine adsorption) prior to the

experiment relied on the participants' verbal report without a system-

atic screening measure. Thus, it is possible that some of the partici-

pants did not abstain from e-cigarette smoking for at least 3 hr before

the sessions. In addition, the number of hours that the participants

abstained from smoking is likely to have differed, leading to variability

in their behavioral data.

4.3 | CCA linking brain and behavioral data

The CCA has been instrumental in the interpretation of multimodal

datasets, such as analyzing the positive and negative modes of popu-

lation covariation by linking brain connectivity patterns with

corresponding demographic and behavioral information available in

the HCP (Smith et al., 2015). In a more recent article, CCA has been

suggested as an effective tool for investigating the relationship

between brain and behavioral data with optional dimension-reduction

steps, such as using independent component analysis and PCA (Wang

et al., 2020). In our study, CCA was successfully used to identify links

between the neuronal activations of the ROIs and the collected

behavior data via the multivariate transformation of both datasets. It

is worth noting, however, that meaningful associations were identified

from the ROIs obtained from the statistical analysis, enabling brain

regions with high inter-subject variability in their neuronal activations

in comparison to intra-subject variability (i.e., χ2-tests in the MEMA)

to be identified. On the other hand, this was not the case for conven-

tional statistical analysis (the t-tests in the present study), which

focuses on identifying brain regions that are highly associated with

experimental conditions across subjects with no explicit consideration

of individual-specific variability.

4.4 | Neuronal activations of the insula as a
predictor of the level of nicotine craving

We found that the neuronal activations of the right insula were signif-

icantly associated with the ECIG condition but not with the SCIG con-

dition. In addition, the level of neuronal activations of the right insula

was highly associated with the degree of subjective craving measured

using the similarity and urge-to-smoke scores. This is in line with pre-

vious reports that the insula is one of the core brain regions associ-

ated with nicotine craving (Morales, Ghahremani, Kohno, Hellemann,

& London, 2014; Naqvi et al., 2007; Suñer-Soler et al., 2012). For

example, it has been reported that nicotine dependence/craving is

negatively correlated with the cortical thickness of the right ventral

anterior insula (Morales et al., 2014). In addition, the degree of insular

damage in stroke patients was positively correlated with success

in quitting smoking (Suñer-Soler et al., 2012). Another study reported

that people with brain lesions in the insula could quit smoking

without reporting conscious urges (Naqvi et al., 2007). In light of these

studies, our results suggest that the neuronal activations in the right

insula can be used as a predictor to estimate the degree of nicotine

craving.

4.5 | Neuronal activations of the orbitofrontal
cortex as a proxy for throat-hit

We also found that the neuronal activations in the right OFC were

significantly associated with the similarity and urge-to-smoke scores.

The OFC is known to be part of the striato-thalamo-orbitofrontal cir-

cuit, a dopamine reward pathway that projects from the nucleus

accumbens and ventral tegmental area to the prefrontal cortex (PFC)

and the amygdala (Volkow & Fowler, 2000). In addition, it has been

suggested that the olfactory tubercle, which receives direct input from

the olfactory bulb, is activated by the use of a vaporizing device and

the subsequent throat-hit (Johnson, 2020). The throat-hit is the

burning sensation in the throat caused by the nicotine in smoke

when it is inhaled. Due to the large size of the right OFC cluster

found in our study, we believe that the olfactory tubercle is included

in this cluster because these two areas are anatomically adjacent

(Rolls, 2000). Another study reported that high plasma nicotine

levels were associated with craving relief, increased satisfaction, and

a stronger throat-hit (Etter, 2016; Farsalinos et al., 2015). In light of

these studies, we conjecture that the neuronal activations in the

right OFC were part of a reward response triggered by the throat-

hit when using our e-cigarette apparatus in the ECIG condition, a

response that was not present in the SCIG condition due to the

absence of nicotine. Interestingly, the OFC was activated when

there was insufficient nicotine (represented by a higher urge-to-

smoke), leading to a weaker throat-hit response, as represented by a

lower similarity (Adinoff, 2004).

4.6 | Data from the debriefing sessions

Based on the verbal reports from the participants after the experi-

ments, most were not aware of the nature of the ECIG and SCIG

blocks in the experimental paradigm. Four subjects in the non-MRI

session reported that there was a difference between the experimen-

tal blocks, whereas one subject in the MRI session appeared to recog-

nize which of the blocks contained nicotine. Interestingly, despite the
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fact that most participants were unaware of the nature of each block,

their ratings for the similarity, urge-to-smoke, and smoking duration

differed significantly between the ECIG and SCIG blocks (Figure 2).

This may be because the nicotine in the ECIG inherently alleviated

their nicotine craving and caused the participants to feel a greater

similarity with their e-cigarette smoking and to extend the smoking

duration. At the debriefing session, the participants reported that

they assigned a high similarity score if they strongly felt the throat-hit

and that they scored their urge to smoke based on how satiated

they felt after inhaling/exhaling the smoke and experiencing the

lightheadedness associated with smoking.

4.7 | MRI-compatible e-cigarette smoking
apparatus

As far as we are aware, there has been no prior research investigating

the direct smoking of recent-generation e-cigarettes inside an MRI

due to the metallic components found within e-cigarette devices. A

previous study did use first-generation e-cigarettes (Wall et al., 2017),

but the amount of nicotine delivered by these e-cigarettes was sub-

stantially lower than that delivered by second generation e-cigarettes

(Farsalinos et al., 2015; Wall et al., 2017). In order to circumvent the

MR incompatibility of e-cigarettes while delivering a substantial

amount of nicotine, we designed an MRI-compatible e-cigarette appa-

ratus and used a second generation e-cigarette to markedly increase

the amount of nicotine in the heated smoke generated from the e-

liquid (Farsalinos et al., 2015). Our finding that the insula was highly

correlated with the urge-to-smoke scores suggests that our smoking

apparatus using a second generation e-cigarette successfully delivered

nicotine to the brain (Farsalinos et al., 2018).

4.8 | Limitations of the study using e-cigarette
data and further work

The number of subjects (n = 18) who participated in the MRI ses-

sions was comparatively low in relation to recent neuroimaging

studies. However, we looked to overcome this potential limitation

by employing an LOOCV framework during the CCA (Dinga

et al., 2019; Le Floch et al., 2012). It is also worth noting that the

statistical power was not sufficiently large (>0.8) (Hintze, 2008;

Suresh & Chandrashekara, 2012) if the uncorrected p-value was not

stringent. In our study, when the uncorrected p-value was .005 for

the t-test, the statistical power was .64 and this power increased to

.80 when the uncorrected p-value was reduced to .0005. In the clus-

ters remaining from the cluster-based multiple comparison correc-

tions, both the right OFC and the left middle temporal gyrus were

identified from an uncorrected p-value of .0005; however, the right

temporal gyrus disappeared when the power was >0.8. The impor-

tance of stringent uncorrected p-values in enhancing the statistical

power has also been stressed in the recent debate on false-positive

errors obtained from cluster-based multiple comparison correction

(Cox, Chen, Glen, Reynolds, & Taylor, 2017; Eklund, Nichols, &

Knutsson, 2016; Flandin & Friston, 2019).

All of the recruited participants were male, which may have led to

potential bias in the identified ROIs from the MEMA and subsequent

CCA based on recent reports of distinct functional networks between

genders (Clemens et al., 2020; Weis et al., 2020). The use of data from

independent subjects that include females would thus provide

an unbiased evaluation of our presented approach. Finally, in addition

to the insula and OFC, other ROIs are potentially associated with

alternative behavioral and/or psychological data that represent the

idiosyncratic nature of the participants. Whole-brain functional con-

nectivity analysis (Bastos & Schoffelen, 2016; Rosenberg et al., 2016)

may also provide additional information on the functional role of

the ROIs.

4.9 | Evaluation of our approach using a larger
sample dataset: Working memory task from the HCP

Using WM tfMRI data from the HCP, we found that the neuronal acti-

vations of the right oIFG and insula identified from the χ2-test were

positively associated with accuracy and negatively associated with

RT. A number of studies have reported the involvement of the PFC in

the WM task (Barbey, Koenigs, & Grafman, 2011, 2013; Levens &

Phelps, 2010; Miller, Lundqvist, & Bastos, 2018; Wager & Smith,

2003; Yaple, Dale Stevens, & Arsalidou, 2019). In addition, the OFC

and insula have been proposed to have a functional role in executive

processing during the WM task (Barbey et al., 2011; Levens &

Phelps, 2010; Owen, McMillan, Laird, & Bullmore, 2005; Yaple

et al., 2019). Our findings are thus in line with previous reports, pro-

viding evidence for the executive function of the OFC (Barbey

et al., 2011; Schuck, Cai, Wilson, & Niv, 2016) and the insula (Uddin,

Nomi, Hébert-Seropian, Ghaziri, & Boucher, 2017), with the neuronal

activations in the right oIFG and the insula in our study positively cor-

related with accuracy from the higher working memory load

(i.e., 2-back > 0-back) and negatively correlated with RT. The OFC and

insula have also been reported to be part of task-positive networks in

which the corresponding neuronal activations increase as the subjects

put more effort into a task (Basten, Stelzel, & Fiebach, 2013; Fox

et al., 2005). However, the left SPG and cerebellum Crus 1 regions

identified from the t-test did not show any consistent association

between their neuronal activations and the behavioral data for either

the training or test phase (Figure 9). Thus, χ2-test is more appropriate

for identifying ROIs when investigating the brain and behavioral rela-

tionship when the CCA is applied (Smith et al., 2015).

4.10 | Evaluation of our approach for a larger
sample dataset: Gambling task from the HCP

Using the GB tfMRI data, the neuronal activations of the PFC area

including the left oMFG, tIFG, and oIFG were identified from the χ2-

test based on the contrast of the reward versus punishment
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conditions. Moreover, the corresponding neuronal activations were

significantly associated with the percentage of reward trials in com-

parison to punishment trials and the corresponding RT. A number of

studies have reported a significant association between the ventrome-

dial area of the PFC (vmPFC) and monetary reward (Aharon

et al., 2001; Elliott, Friston, & Dolan, 2000; Liu, Hairston, Schrier, &

Fan, 2011; O'Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001;

Schneider, Leuchs, Czisch, Sämann, & Spoormaker, 2018) and

between the lateral OFC regions and punishment (Elliott, Dolan, &

Frith, 2000; Lopez-Persem et al., 2020; O'Doherty et al., 2001; Scho-

enbaum, Takahashi, Liu, & McDannald, 2011). The reproducible ROIs

identified from the t-test did not exhibit any meaningful association

between the corresponding neuronal activations and the

behavioral data.

The neuronal activations in the left oMFG were positively corre-

lated with RT and negatively with the percentage of reward trials;

however, this trend was reversed for the left tIFG and the left oIFG

(Figure 10b). This suggests that the functional roles of the oMFG and

tIFG/oIFG are distinct from each other. Considering the nature of

reward and punishment trials, the participants must not have properly

reasoned the reward/punishment of the subsequent trials in the

experiment. Nevertheless, the participants may have relied on

(a) guessing/instinct based on their gut feeling or (b) their reasoning to

predict the number on the card based on previous trials. We believe

these two types of brain process coexisted in their brain functions. In

this context, based on our findings, the left oMFG is perhaps more rel-

evant to the cognitive process of reasoning, while the left tIFG/oIFG

may be associated with guessing.

4.11 | Number of voxels to include in an ROI
identified using the cluster-extend threshold

In the analysis using our e-cigarette dataset, we used seven neighbor-

ing voxels including a center voxel in the multivoxel pattern for the

CCA due to the limited number of participants (n = 18). In order to

minimize the potential utilization of part of the voxel cluster (Woo,

Krishnan, & Wager, 2014), we used stringent p-values of .001 for the

t-test and 10�8 for the χ2-test to select the candidate voxel clusters.

In the application of our method to the HCP dataset, we considered

all voxels in each of the identified clusters for the multivoxel patterns.

Because the number of participants was not substantially larger than

the number of voxels in the clusters, we adopted a dimension-

reduction approach using PCA to alleviate the overfitting associated

with CCA (Smith et al., 2015). The CCA in the training phase exhibited

virtually perfect canonical CCs (i.e., 1.0) when all of the voxels in the

ROI were used, indicating possible overfitting. When using reduced

dimensions for the multivoxel patterns, the CCs in the training phase

were lower but statistically significant (Tables S2 and S3). Further-

more, the CCs for some of the ROIs maintained their statistical signifi-

cance in the test phase, particularly for the reduced dimensions

(i.e., 50, 100, and 150 PCs) that were greater than the cluster size

threshold (i.e., 40). Our findings suggest that our approach is suitable

for both small and large datasets that appropriately consider the num-

ber of voxels to include in identified ROIs based on the cluster-extent

threshold (Woo et al., 2014).

4.12 | Candidate behavioral data for CCA

We obtained behavioral data from the participants simultaneously

with the fMRI data (i.e., similarity, urge-to-smoke, and smoking dura-

tion for the e-cigarette data; response time and accuracy/percentage

of trials for the HCP data). This was based on our belief that behav-

ioral data obtained during the tfMRI run would be directly associated

with the heterogeneity of the neuronal activations across the parti-

cipants estimated from the tfMRI data. In addition, the HCP

dataset also provides 26 subjective items collected from each partici-

pant related to their mental and physical processes to characterize

individual traits (https://wiki.humanconnectome.org/display/Public

Data/HCP-YA+Data+Dictionary-+Updated+for+the+1200+Subject

+Release). We also analyzed these 26 items along with the RT and

accuracy/percentage in the CCA phase using the ROIs from the

MEMA and found preliminary evidence for an interesting relationship

between the behavioral data and some of the ROIs identified using

the χ2-test (data not shown). Future work could provide a fine-grained

interpretation of the association of the identified ROIs with individual

mental/cognitive and physical traits and their stability across the per-

muted sets of training and test folds.

5 | CONCLUSION

In the present study, we reported the utility of MEMA followed by

CCA to investigate the relationship between neuronal activations

from fMRI and associated behavioral data. To evaluate our hypothesis

as a proof-of-concept using a real dataset, we designed an MRI-

compatible e-cigarette apparatus in order to carefully deliver smoke

with or without nicotine. fMRI data and behavioral data associated

with the smoking experience when using the apparatus were subse-

quently taken from the participants. Although further investigation is

warranted due to the limited number of subjects (n = 18), the right

insula and right OFC, which are associated with the nicotine-craving

pathway, were identified with strong statistical evidence using the χ2-

test from the MEMA but not using conventional t-test. Furthermore,

CCA revealed that the BOLD fMRI responses of these ROIs were sig-

nificantly associated with the degree of nicotine craving and the

throat-hit. Our code and sample data are publicly available (https://

github.com/bsplku/MEMA-CCA). Both the code and data comply with

the requirements of our funding bodies, institution, and institutional

ethics committee. The analytical results of our method obtained from

the HCP dataset also suggest that χ2-test is more appropriate than

t-test for modeling the association between the brain and behavioral

data across subjects. We believe that our presented analytical frame-

work is potentially useful for a range of basic neuroscientific research

and clinical studies for the identification of functional brain regions
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from fMRI data whose neuronal activations are associated with the

idiosyncrasies of the participants.
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APPENDIX A: MIXED-EFFECTS MULTILEVEL ANALYSIS FOR

FMRI DATA

The effect size for each participant estimated from the fMRI data,

which is obtained using a GLM at the first level, often deviates from

the group effect size as follows (Penny & Holmes, 2007):

θi ¼ α0þδi, i¼1,2,…,P ðA1Þ

where θi is the individual effect size for the ith subject, α0 is the group

effect, which follows a normal distribution N 0,τ2
� �

, δi is the deviation

of the effect size for the ith subject compared to the effect size of the

associated group, and P is the number of subjects. The estimated indi-

vidual effect size inherently confounded by estimation error in the

first-level GLM is thus

yi ¼ θiþεi , ðA2Þ

where εi is the sampling error of the ith subject, which follows

N 0,σ2i
� �

, and σ2i represents the level of within-subject variability. From

Equations (A1) and (A2), the MEMA model is given as

yi ¼ θiþεi ¼ α0þδiþεi , yi �N α0, τ
2þσ2i

� �
, i¼1,2,…,P ðA3Þ

where yi is the estimated effect estimate (β) or the linear combination

(i.e., the contrast) of the β values for the ith subject from the first-

level GLM.

In the second level, a homogeneity test for θi is conducted using

the Q-statistics as follows (Cochran, 1954; Viechtbauer, 2010):

Q¼
X
i

yi�μð Þ2
σ2i

ðA4Þ

The Q-statistics follow the Cochran's χ2 distribution with P�1ð Þ
degrees of freedom and μ is calculated from a weighted mean of the

effect estimates (μ¼P
i

1
σ2
i
yi=
P
i

1
σ2
i
), in which an individual effect esti-

mate with a small within-subject variability has greater weight in

the mean compared to an individual effect with a large within-

subject variability (Chen et al., 2012). The expected value of the

Q score can thus be expressed as follows (DerSimonian &

Laird, 1986):

E Q½ � ¼ τ2
X
i

1

σ2i
�
X
i

1

σ2i

 !2

=
X
i

1

σ2i

0@ 1Aþ P�1ð Þ ðA5Þ

Here, the approximated τ2 can be represented based on an

ensemble average of the Q score:

bτ2 ¼ Q� P�1ð ÞP
i

1
σ2
i

� P
i

1
σ2
i

� �2
=
P
i

1
σ2
i

 ! ðA6Þ

To avoid a negative value, τ2 ¼max 0, Q� n�1ð ÞP
i

1
σ2
i

�
P
i

1
σ2
i

� �2

=
P
i

1
σ2
i

0BBB@
1CCCA is

considered (Chen et al., 2012). Thus, the null hypothesis can be formu-

lated from τ2, which follows the χ2 distribution:

H0 : τ
2 ¼0 ðA7Þ

When the null hypothesis holds, the overall variability of

the individual effect sizes is dominated by the within-subject

variability and thus the MEMA model is reduced to a fixed-

effects model (Chen et al., 2012). On the other hand, when an

alternative hypothesis holds (i.e., the τ2 value is sufficiently

greater than zero), significant heterogeneity is present across subjects

due to large between-subject variability in comparison to within-

subject variability.

APPENDIX B: CANONICAL CORRELATION ANALYSIS (CCA)

CCA finds canonical variates to determine the relationship between

two sets of multivariate variables (e.g., effect estimates from multiple

voxels in an ROI and behavioral data). Suppose X (P� l) and Y (P�m)

are two sets of multivariate variables with l and m dimensions (l>m),

respectively, from P subjects. The CCA can find the two vectors

a�Rlx1 and b�Rmx1 that maximize the correlation of the two canoni-

cal variates Xa and Yb:

ρ¼ argmax
a,b

Xa, Ybð Þ ðA8Þ
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The two variables U¼Xa and V¼Yb are defined as the first pair

of canonical variates. The correlation between them is expressed as follows:

ρ¼ Cov U,Vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Uð ÞVar Vð Þp ¼ aT

P
XYbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aT
P

XXa
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bT
P

YYb
q , ðA9Þ

where
P

XX ¼Cov X,Xð Þ¼XTX,
P

YY ¼Cov Y,Yð Þ¼YTY,
P

XY ¼
Cov X,Yð Þ¼XTY, and Cov and Var denote the covariance matrix and

variance, respectively. The canonical weights a and b that maximize

the correlation in Equation (A9) can be found from a generalized

eigenvalue problem (Ge, Jin, Netrapalli, & Sidford, 2016; Safo, Ahn,

Jeon, & Jung, 2018). We can find another set of two vectors for the

canonical weights by maximizing the correlation between a pair of

second canonical variates that are uncorrelated with the first pair of

canonical variates. This process can be repeated to find the maxi-

mum number, min l,mð Þ, of canonical variates and their canonical

weights.
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