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Abstract

Background: We present a visualization pipeline capable of accurate rendering of highly scattering fluorescent
neocortical neuronal models. The pipeline is mainly developed to serve the computational neurobiology community.
It allows the scientists to visualize the results of their virtual experiments that are performed in computer simulations,
or in silico. The impact of the presented pipeline opens novel avenues for assisting the neuroscientists to build
biologically accurate models of the brain. These models result from computer simulations of physical experiments
that use fluorescence imaging to understand the structural and functional aspects of the brain. Due to the limited
capabilities of the current visualization workflows to handle fluorescent volumetric datasets, we propose a
physically-based optical model that can accurately simulate light interaction with fluorescent-tagged scattering
media based on the basic principles of geometric optics and Monte Carlo path tracing. We also develop an
automated and efficient framework for generating dense fluorescent tissue blocks from a neocortical column model
that is composed of approximately 31000 neurons.

Results: Our pipeline is used to visualize a virtual fluorescent tissue block of 50μm3 that is reconstructed from the
somatosensory cortex of juvenile rat. The fluorescence optical model is qualitatively analyzed and validated against
experimental emission spectra of different fluorescent dyes from the Alexa Fluor family.

Conclusion: We discussed a scientific visualization pipeline for creating images of synthetic neocortical neuronal
models that are tagged virtually with fluorescent labels on a physically-plausible basis. The pipeline is applied to
analyze and validate simulation data generated from neuroscientific in silico experiments.
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Background
Scientific visualization is a key component in neurobi-
ology. It helps neurobiologists to explore and convey
different levels of interpretations of complex sets of neu-
roscientific data. Recent advances in computational sci-
ences and hardware technologies allowed some biological
experiments to move from the wet laboratory to computer
simulations, to in silico [1–3] experiments.
This paradigm shift is expected to accelerate and

consolidate the research discovery and also to enable
novel capabilities in the near future. It will reduce
the dramatic costs of clinical trials and complement
the traditional in vivo and in vitro methods [4, 5].
Nevertheless, this approach requires developing rig-
orous mathematical models of the biological experi-
ments and their surrounding physical conditions and
then plugging them in high performance computer sim-
ulation applications. These applications are designed
to exploit the growing computing power of state-
of-the-art supercomputers to simulate and analyze
complex biological processes at different scales of
resolution [6].
This emerging trend opens novel avenues for multi-

scale computational modeling of the brain tissue, and in
turn a better understanding of how the brain works.
In this context, visualization is not merely exploited for

providing visual analysis of the data; it is a significant tool
for evaluating and validating the results of in silico exper-
iments. This visual feedback closes the loop and affords
the neuroscientists an effective environment to tune and
enhance their models and also to improve the accuracy of
the simulations in an iterative manner.

Motivation
The current neuroscientific visualization tools have been
improved considerably during the last years to visualize
simulation data. A clear example is given by Hernando
et al. to interactively visualize the simulation of the cor-
tical activity of large scale neuronal microcircuits [7].
Nevertheless, the toolset is still inadequate for visualiz-
ing and validating the data generated from various in
silico experiments such as voltage sensitive dye imag-
ing (VSDI) [8], Calcium imaging [9] and also optogenetic
stimulation experiments. For example, visualizing the data
arising from simulating an optogenetic procedure entails
incorporating plausible optical models into the visualiza-
tion pipeline to account for light interaction with highly
scattering turbid media [10]. Accurate visualization of the
responses from simulated imaging experiments requires
a sophisticated bio-physically-based optical model that
incorporates fluorescence in the rendering integral and
can account for the actual optical properties of the bio-
logical tissue. Such pipeline is still largely unfulfilled and
will require an extensible spectral visualization system

that can model and simulate light interaction with highly
scattering fluorescent volumetric data resembling the flu-
orescent structures in real tissue.
We address these shortcomings and present an

advanced visualization pipeline that can accurately ren-
der highly scattering fluorescent volumetric datasets. This
pipeline is mainly applied to a fluorescent brain model
that represents a digital reconstruction of the microcir-
cuitry of somatosensory cortex of rats [9] to validate
its structural and functional aspects. For instance, it is
currently used to perform in silico VSDI experiments
for validating the cortical activity of the reconstructed
model against in vivo imaging experiments [8]. Moreover,
it can be useful for other fields such as computational
microscopy, where a physically-plausible simulation of
microscopic fluorescent images is required for analysis
purposes [11–13].
Our pipeline is composed of two software workflows.

The first one is a generic physically-based visualization
engine for rendering highly scattering heterogeneous flu-
orescent volumes. The other workflow is developed in
particular to efficiently extract a fluorescent tissue block
volume from the neocortical column micro-circuit pre-
sented by Markram et al. [9].

Contributions
1. Design and implementation of an extensible pipeline

for visualizing fluorescent-tagged scattering
volumetric datasets.

2. Rigorous physically-based optical model to simulate
the light interaction with fluorescent participating
media, taking into account their spectroscopic and
optical properties.

3. Qualitative validation and analysis of the developed
optical model by correlating the spectral power
distributions (SPDs) (or responses) of the generated
images with respect to experimental emission spectra
of different fluorescent dyes.

4. Design and implementation of an automated parallel
workflow for generating an extracted fluorescent
tissue block from the neocortical column model.

5. Visualization of fluorescent neuronal models tagged
with multiple fluorescent solutions having different
optical properties and evaluating the results
collaboratively with neurobiologists.

Related work
Neurobiology scientists are familiar with generic visual-
ization packages such as Paraview [14], Voreen [15] and
ImageVis3D [16]. They use them frequently to visualize
and analyse data acquired from sensing devices, for exam-
ple imaging scanners and microscopes. In some cases,
these software packages can be employed for visualiz-
ing certain structural aspects of the data arising from in
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silico experiments and modeling procedures, for example,
to validate the morphological distribution of the neurons
in the neocortical column model [9]. Other frameworks
have been customized to fulfill specific demands required
by the scientists such as Voxx [17] and VAA3D [18].
The design goals of the previous frameworks have been
focused on scalability and interactivity. Consequently,
they traded the performance with oversimplified optical
models that remain very limited to visualize fluorescent
data or even to enhance the photorealism of the generated
image [19, 20].
Photorealistic visualization of neuroscientific data with

advanced illumination models was addressed in two stud-
ies. The first one is presented by Banks et al. [21]. They
integrated global illumination into their visual data anal-
ysis pipeline for displaying the fiber tracts of the brain.
Their study was intended to improve the data interpreta-
tion in the presence of complex jungle of fibers surround-
ing brain tumors. The other study presented Exposure
render, an interactive GPU-based framework that cou-
pled Monte Carlo ray tracing with physically-based light
transport models to generate highly realistic renderings of
volumetric data [22]. This framework is capable of visu-
alizing in silico optogenetic experiments, but it cannot be
employed to visualize fluorescent data.
Visualizing fluorescent volumetric data was firstly pre-

sented in FluVR [23], a commercial application that used
a simple deterministic physically-based model called the
simulated fluorescence process (SFP) to combine elastic
and inelastic rendering. Although it was capable of han-
dling multiple fluorescent dyes in the volume, FluVR was
limited in several regards. The SFP assumed that the emis-
sion occurs only at the maximum emission wavelength
and ignored the rest of the emission spectrum. This opti-
cal model did not account for the spectral characteristic of
the dyes and ignored multiple scattering.
Physically-plausible visualization of fluorescent partic-

ipating media has been investigated in few computer
graphics research studies. These studies were exclusive to
specific applications and their implementations were not
developed in the form of an integrated framework that
could be utilized for other purposes. In summary, these
studies have developed extensions to integrate the fluo-
rescence phenomena into the rendering equation [24–28],
but they were limited to certain extent. Glassner [24] pre-
sented the first formalism of the full rendering equation
to simulate the fluorescence effect. However, his model
ignored the distinct properties of the fluorescent dyes.
Cerezo [27, 28] and Gutierrez [25, 26] have extended
Glassner’s model to account for these missing parameters.
Nevertheless, their models used biased rendering meth-
ods (discrete ordinates and curved photon mapping) to
render the fluorescent pigments of the ocean. Moreover,
they ignored the actual spectral properties of the dyes

and used oversimplified profiles for the excitation and the
emission spectra. Abdellah et al. presented a physically-
based framework for simulating imaging experiments
with light sheet fluorescence microscopy. The optical
model developed in this study presented further extension
to the previous fluorescence models taking into account
the intrinsic characteristics of fluorescent dyes [29, 30].
They also validated their model against realistic emission
spectra of multiple fluorescent dyes. This model was only
capable of visualizing tissue models with negligible scat-
tering properties to simulate the imaging of clarified brain
tissue [31, 32], but it failed to handle volumetric tissue
models with highly scattering content. Our optical model
presented in the following section is introduced to fill
this gap.

Methods
Optical models
Based on ray tracing and the basic principles of geomet-
ric optics, advanced optical models of volume rendering
ideally solve the radiative transfer equation (RTE) to sim-
ulate the light transport in a continuum and generate a
physically-plausible synthetic image [33–35]. The general
formulation of the light transport presented by Veach [36]
is extended by Pauly et al. [37] to handle scattering media.
Nevertheless, this formulation has never been investi-
gated for considering the fluorescence effects. In the
following part, we begin with this extension to derive
the path integral formulation of our fluorescence opti-
cal model. Table 1 summarizes all the relevant terms and
symbols that appear later in the text. We also recommend
the reader to refer to [38] for further explanation of some
of the terms in the rendering integrals.

Path integral formulation in fluorescent volumes
Assuming a path consisting of three points x0x1x2, where
the light source and the camera film are located at
points x0 and x2 respectively, and x1 is sampled to be a
random interaction point in the volume where the light
scattering occurs (Fig. 1), the radiance arriving to the
camera following a scattering event at x1 can be com-
puted with the monochromatic light transport formula
described in Eq. (1), where ω = x0 ← x1 is the incom-
ing direction, Lve and Ls are the radiance due to self
emission and scattering respectively. The self-emission
term is usually ignored unless the volume itself is emit-
ting due to chemical or thermal processes, which is out
of the scope of the presented model. In this case, the
total radiance recorded by the camera due to light scat-
tering Ls in the volume is evaluated with the integral
in Eq. (2), where σs and fp are the scattering coefficient
and the phase function of the volume respectively and Li
is the incoming radiance towards the point x1 from any
direction ω′.
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Table 1 Summary for all the symbols that are used in the text

λ Wavelength

λx Excitation wavelength

λm Emission wavelength

φ Quantum yield

ε Molar absorptivity

M Molecular weight

fx Fluorophore excitation spectrum

fm Fluorophore emission spectrum

Lve Self-emission radiance at point p

Ls Radiance due to scattering

Li Incoming radiance to point p

Le Outgoing radiance emitted from the light source

xn Point on the light source for a path consisting of n points

x0 Point on the surface of the virtual film of the camera

xi/xj Point along the path after i or j bounces

x Path connecting the camera and light source

C Concentration

ω Direction

ω′ Incoming direction

Fs Scattering function

G Geometry term

V Binary Visibility

Vfi Path Binary Fluorescence Visibility

τ Transmittance

V̂ Visibility term

σs Scattering coefficient

σ Absorption coefficient

fp Phase function

px Photon excitation (or absorption) probability

pm Photon emission probability

L(x0,ω) =
L(x0 ← x1) = Lve(x0 ← x1) + Ls(x0 ← x1)

(1)

L(x0 ← x1)
∣
∣
∣
NoSelf Emission

=

σs(x1, x0 ← x1)
∫

�4π
fp(x1, x0 ← x1,ω′) Li(x1,ω′) dω′

(2)

For convenience [39], Eq. (2) can be re-written in the
form of Eq. (3) as an integral over surfaces dA and volumes
dV instead of directions dω′ on the sphere �4π to yield
what is called the three-point form of the light transport
equation, where Fs, G, V̂ , V , τ and Le are the scattering
function, geometric term, visibility term, binary visibility

function, transmittance and the emitted radiance from the
light source at x2 respectively.

Ls(x0 ← x1) =
∫

A
Le(x1 ← x2)

Fs(x0 ← x1 ← x2) G(x2, x1) V̂ (x2, x1) dA(x2)
(3)

where
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Fs = σs(x1, x0 ← x1)fp(x0 ← x1 ← x2) (4)
G = 1

‖x1−x2‖2 (5)
V̂ = V (x1, x2)τ (x1 − x2) (6)
τ = exp

(

− ∫ |x2−x1|
0 σt(t)dt

)

(7)

If the light scatters at n−1 interaction sites before reach-
ing the camera at x0, where xn is a sampled point on the
light source, the path integral equation becomes

L(x0,ω) =
n−1

︷ ︸︸ ︷∫

A
. . .

∫

V
Le(xn−1 ← xn)G(xn−1, xn)V̂ (xn−1, xn)

n−1
∏

i=1
[Fs(xi+1 ← xi ← xi−1)G(xi+1, xi)V (xi+1, xi)]

dV (x1) . . . dA(xn)

(8)

where Le is the emitted radiance from the light source at
the sampled point on its surface xn to the first interaction
point in the volume xn−1.
In principle, Eq. (8) can be used to render highly

scattering volumetric models assuming monochromatic
wavelengths, i.e. there is no transfer of energy from one
wavelength to another. We have extended this equation
by introducing a term called the path binary fluores-
cent visibility Vfi that indicates whether a path has
encountered a fluorescence emission or not. Adding
this term to Eq. (8) and integrating over all excita-
tion wavelengths λx to evaluate the radiance at spe-
cific emission wavelength λm, the rendering equation
becomes

L(x0,ω, λm) =
∫

λx

n−1
︷ ︸︸ ︷∫

A
. . .

∫

V
Le(xn−1 ← xn, λx)

G(xn, xn−1)V̂ (xn, xn−1, λx)Vfi(λx, λm)×
n−1
∏

i=1
[Fs(xi+1 ← xi ← xi−1, λm)G(xi+1, xi) V (xi+1, xi)]

dV (x1) . . . dA(xn)dλx

(9)

Monte Carlo estimator
The path integral formulation of our fluorescence model,
Eq. (9), evaluates the radiance arriving to the camera at
point x0 from direction ω at certain emission wavelength
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Fig. 1 Light transport in a highly scattering volumetric extent. a The volume prior to illumination by the light source. b Single scattering interaction:
the light ray is scattered once between the light source and the camera on a single path x0x1x2. cMultiple scattering: the light ray bounces multiple
times between several interaction events before reaching the camera on a single path x0x1x2 . . . xn−1xn . d The radiative transport equation
evaluates the light propagating from the light source to the camera on multiple paths x1, x2, . . . , xn . The rays are shot from the camera towards the
light source to sample the scattering events

λm after multiple scattering events in a highly scatter-
ing fluorescent volume. In a stochastic path tracer, this
integral can be approximated with the Monte Carlo esti-
mator expressed by Eq. (10), where p(.) is the probability
density function (PDF) for sampling a point xn on the
surface of the light source, an excitation wavelength λx
from the emission spectrum of illuminating light, a scat-
tering event with a direction ωj and a distance tj. The
path binary fluorescence visibility term Vfi accounts for
the spectral optical properties of the volume, the intrinsic
spectroscopic properties of the fluorescent dye includ-
ing its excitation and emission spectra, molar absorptivity
and quantum yield, and also the concentration of the
fluorescent solvent in a given solution.

Li(x0,ω, λm) ≈
1
Nλ

1
N

Nλ∑

λ=1

N
∑

i=1

Le(xn, λx)V̂i
p(xn)p(λx)

Vfi

M
∏

j=1

V̂jFjGj

p(ωj)p(tj)
(10)

where
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Fj = σs(xj, λm) fp(xj,ωj,ωj+1, λm) (11)
V̂i = V (xn, xn−1) τ (xn, xn−1, λx) (12)
V̂j = V (xj, xj−1) τ (xj, xj−1, λm) (13)
τ = exp(− ∫ |xj−xj−1|

0 σt(t, λ)dt) (14)

Monte Carlo path tracing is used to determine the inter-
action sites, or events, within the volume extent. The
fluorescent events – represented by the green points in
Fig. 2 – are stochastically identified according to the
ratio between the fluorescence absorption coefficient μ

f
a

and the total absorption coefficient μa of the volume
at emission wavelength λm. There are eight possible
combinations that might occur during the path sampling.
According to the type of the sampled event, some of

these cases are plausible and the other are not possi-
ble as explained in Fig. 3. The SPD of the fluorescence
absorption coefficient μ

f
a(λ) is expressed in terms of the

excitation (or absorption) spectrum of the fluorophore
fx(λ), the concentration of the dye in the solution C, and
its molar absorptivity at the maximum excitation wave-
length ε. The spectral radiance is computed by tracing a
ray through the volume at certain wavelength between 300
and 800 nm with 1 nm increments. The estimated pixel
value is updated only if the constructed path is valid and
a fluorescence emission occurs. A valid contributing path,
such as 2 and 4 in Fig. 2, consists of a series of elastic
scattering events and a single inelastic one that involves
changing the wavelength from λx to λm. In this case, the
light source is sampled and the radiance emitted towards
the fluorescence emission event is attenuated according
to λx. Otherwise, the fluorescence visibility Vf term is set
to zero and the path is terminated. The paths are sam-
pled with woodcock tracking, which is known to be an
unbiased method [40, 41].
The probability of fluorescence emission pf is expressed

by two terms: the photon absorption probability px and
the photon emission probability pm [42], i.e. pf (λx, λm) =
px(λx)pm(λm) where

px(λx) = φ
μ
f
a(λx)

μa(λx)
(15)

pm(λm) = fm(λm)
λ
∫ ∞

0
fm(λ)dλ

(16)

Therefore, the fluorescence emission probabilistically
occurs in terms of the exact spectral characteristics of the
fluorescent dye including its excitation fx(λ) and emission
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Fig. 2 Path tracing with multiple scattering in fluorescent volume. The green and yellow rays are transported at λm and λx respectively. The red rays
escape the volume with no contribution to the estimated radiance along the path. The dashed rays indicate invalid paths, where fluorescence
visibility is zero. The light is only sampled if a fluorescence emission event is determined

fm(λ) spectra, and its quantum yield φ. This method can
accurately generate fluorescent images with SPDs that
have similar profiles to the actual emission spectra of
the fluorescent dyes. Though, it ignores secondary flu-
orescence effects such as quenching, photo-bleaching or
saturation.

Virtual fluorescent tissue volume generation
The digital model of the neocortical column is organized
in a circuit, which can be seen as a database containing a
set of neurons having diverse morphological and electrical
characteristics. These neurons are statistically positioned
and oriented within the 3D extent of the column [9, 43].
The virtual fluorescent tissue block is reconstructed from
the neocortical column circuit for in silico experiments in
five basic steps (Fig. 4):

1. Identifying a list of neurons that will be contained in
the resulting tissue block. This list can be selected

based on common morphological or electrical
properties to address specific kind of in silico
experiment.

2. Creating a watertight surface mesh model for the
block from the morphological descriptions of the
neurons in the circuit. If a given morphology is
broken, the neuron identifier is reported to fix the
morphology. The neuronal morphologies are
converted into watertight surface meshes using an
extended version of the workflow presented by
Lassare et al. [44]. The individual meshes generated
for every neuron are loaded into Blender [45] and the
final mesh block is extracted based on the extent of
the requested block.

3. Converting the mesh model to a volumetric one
using solid voxelization [46]. This operation is
handled with a fast in-house GPU-based voxelization
software that uses conservative rasterization [47]. If

Fig. 3 All possible combinations of interaction events during path sampling in a scattering fluorescent mixture. The white/green events represent
an interaction between the light ray and non-fluorescent/fluorescent volume samples. The events in (a) and (b) are not physically-plausible because
a fluorescent emission must occur at a fluorescent sample. f is also not possible because λm cannot excite the dyes to emit at λx . The events in (c),
(d), (g) and (h) represent an elastic scattering at the same wavelength. e is the only event that can account for fluorescence emission
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Fig. 4 The process of creating a fluorescent tissue block from the cortical column model. a The meshes of each neuron in the column are created
and loaded according to their position and orientation specified by a given micro-circuit configuration. b The requested mesh block is extracted
from the neocortical column model in (a). c The mesh block is converted into a volume with solid voxelization. d The volume block is annotated
with the optical properties of the brain and the spectroscopic properties of the dyes specified in the input configuration file. The density of the cells
in the illustrated model in A is only 5%

the input mesh is not watertight, the neuron
identifier of the mesh is reported to be fixed.

4. Annotating the volumetric tissue block with the
optical properties of the rat brain at the specified
region. The optical properties are retrieved from a
3D atlas that was compiled in a recent study by
Azimipour et al. [48].

5. Labeling the block with fluorescent dyes to simulate
their injection into the intracellular space of the
different neurons contained in the generated block.
The intrinsic spectroscopic characteristics of the
selected dyes are obtained from an online database
available at [49].

In some cases, the experiments are limited to investigate
the responses of individual neurons, pair of neurons or a
small set of neurons. The generation of a fluorescent tissue
block for such experiments is relatively easy as described
in the aforementioned process. In contrast, other exper-
iments require extracting a large tissue block that might
assemble hundreds or thousands of neurons. The spa-
tial extent of this block does not necessarily enclose the

bounding volumes of all the neurons that are located into
it because the positions of the neurons are identified based
on their cell bodies (or somata). Extracting a tissue block
from a large cluster of neurons following the previous
approach on a single computing node is inefficient and in
some cases is impractical. To resolve this issue, we have
developed a parallel workflow that can efficiently gen-
erate high density tissue blocks. This workflow runs on
high-end visualization clusters that consist of several com-
puting nodes connected together via high bandwidth net-
working infrastructure. This workflow, shown in Fig. (5),
parallelizes the mesh generation and clipping operations
exploiting all the available nodes in the cluster.

Pipeline implementation
Implementing our optical model requires a physically-
based spectral rendering framework that can model the
light rays by spectral distributions as an alternative to
the tri-stimulus representation. The physically-based ren-
dering toolkit (PBRT) [50] has been chosen amongst
other systems like Mitsuba [51] or LuxRender [52] due
to the existence of an accompanying reference [38] that
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Fig. 5 An illustration of the mesh block extraction from the selected targets in the cortical column. a The spatial extent of the block is identified by a
bounding box that is given in the input configuration. b The meshes are generated from the corresponding morphologies with an extended
version of the meshing pipeline presented by Lasserre et al. [44]. c The resulting wavefront object meshes are loaded in Blender [45] and clipped on
a per-mesh basis. d All the clipped meshes are loaded in Blender and grouped together with a union boolean operation to generate the final mesh
block

documents the software architecture of the framework.
Though, it only supports CPU-based rendering, which
will limit the rendering performance for high resolution
images with sufficient sampling densities.
We have implemented our estimator in Eq. (10) in a

volumetric integrator class that can be selected in the con-
figuration file given to run the rendering framework. We
have also extended the volumetric grid class to support
loading annotated fluorescent volumes to allow tagging
the same model with multiple fluorescent dyes. The auto-
mated block extraction pipeline is configurable to gener-
ate PBRT scene description files and render them directly
after the creation of the fluorescent tissue block volume.

Results, validation and discussion
The results of our visualization pipeline are demonstrated
on a 50 μm3 tissue block extracted from the center of the
neocortical column model (Fig. 4). A surface rendering
image of the surface mesh of this block (prior to virtual
fluorescent injection) is illustrated in Fig. 6.
From this extracted mesh block, we have created

two experimental sets of fluorescent-annotated volume
blocks. The first one is tagged with the same type of fluo-
rescent dye dissolved in several solutions having different
extinction coefficients. The goal of this set is to experi-
ment the responses of the same fluorescence parameters
in the presence of relatively low, medium and high scat-
tering volumes. The other set is labeled with various
fluorescent dyes that have different spectral responses
at fixed concentrations. This set is designed to validate
and measure the performance of our extended optical
model that can simulate the light interaction with fluo-
rescent volumes. The two sets were labelled with multiple
dyes from the Alexa Fluor family, Alexa Fluor 350, 488,
568 and 633. This family is selected in our experiments

due to its importance in fluorescence microscopy and
cell biology in general [53]. Table 2 summarizes some
of the spectroscopic properties of the four dyes includ-
ing their maximum excitation and emission wavelengths
(nm), molecular weight (kDa), quantum yield, and molar
absorptivity (cm−1M−1).
The first set is labelled with three Alexa Fluor 488 solu-

tions that are characterized with extinction coefficients
that are 10, 100 and 1000 times greater than that of pure

Fig. 6 Surface rendering of a watertight mesh of a 50 μm3 tissue
block extracted from a digital reconstruction of the microcircuitry of
the somatosensory cortex of a two-week-old rat. The model is
textured with an electron microscopy shader and loaded in Maya
(Autodesk, California, USA) [59] for rendering
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Table 2 The properties of all the fluorescent dyes used to label
the tissue model

Dye Properties

Color MW λx λm φ ε

Alexa F. 350 Blue 410 346 442 0.02 19000

Alexa F. 488 Green 643 495 519 0.92 73000

Alexa F. 568 Orange 792 578 603 0.69 88000

Alexa F. 633 Red 1200 632 647 0.90 159000

water [54]. To maximize the emission, the illuminating
light source is set to emit at the maximum excitation
wavelength of Alexa Fluor 488 at 495 nm. Figure 7 shows
the results of rendering the three tissue volume blocks
under the same illumination conditions.
The tissue blocks in the second set are tagged with

Alexa Fluor 350, 488, 568 and 633 solutions at the same
concentration (0.4 mol/l). The same illumination condi-
tions defined in the first experiment are used to excite
the volumes in this case where the light source emits at
the maximum excitation response of each respective dye
(refer to Table 2). Figure 8 illustrates the images rendered
for the four tissue volume blocks used in this experimental
set.

Fluorescence optical model validation
The experimental measurements of the excitation and
emission spectra of fluorescent dyes are normally
recorded for highly diluted and low scattering solutions
using Beer-Lambert law and the fluorescence bright-
ness equation [55]. However, the normalized spectral
distributions of the emission spectra recorded from
highly scattering solutions should have similar profiles
to the experimental emission spectra of the fluorescent
dyes [56]. In this context, we validated our fluorescence

optical model relying on two basic tests. The first one
measures the SPD of the generated images from our visu-
alization pipeline and then compares their normalized
profile with the distribution of the intrinsic emission spec-
tra of each dye. Note that the SPDs of each image are
recorded before their conversion to RGB colors for each
pixel in the image.
The four tissue volume blocks in the second experi-

mental set are used to validate our optical model. The
normalized spectral responses (or SPDs) from the four
images shown in Fig. 8 are compared to the emission
profiles of the four dyes. The results of this validation test
are shown in Fig. 9.
The second validation test measures the performance of

the model when the volume is illuminated with different
wavelengths. Depending on the excitation spectrum of the
dye and the selected wavelength to illuminate the solu-
tion, the scale of the emission spectrum is proportional to
the amplitude of the excitation spectrum at the excitation
wavelength. The maximum emission profile is reached
when themaximum excitation wavelength is used [55, 57].
In this test, all the tissue volume blocks are illuminated
at several wavelengths (300, 346, 495, 532, 555, 578, 632
and 700 nm) and the responses are recorded and relatively
compared. The results of this test are illustrated in Fig. 10.

Pipeline evaluation
The rendering results were evaluated collaboratively with
a group of different experts in neurobiology and in silico
neuroscience. They all agree that the renderings are sim-
ilar to what they visualize under the microscope. They
were also excited to see how the responses are chang-
ing when the optical and spectroscopic properties of the
dyes are varied. This would allow them characterizing
the responses of the neurons in various regions of the
brain that have different optical properties. The scientists

Fig. 7 Volume rendering of a 50 μm3 fluorescent neuronal model block tagged in silico with three Alexa Fluor 488 solutions that are characterized
by low (left), medium (middle) and high (right) extinction coefficients. The volumes are illuminated with monochromatic diffusive light source that
emits at 495 nm corresponding to the maximum excitation wavelength of the Alexa Fluor 488 dye
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Fig. 8 Volume rendering of the tissue volume blocks when the neurons are virtually injected with four different fluorescent dyes: a Alexa Fluor 350,
b Alexa Fluor 488, c Alexa Fluor 586 and d Alexa Fluor 633. The volumes are illuminated with monochromatic laser sources at 346, 495, 578 and 632
nm that correspond to the maximum excitation wavelength of the four fluorescent dyes respectively

working in the brain simulation team have expressed their
interest in applying our pipeline to their data to vali-
date their in silico VSDI experiments against realistic data
recorded by the fluorescence microscope. Other scien-
tists have requested further extensions of the pipeline to
visualize neuroglial cells.

Rendering performance
In general, Monte Carlo rendering is known to be time
consuming. The rendering performance of Monte Carlo-
based algorithms depends on multiple factors including

the pixel sampling density, number of light samples, opti-
cal properties of the volume and the image resolution
as well. If the sampling rates are relatively low, the ren-
dered image will be full of noise. Therefore, high sampling
is mandatory to have an image with a converging solu-
tion. Our results have been rendered with pixel sampling
of 512 × 512 samples per pixel. Moreover, high spec-
tral sampling is also required to obtain accurate emission
spectra that can reflect those measured in real spectro-
scopic experiments. We have used a spectral sampling of
1 nm. The rendering time of the images demonstrated
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Fig. 9 Normalized emission SPDs measured from the images illustrated in Fig. 8. The spectral responses of the emission recorded from each tissue
block is qualitatively compared with the actual emission spectra of the four Alexa Fluor dyes used to tag the tissue block. The SPDs are obtained at
the maximum excitation wavelengths of each respective dye (346, 495, 578 and 632 nm) and 1024 spectral samples per pixel

Fig. 10 Relative emission SPDs measured from the images generated from rendering the four fluorescent tissue blocks tagged with Alexa Fluor 350,
– 488, – 568 and – 633 at different excitation wavelengths between 300 and 700 nm. The profiles are normalized to the SPD measured at maximum
excitation wavelength for each respective dye. The SPDs are detected at 1024 spectral samples per pixel. Notice the relation between the amplitude
of the excitation spectrum of each dye at the exciting wavelength and maximum amplitude of measured SPD
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Fig. 11 A high level overview of the in silico experimentation workflow. The scientists extract a tissue block from the neocortical column model, tag
it virtually with a specific fluorescent dye and use it in in silico fluorescent-based experiment. The renderings are analyzed and validated, and the
tissue model is improved
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in Figs. 7 and 8 varied between six and eight hours on a
recent machine that is shipped with Intel core i7 CPU and
32 GBytes of memory.

Conclusion and future work
The current visualization systems are limited to meet
the immense challenges of in silico neuroscience, where
biological experimentation are performed in computer
simulations. A wide range of those experimental obser-
vations rely on fluorescence imaging to reveal several
structural and functional aspects of the brain. Reproduc-
ing the same experimental procedures in silico is subject
to the existence of visualization engines that can handle
fluorescent models. We presented a visualization pipeline
to address these challenges. The pipeline is composed
of a generic volume rendering system capable of visu-
alizing highly scattering fluorescent volumetric datasets.
This system is applied to visualize virtually-tagged fluo-
rescent tissue blocks that are extracted from a unifying
model of the neocortical microcircuitry reconstructed
from rats. The pipeline is primarily developed to assist
the neuroscientists exploring and analysing their in sil-
ico experimentations that incorporate those fluorescent
blocks to present a visual feedback that allows them fine
tuning their experimental parameters and improving the
model in an iterative manner (Fig. 11).
A rigorous bio-physically-based optical model is devel-

oped to account for light interaction with highly scattering
fluorescent media. This model accounts for the optical
properties of the tissue and also the spectroscopic prop-
erties of fluorescent dyes. The model is qualitatively val-
idated against the the profiles of the spectra of multiple
synthetic fluorescent dyes.
We are currently extending this pipeline to visualize

the simulation data of in silico VSDI experiments to val-
idate the simulation of the cortical activity for a large
meso-scale circuit and also to visualize neuroglial cells.
We are also working on accelerating the performance of
the rendering workflow by providing a high performance
distributed solution on multi-GPU visualization clusters
based on the framework presented by Eilemann et al. [58].

Abbreviations
3D: Three-dimensional; CPU: Central processing unit; GPU: Graphics processing
unit; PDF: Probability density function; PBRT: Physically-based rendering
toolkit; RTE: Radiative transfer equation; SPD: Spectral power distribution; SFP:
Simulated fluorescence process; VSDI: Voltage sensitive dye imaging

Acknowledgments
We thank Arne Seitz, José Artacho, Laroche Thierry, Olivier Burri, Daniel Keller,
and Martin Telefont for their support and feedback on the fluorescence
model. We also acknowledge the continuous support of Grigori Chevtchenko
on the solid voxelization workflow.

Declarations
This article has been published as part of BMC Bioinformatics Vol 18 Suppl 12,
2017: Proceedings of the Symposium on Biological Data Visualization at VIS

2016. The full contents of the supplement are available online at http://
bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-
supplement-2.

Funding
Research reported in this publication was supported by competitive research
funding from King Abdullah University of Science and Technology (KAUST).

Availability of data andmaterial
The source code, sample datasets and configuration files will be available
online at https://github.com/BlueBrain/pbrt.

Authors’ contributions
MA derived the mathematical model of fluorescence, implemented the
rendering algorithm and drafted the manuscript. JS contributed to the
derivation of the fluorescence model. AB mentored the study and participated
in the model validation and algorithm implementation. AB, SE and JS
contributed to discussions and suggestions to complete the manuscript. HM
and FS supervised the project. All the authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Published: 15 February 2017

References
1. Sharpe J, Lumsden CJ, Woolridge N. In Silico: 3D Animation and

Simulation of Cell Biology with Maya And MEL. The Morgan Kaufmann
Series in Computer Graphics: Morgan Kaufmann; 2008.

2. Markram H. The Blue Brain Project. Nature Reviews Neuroscience.
2006;7(2):153–60. doi:10.3389/fnana.2013.00001.

3. Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP,
Cheng JK, Patel N, Alex Yee RAL, Eils R. Large-scale in silico modeling of
metabolic interactions between cell types in the human brain. Nature
Biotechnology. 2010;12:1279–1285. doi:10.1038/nbt.1711.

4. Bower JM. Looking for Newton: Realistic modeling in modern biology.
Brains, Minds and Media. 2005;1(2):.

5. Palsson B. The challenges of in silico biology. Nat Biotech. 2000;18(11):
1147–1150. doi:10.1038/81125.

6. Sanbonmatsu K, Tung CS. High performance computing in biology:
multimillion atom simulations of nanoscale systems. J Struc. Biol.
2007;157(3):470–80. doi:10.1016/j.jsb.2006.10.023.

7. Hernando JB, Schurmann F, Pastor L. Towards real-time visualization of
detailed neural tissue models: View frustum culling for parallel rendering.
In: Biological Data Visualization (BioVis), 2012 IEEE Symposium On; 2012.
p. 25–32. doi:10.1109/BioVis.2012.6378589.

8. Chemla S, Chavane F. Voltage-sensitive dye imaging: Technique review
and models. Journal of Physiology-Paris. 2010;104(1–2):40–50.
doi:10.1016/j.jphysparis.2009.11.009. Computational Neuroscience, from
Multiple Levels to Multi-level.

9. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, et al.
Reconstruction and simulation of neocortical microcircuitry. Cell.
2015;163(2):456–92. doi:10.1016/j.cell.2015.09.029.

10. Favre-Bulle IA, Preece D, Nieminen TA, Heap LA, Scott EK,
Rubinsztein-Dunlop H. Scattering of sculpted light in intact brain tissue,
with implications for optogenetics. Scientific reports. 2015;5:.
doi:10.1038/srep11501.

11. Svoboda D, Kašík M, Maška M, Hubený J, Stejskal S, Zimmermann M. On
simulating 3d fluorescent microscope images. In: Computer Analysis of
Images and Patterns. Berlin, Heidelberg: Springer; 2007. p. 309–16. LNCS
4673.

12. Lehmussola A, Selinummi J, Ruusuvuori P, Niemisto A, Yli-Harja O.
Simulating fluorescent microscope images of cell populations. In:

http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-2
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-2
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-2
https://github.com/BlueBrain/pbrt
http://dx.doi.org/10.3389/fnana.2013.00001
http://dx.doi.org/10.1038/nbt.1711
http://dx.doi.org/10.1038/81125
http://dx.doi.org/10.1016/j.jsb.2006.10.023
http://dx.doi.org/10.1109/BioVis.2012.6378589
http://dx.doi.org/10.1016/j.jphysparis.2009.11.009
http://dx.doi.org/10.1016/j.cell.2015.09.029
http://dx.doi.org/10.1038/srep11501


The Author(s) BMC Bioinformatics 2016, 18(Suppl 2):62 Page 14 of 14

Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th
Annual International Conference of The; 2005. p. 3153–156.
doi:10.1109/IEMBS.2005.1617144.

13. Lehmussola A, Ruusuvuori P, Selinummi J, Huttunen H, Yli-Harja O.
Computational framework for simulating fluorescence microscope
images with cell populations. Medical Imaging, IEEE Transactions on.
2007;26(7):1010–1016. doi:10.1109/TMI.2007.896925.

14. Henderson A, Ahrens J, Law C, et al. The ParaView Guide. Clifton Park,
New York: Kitware Clifton Park, NY; 2004.

15. Meyer-Spradow J, Ropinski T, Mensmann J, Hinrichs K. Voreen: A rapid-
prototyping environment for ray-casting-based volume visualizations.
IEEE Comput Graph Appl. 2009;29(6):6–13. doi:10.1109/MCG.2009.130.

16. ImageVis3D. ImageVis3D. A Real-time Volume Rendering Tool for Large
Data. 2012. http://www.imagevis3d.org.

17. Clendenon JL, Phillips CL, Sandoval RM, Fang S, Dunn KW. Voxx: a
pc-based, near real-time volume rendering system for biological
microscopy. Am J Phys-Cell Phys. 2002;282(1):213–8.

18. Peng H, Ruan Z, Long F, Simpson JH, Myers EW. V3d enables real-time
3d visualization and quantitative analysis of large-scale biological image
data sets. Nat Biotechnol. 2010;28(4):348–53. doi:10.1038/nbt.1612.

19. Max N. Optical models for direct volume rendering. IEEE Trans Vis
Comput Graph. 1995;1(2):99–108. doi:10.1109/2945.468400.

20. Peters T. The physics of volume rendering. European J Phys. 2014;35(6):
065028. doi:10.1088/0143-0807/35/6/065028.

21. Banks DC, Westin CF In: Linsen L, Hagen H, Hamann B, editors. Global
Illumination of White Matter Fibers from DT-MRI Data. Berlin, Heidelberg:
Springer; 2008. p. 173–84. doi:10.1007/978-3-540-72630-2-10.

22. Kroes T, Post FH, Botha CP. Exposure render: An interactive
photo-realistic volume rendering framework. PloS one. 2012;7(7):38586.
doi:10.1371/journal.pone.0038586.

23. FluVR Fluorescence Volume Renderer, GPL Physically-based Renderer.
Scientific Volume Imaging. 2005. http://www.svi.nl/FluVr. Accessed Mar
2016.

24. Glassner A. A model for fluorescence and phosphorescence. Focus on
Computer Graphics. Springer; 1995. p. 60–70.
doi:10.1007/978-3-642-87825-1-5.

25. Gutierrez D, Seron FJ, Muñoz A, Anson O. Inelastic scattering in
participating media using curved photon mapping. In: ACM SIGGRAPH
2004 Sketches. ACM; 2004. p. 76. doi:10.1145/1186223.1186318.

26. Gutierrez D, Seron FJ, Muñoz A, Anson O. Visualizing underwater ocean
optics. In: Computer Graphics Forum. Wiley Online Library; 2008. p.
547–56. doi:10.1111/j.1467-8659.2008.01152.x.

27. Cerezo E, Seron F. Inelastic scattering in participating media. application
to the ocean. In: Proceedings of the Annual Conference of the European
Association for Computer Graphics, Eurographics 2003; 2003.
doi:10.1145/1186223.1186318.

28. Cerezo BE, Seron FJ. Rendering natural waters taking fluorescence into
account. Comput Animat Virtual Worlds. 2004;15(5):471–84.
doi:10.1002/cav.10.

29. Abdellah M, Bilgili A, Eilemann S, Markram H, Schürmann F. A
computational model of light-sheet fluorescence microscopy using
physically-based rendering. In: Eurographics 2015. The European
Association for Computer Graphics (Eurographics); 2015. p. 2.
doi:10.2312/egp.20151038.

30. Abdellah M, Bilgili A, Eilemann S, Markram H, Schürmann F.
Physically-based in silico light sheet microscopy for visualizing
fluorescent brain models. BMC bioinformatics. 2015;16(Suppl 11):8.
doi:10.1186/1471-2105-16-S11-S8.

31. Chung K, Deisseroth K. CLARITY for mapping the nervous system. Nat
Meth. 2013;10(6):508–13. doi:10.1038/nmeth.2481.

32. Tomer R, Ye L, Hsueh B, Deisseroth K. Advanced CLARITY for rapid and
high-resolution imaging of intact tissues. Nat. Protocols. 2014;9(7):
1682–1697. doi:10.1038/nprot.2014.123.

33. Kunii TL, Shinagawa Y. Visualization: New Concepts and Techniques to
Integrate Diverse Application Areas In: Patrikalakis NM, editor. Tokyo:
Springer; 1991. p. 3–25. doi:10.1007/978-4-431-68159-5-1.

34. Ikits M, Kniss J, Lefohn A, Hansen C. Chapter 39, GPU Gems:
Programming Techniques, Tips and Tricks for Real-Time Graphics. Pearson
Higher Education. 2004.

35. Engel K, Hadwiger M, Kniss J, Rezk-Salama C, Weiskopf D. Real-time
Volume Graphics. Boca Raton, FL, USA: A K Peters/CRC Press; 2006.

36. Veach E. Robust monte carlo methods for light transport simulation. PhD
thesis: Stanford University; 1997.

37. Pauly M, Kollig T, Keller A. Metropolis light transport for participating
media. In: Proceedings of the Eurographics Workshop on Rendering
Techniques 2000. London, UK: Springer; 2000. p. 11–22.
doi:10.1007/978-3-7091-6303-0-2.

38. Pharr M, Humphreys G. Physically Based Rendering, Second Edition: From
Theory To Implementation, 2nd edn. San Francisco: Morgan Kaufmann
Publishers Inc.; 2010. doi:10.1145/2407783.2407785.

39. Veach E, Guibas L. Bidirectional estimators for light transport In: Sakas G,
Müller S, editors. Photorealistic Rendering Techniques. Shirley, P. Berlin,
Heidelberg: Springer; 1995. p. 145–67. doi:10.1007/978-3-642-87825-1-11.

40. Raab M, Seibert D, Keller A In: Keller A, Heinrich S, Niederreiter H, editors.
Unbiased global illumination with participating media. Berlin, Heidelberg:
Springer; 2008. p. 591–605. doi:10.1007/978-3-540-74496-2-35.

41. Szirmay-Kalos L, Tóth B, Magdics M. Free path sampling in high resolution
inhomogeneous participatingmedia. In: Computer Graphics Forum. Wiley
Online Library; 2011. p. 85–97. doi:10.1111/j.1467-8659.2010.01831.x.

42. Swartling J, Pifferi A, Enejder AM, Andersson-Engels S. Accelerated
monte carlo models to simulate fluorescence spectra from layered
tissues. JOSA A. 2003;20(4):714–27. doi:10.1364/JOSAA.20.000714.

43. Ramaswamy S, Courcol JD, AbdellahM, Adaszewski SR, Antille N, Arsever
S, Atenekeng G, Bilgili A, Brukau Y, Chalimourda A, et al. The neocortical
microcircuit collaboration portal: a resource for rat somatosensory cortex.
Frontiers in neural circuits. 2015;9:. doi:10.3389/fncir.2015.00044.

44. Lasserre S, Hernando J, Hill S, Schürmann F, de Miguel Anasagasti P,
Jaoudé GA, Markram H. A neuron membrane mesh representation for
visualization of electrophysiological simulations. IEEE Trans Vis Comput
Graph. 2012;18(2):214–27. doi:10.1109/TVCG.2011.55.

45. Blender - 3D Modelling and Rendering Package. Blender Institute.
Amsterdam; 2016. http://www.blender.org/. Accessed Mar 2016.

46. Schwarz M, Seidel HP. Fast parallel surface and solid voxelization on gpus.
In: ACM Transactions on Graphics (TOG). ACM; 2010. p. 179.
doi:10.1145/1882261.1866201.

47. Zhang L, Chen W, Ebert DS, Peng Q. Conservative voxelization. Visual
Comput. 2007;23(9-11):783–92. doi:10.1007/s00371-007-0149-0.

48. Azimipour M, Baumgartner R, Liu Y, Jacques SL, Eliceiri K, Pashaie R.
Extraction of optical properties and prediction of light distribution in rat
brain tissue. J Biomed Optics. 2014;19(17). doi:10.1117/1.JBO.19.7.075001.

49. Fluorescence SpectraViewer. ThermoFisher Scientific (Life Technologies).
https://www.thermofisher.com/. Accessed Mar 2016.

50. Pharr M, Humphreys G. Physically-based Rendering. From Theory to
Implementation. 2012. http://www.pbrt.org/. Accessed Mar 2016.

51. Jakob W. Mitsuba. Physically-based Rendering. 2010. http://www.
mitsuba-renderer.org/. Accessed Mar 2016.

52. LuxRender. GPL Physically-based Renderer. 2013. http://www.luxrender.
net/en_GB/index. Accessed Mar 2016.

53. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK,
Millard PJ, Mao F, Leung WY, Haugland RP. Alexa dyes, a series of new
fluorescent dyes that yield exceptionally bright, photostable conjugates.
J Histochem Cytochem. 1999;47(9):1179–1188.
doi:10.1177/002215549904700910.

54. Buiteveld H, Hakvoort JMH, Donze M. The optical properties of pure
water In: Jaffe JS, editor. SPIE Proceedings on Ocean Optics XII; 1994.
p. 174–83. doi:10.1117/12.190060.

55. Valeur B. Molecular Fluorescence: Principles and Applications. UK: Wiley;
2002. Chap. 3. doi:10.1002/9783527650002.

56. Liu C, Rajaram N, Vishwanath K, Jiang T, Palmer GM, Ramanujam N.
Experimental validation of an inverse fluorescence monte carlo model to
extract concentrations of metabolically relevant fluorophores from turbid
phantoms and a murine tumor model. J Biomed optics. 2012;17(7):
0780031–07800315. doi:10.1117/1.JBO.17.7.077012.

57. Johnson I. The Molecular Probes Handbook: A Guide to Fluorescent
Probes and Labeling Technologies, 11th edn.: Life Technologies
Corporation; 2010. doi:10.1134/S0006297911110101.

58. Eilemann S, Bilgili A, Abdellah M, Hernando J, Makhinya M, Pajarola R,
Schürmann F. Parallel rendering on hybrid multi-gpu clusters. In:
Eurographics Symposium on Parallel Graphics and Visualization. The
Eurographics Association; 2012. p. 109–17.
doi:10.2312/EGPGV/EGPGV12/109-117.

59. Autodesk Inc. Maya. Autodesk. 2006. http://www.autodesk.com.
Accessed Mar 2016.

http://dx.doi.org/10.1109/IEMBS.2005.1617144
http://dx.doi.org/10.1109/TMI.2007.896925
http://dx.doi.org/10.1109/MCG.2009.130
http://www.imagevis3d.org
http://dx.doi.org/10.1038/nbt.1612
http://dx.doi.org/10.1109/2945.468400
http://dx.doi.org/10.1088/0143-0807/35/6/065028
http://dx.doi.org/10.1007/978-3-540-72630-2-10
http://dx.doi.org/10.1371/journal.pone.0038586
http://www.svi.nl/FluVr
http://dx.doi.org/10.1007/978-3-642-87825-1-5
http://dx.doi.org/10.1145/1186223.1186318
http://dx.doi.org/10.1111/j.1467-8659.2008.01152.x
http://dx.doi.org/10.1145/1186223.1186318
http://dx.doi.org/10.1002/cav.10
http://dx.doi.org/10.2312/egp.20151038
http://dx.doi.org/10.1186/1471-2105-16-S11-S8
http://dx.doi.org/10.1038/nmeth.2481
http://dx.doi.org/10.1038/nprot.2014.123
http://dx.doi.org/10.1007/978-4-431-68159-5-1
http://dx.doi.org/10.1007/978-3-7091-6303-0-2
http://dx.doi.org/10.1145/2407783.2407785
http://dx.doi.org/10.1007/978-3-642-87825-1-11
http://dx.doi.org/10.1007/978-3-540-74496-2-35
http://dx.doi.org/10.1111/j.1467-8659.2010.01831.x
http://dx.doi.org/10.1364/JOSAA.20.000714
http://dx.doi.org/10.3389/fncir.2015.00044
http://dx.doi.org/10.1109/TVCG.2011.55
http://www.blender.org/
http://dx.doi.org/10.1145/1882261.1866201
http://dx.doi.org/10.1007/s00371-007-0149-0
http://dx.doi.org/10.1117/1.JBO.19.7.075001
https://www.thermofisher.com/
http://www.pbrt.org/
http://www.mitsuba-renderer.org/
http://www.mitsuba-renderer.org/
http://www.luxrender.net/en_GB/index
http://www.luxrender.net/en_GB/index
http://dx.doi.org/10.1177/002215549904700910
http://dx.doi.org/10.1117/12.190060
http://dx.doi.org/10.1002/9783527650002
http://dx.doi.org/10.1117/1.JBO.17.7.077012
http://dx.doi.org/10.1134/S0006297911110101
http://dx.doi.org/10.2312/EGPGV/EGPGV12/109-117
http://www.autodesk.com

	Abstract
	Background
	Results
	Conclusion
	Keywords
	AMS Subject Classification

	Background
	Motivation
	Contributions
	Related work

	Methods
	Optical models
	Path integral formulation in fluorescent volumes
	Monte Carlo estimator
	Virtual fluorescent tissue volume generation
	Pipeline implementation

	Results, validation and discussion
	Fluorescence optical model validation
	Pipeline evaluation
	Rendering performance

	Conclusion and future work
	Abbreviations
	Acknowledgments
	Declarations
	Funding
	Availability of data and material
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

