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ABSTRACT: G protein-coupled receptors (GPCRs) play a central role in cellular
signaling and are linked to many diseases. Accordingly, computational methods to
explore potential allosteric sites for this class of proteins to facilitate the identification
of potential modulators are needed. Importantly, the availability of rich structural data
providing the locations of the orthosteric ligands and allosteric modulators targeting
different GPCRs allows for the validation of approaches to identify new allosteric
binding sites. Here, we validate the combination of two computational techniques, the
residue interaction network (RIN) model and the site identification by ligand
competitive saturation (SILCS) method, to predict putative allosteric binding sites of
class A GPCRs. RIN analysis identifies hub residues that mediate allosteric signaling
within a receptor and have a high capacity to alter receptor dynamics upon ligand
binding. The known orthosteric (and allosteric) binding sites of 18 distinct class A
GPCRs were successfully predicted by RIN through a dataset of 105 crystal structures
(91 ligand-bound, 14 unbound) with up to 77.8% (76.9%) sensitivity, 92.5% (95.3%) specificity, 51.9% (50%) precision, and 86.2%
(92.4%) accuracy based on the experimental and theoretical binding site data. Moreover, graph spectral analysis of the residue
networks revealed that the proposed sites were located at the interfaces of highly interconnected residue clusters with a high ability
to coordinate the functional dynamics. Then, we employed the SILCS-Hotspots method to assess the druggability of the novel sites
predicted for 7 distinct class A GPCRs that are critical for a variety of diseases. While the known orthosteric and allosteric binding
sites are successfully explored by our approach, numerous putative allosteric sites with the potential to bind drug-like molecules are
proposed. The computational approach presented here promises to be a highly effective tool to predict putative allosteric sites of
GPCRs to facilitate the design of effective modulators.

■ INTRODUCTION
G protein-coupled receptors (GPCRs) are 7-transmembrane
receptors that govern numerous physiological effects triggered
by external ligand binding to their extracellular orthosteric
binding sites.1 As they are implicated in many diseases and are
easily accessible, many commercially successful medications
within the pharmaceutical sector have been designed to
selectively interact with GPCRs.2 Approximately 17% of all
approved drugs have been developed to bind GPCRs or similar
protein structures.2 Among these, class A GPCRs or
rhodopsin-like receptors constitute the major therapeutic
target for numerous medical conditions,3 and over 500 drugs
have been developed for class A GPCRs to date.4 Of these,
over 8% of the targets are chemokine, prostanoid, and
melanocortin receptors.4 Medical conditions treated targeting
the class A GPCRs include diverse disease states such as
allergic responses, cardiovascular diseases, hypertension,
pulmonary diseases, depression, migraine, glaucoma, Parkin-

son’s disease, schizophrenia, and alleviation of cancer-related
fatigue.2

Besides their conserved orthosteric sites, GPCRs also
include allosteric sites, where endogenous ligands such as
ions, lipids, and peptides, and exogenous small molecules can
bind and modulate the protein activity.5,6 Allosteric modu-
lators, unlike orthosteric ligands, are not competitive
inhibitors; they act in either a positive or negative fashion,
thereby increasing or decreasing the protein’s activity.7

Allosteric sites are typically less conserved than orthosteric
sites, which display high topological and sequence conservation
in the class A GPCRs. Therefore, allosteric sites offer the
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potential for better selectivity making them interesting target
sites in proteins for novel, low-side-effect treatments.5,8,9

Numerous GPCR structures complexed with orthosteric and
allosteric ligands are deposited in the GPCR database,10 which
enables the comparison of binding sites and ligands for all
classes of GPCRs. The database also includes state-specific
(active/inactive) structure models of GPCRs constructed using
AlphaFold2-MultiState.10,11

Understanding the allosteric regulation in protein structures
on a molecular level can facilitate structure-based allosteric
drug design (SBADD). Protein topological analyses, including
graph theory, statistical coupling analysis, and perturbation
algorithms, have served as the starting point for many of the
early computational attempts to understand allosteric
communication.12−15 Protein contact networks can understand
coordinated structural motions by capturing energy trans-
missions along the shortest allosteric pathways.16 Similarly,
residue interaction network (RIN) models can reveal the
wiring of the protein topology by pointing to residues with a
high capacity to receive or send allosteric signals in the form of
perturbations within the protein structure.17,18 Anisotropic
network model19 and Gaussian Network Model20 coupled with
normal-mode analysis (NMA) are computationally efficient
methods that make use of the conformational changes related
to allostery.21−25 Low-frequency motions that involve the
mobility of multiple residues often explain the long-range
nature of allosteric communication well; on the other hand,
higher-frequency local motions are also taken into consid-
eration to reveal the local effects in allosteric mechanisms.26−28

Moreover, studying dynamic conformational ensembles is a
commonly used and trusted approach to revealing allosteric
mechanisms and allosteric residues.29 Here, proteins are
assumed to exist in a variety of conformations around their
natural states, which can be distinguished by their energy
landscape.

Beyond the identification of allosteric residues, SBADD
requires the identification of ligand-binding pockets. All
pockets and cavities,30 as well as tunnels,31 formed by protein
topology, can be determined using different techniques;
however, these cavities or tunnels may not necessarily
accommodate drug-binding sites. Among binding site discov-
ery methods, FTMap32,33 has been highly popular using
organic probes for fragment-based screening. While it is a rigid
docking methodology, the dynamics of the protein may be
considered by using molecular dynamics simulations34 or
elastic network models35 to generate multiple protein
conformations. While this facilitates the use of FTMap32,33

to reveal cryptic sites that may be hidden in experimental
structures, mixed solvent or cosolute simulations have been of
great utility for identifying hidden pockets.36−41 Among these,
DruGUI uses isopropanol, isopropylamine, acetic acid, and
acetamide as probes and estimates binding free energy to
predict the hot spots on the protein surface.37 Using this
method, a pharmacophore model can be created by scoring the
probes and identifying the high-affinity residues in the target
protein.42 The most extensive cosolute approach has been
developed by MacKerell and co-workers by combining MD
and oscillating chemical potential grand canonical Monte
Carlo (GCMC)43 simulations to develop the site identification
by ligand competitive saturation (SILCS)44 technology. This
method uses a collection of aliphatic, aromatic, polar neutral,
and charged solutes along with water molecules to map the
functional group affinity pattern of the protein structure. Once

the functional group affinity pattern has been converted into
free energies, MC docking can be employed to identify and
quantify the binding sites of a large number of chemical
fragments, information that may be used to find druggable sites
and advance pharmacophore design.45−47

In this study, we combined RIN and SILCS to detect ligand-
binding orthosteric and allosteric sites on GPCRs with high
accuracy and precision through validation against experimental
3D structures. Contact topology-focused RIN can pinpoint the
subtype-specific critical residues of the GPCRs, as shown by a
statistical analysis of a dataset of class A GPCRs involving 105
crystal structures. RIN also identified potential allosteric sites.
Then, we conducted SILCS calculations to reveal the
druggability of the predicted allosteric regions for seven
GPCRs, namely the adenosine A1 receptor (A1R), β2-
adrenergic receptor (β2AR), chemokine receptor CXCR2,
dopamine receptor D1 (DRD1), free fatty acid receptor
(FFA1, also known as GPR40), M2 muscarinic acetylcholine
receptor (M2), and active/inactive conformers of the delta-
opioid receptor (OPRD). The systematic approach presented
in this study offers a highly effective method that incorporates
contact topology information and fragment-based searching to
detect allosteric druggable sites of GPCRs.

■ MATERIALS AND METHODS
Dataset and Protein Preparation. We investigated 18

different class A GPCRs. Supporting Information Table S1 lists
these structures along with their protein data bank48 (PDB)
IDs, ligand names, ligand function (agonist, partial agonist,
antagonist, and inverse agonist), and their binding sites as
retrieved from GPCRdb.49 The dataset contains 91 ligand-
bound and 14 unbound GPCR structures. The majority of the
ligand-bound structures contain multiple drugs that target
distinct binding sites. The dataset thus samples numerous
binding sites on the class A GPCRs, including orthosteric
binding sites, intracellular, extracellular, and extrahelical
allosteric sites, and a sodium ion binding site.4

Before implementing the residue interaction network (RIN)
model, all ligands, ions, crystal water molecules, and any
membrane components were removed from the structures. For
the SILCS calculations, the missing loops of the crystal
structures for A1R, CXCR2, and DRD1 were completed
utilizing Modeller 10.4,50 where the models with the lowest
DOPE scores were selected. Previous publications provide
detailed instructions on the preparation of β2AR,45,51 FFA1
(also known as GPR40),45 M2,45 and OPRD52 for the SILCS
calculations.
Residue Interaction Network Model. The residue

interaction network (RIN) model depicts the protein structure
as a network of interconnected nodes, where nodes are placed
at the α carbon atoms of residues linked to each other if they
have atom−atom neighboring within a cutoff distance of 4.5 Å.
This distance threshold incorporates van der Waals and
electrostatic interactions. The length of the edges is calculated
based on the local interaction force or affinity between residue
pairs, aij

17,18

a
N

NNij
ij

i j
=

(1)

Here, Nij represents the total number of heavy atom pairs
between the ith and jth nodes. Weighting Nij by the total
number of atoms (Ni and Nj) eliminates the effect of the amino
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acid size. Node pairings with a high interaction strength are
deemed to be more closely related. Thus, the length of edges
between two adjacent nodes can be modeled as 1/aij.

18 This
formulation suppresses the bias toward covalently bonded
interactions and accounts for both covalent and long-range
interactions.

The centrality measure of betweenness identifies the
frequently visited nodes or “hubs” of the network based on
calculated shortest paths. The betweenness (CB) value is
calculated as follows53

C l
s l

s
( )

( )

i j l

ij

ij
B

( )
=

(2)

Here, sij is the number of shortest routes between nodes i and j,
and sij(l) is the number of shortest routes between nodes i and
j that pass through node l. In this regard, nodes with high CB
values in the residue network have a high probability of
residing on allosteric communication pathways that can be
evaluated as novel drug targets.18,54,55

Similar to a previous study,56 the spectral analysis of the
network is carried out to cluster nodes for determining residue
neighborhoods or domains, by studying the eigenspace of the
N × N Laplacian matrix L satisfying the following expression,

U LU w u i u j( ( ) ( ))T

i j
ij

,

2=
(3)

Here, the summation is pairwise for all ith and jth nodes linked
with a weighted edge wij for a vector U in the eigenspace. The
lowest nonzero eigenvalue corresponds to the Fiedler vector
giving the largest node cluster for the residue network.
Grouping the values as negative and positive, whose values
change between [−1, 1], reveals the nodes forming distinct
clusters. Progressing from the low to high eigenvalues in the
eigenspace, the sizes of the clusters diminish leading to the
isolated edges in the limit. In this study, the three lowest
nonzero eigenvectors are used to divide the protein structure
into node clusters.
Binding Site Prediction Protocol with SILCS. The

SILCS software suite (SilcsBio, LLC) was used to
independently conduct SILCS oscillating μex Grand Canonical
Monte Carlo (GCMC)/MD simulations under the following
procedure.43,57,58 All of the systems included a membrane
composed of 90/10 POPC and cholesterol that were
constructed using CHARMM36m force field parameters59 in
conjunction with CHARMM-GUI.60 Each system was
subjected to 10 individual simulations yielding a total of 1 μs
of MD simulation sampling (100 ns × 10). From the
membrane-bound GPCRs 10 starting conformers were
generated for the SILCS simulations by rotating the χ1
dihedral of side chains exposed to solvent in increments of 36°
if their solvent accessibility was larger than 0.5 Å2.
GROMACS61 was used to introduce solutes including
benzene, propane, methanol, formamide, dimethyl ether,
imidazole, acetate, and methylammonium to obtain a
concentration of ∼0.25 M along with water at ∼55 M into
the systems.62 Solute parametrization was done using
CHARMM General Force Field (CGenFF)63 and the TIP3P
model was used for water.64 The solutes and water molecules
near the GPCRs were subjected to equilibration using 25
cycles of GCMC. Then, the systems were further equilibrated
using 100 cycles of 200,000 GCMC steps for both the water
and solute molecules, a 5000-step steepest descent minimiza-

tion, and a 100 ps MD equilibration. This was followed by a 1
ns long production MD simulation. Water molecules and
solute molecules were exchanged between their gas phase and
the protein structure during the GCMC steps. MD simulations
were started from the final step of GCMC configuration. A
harmonic force with a constant of 0.12 kcal/mol/Å2 was
applied to the Cα atoms during the MD simulations to avoid
extreme conformational rearrangements.

To calculate the SILCS FragMaps, conformers collected
every 10 ps from the MD simulations were used to calculate
probability distributions of chosen solute atoms in 1 Å3 grid
elements. The probability distributions were normalized using
a solute concentration based on one solute molecule for every
55 water molecules. The FragMaps probabilities were
converted to grid free energies (GFE) by applying the
Boltzmann transformation to the normalized probability
distributions. FragMaps were used in conjunction with
“generic” maps that pertain to the following physicochemical
features; apolar (benzene and propane Cs), hydrogen bond
donors (formamide N and imidazole protonated N), hydrogen
bond acceptor (O atoms of formamide and dimethyl ether, and
unprotonated N atom of imidazole), alcohol (methanol O),
positive donor (methylammonium N), and negative acceptor
(acetate carbonyl C).

SILCS-Hotspots was utilized to identify fragment-binding
sites following the published protocol.58 Briefly, the simulation
systems were partitioned into 10 × 10 × 10 Å3 subvolumes in
which MC sampling of the fragment was performed.
Fragments included mono- and bicyclic compound fragments,
referred to as ring fragments, that were MC docked into every
subvolume. The Metropolis criteria for the MC docking was
based on Ligand Grid Free Energy (LGFE) scores and
CGenFF intramolecular energy. LGFEs were calculated as the
sum of the GFE values assigned to classified atoms in each
ligand associated with the FragMap type to which that atom
corresponds. Each fragment was subjected to 1000 MC
docking runs in each 1000 Å3 subvolume. Final fragment
selection and Hotspot identification were performed using
multiple rounds of spatial clustering using a 3 Å cluster radius
according to the fragment’s centers of mass. The Hotspots
were ranked based on the mean LGFE scores over all the
fragments located in each site.
Statistical Analysis. We calculated the sensitivity (SN),

specificity (SP), precision (PRE), and accuracy (ACC) of the
orthosteric and allosteric drug-binding site prediction for the
class A GPCRs as follows,

SN
TP

TP FN
=

+ (4)

SP
TN

FP TN
=

+ (5)

PRE
TP

TP FP
=

+ (6)

ACC
TP TN

TP FP TN FN
= +

+ + + (7)

The quantities of true positives (TPs), true negatives (TNs),
false positives (FPs), and false negatives (FNs) were obtained
using four different drug-binding-site data sets. (i) Exper-
imental ligand-binding sites: extracted from biochemical and
crystallographic data provided for each ligand using the
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PDBsum server;65 (ii) theoretical ligand-binding sites: formed
by the residues neighboring the ligand within a cutoff distance
of 6.0 Å in the crystal structure; (iii) second shell residues of
experimental binding sites; and (iv) second shell residues of
theoretical binding sites, as computed in our previous study.27

Second shell residues are the closest neighbors to experimental
and theoretical binding sites based on α carbon atom distances
of 5.0 Å or less. Additionally, the Z-score of the predicted
residue i, Zi, was calculated as follows:

Z
r r

i
i i=

(8)

The closest distance between the predicted residue i and the
experimental binding site is denoted by ri. ri is the mean
distance for all predicted residues, and σ is the standard
deviation. Zi is negative when ri is below the mean distance ri,
and a higher negative Z-score indicates the proximity of the
predicted residue to the experimental binding site. A mean Z-
score was computed for all hub residues.

■ RESULTS AND DISCUSSION
Statistical Analysis for Binding Site Prediction of the

Residue Interaction Network Model. To evaluate the
success of the residue interaction network model (RIN) in
predicting known ligand-binding sites, statistical analysis was
performed on a total of 105 crystal structures (91 ligand-bound
and 14 ligand-free) of 18 distinct class A GPCRs. It is
important to mention that RIN calculations were carried out
for the crystal structures without the ligands, i.e. the location of
the orthosteric and allosteric ligands were unknown to the
network model in the determination of the hub residues. The
residues with high betweenness values, called hub residues, are
assumed to have the ability to transmit a perturbation through
residue−residue contacts. These residues were shown to have a
high capacity to take a role in allosteric communication, thus
they plausibly mark a ligand-binding site.18,66 For the statistical
analysis, four reference data sets were used to assess the
binding site prediction ability of RIN through hub residues:

(i) the experimental dataset with known ligand-binding
residues

(ii) the experimental dataset with known ligand-binding
residues and their closest neighbors (the second shell
within a cutoff of 5.0 Å distance between α carbon
atoms)

(iii) the theoretical dataset containing the residues within a
cutoff of 6.0 Å to the ligand

(iv) the theoretical dataset with the ligand-binding residues
and their closest neighbors.

The statistics based on the hub residues predicted for 18
distinct class A GPCRs are presented in Supporting
Information Table S1. As multiple holo-structures were
investigated for each GPCR, rich binding site information
was gathered from multiple ligands bound to the orthosteric
and allosteric sites. The experimental binding site residues
interacting with a ligand in a specific site were collected and
included in the statistical analysis as a group. For example, the
agonists ADO and PSB36 and antagonist DU172 bind to the
orthosteric site of A1R (Supporting Information Figure S1a).
The residues interacting with these ligands were collected from
the PDBsum server and referred to as the experimental
orthosteric binding site residues in the statistical analysis. The
statistical analysis was carried out for the second shell residues

to consider the low resolution of the structural data. The
theoretical dataset and the second shell residues were also
investigated to understand if the method can predict the
binding site regions of proteins with a low number of crystal
structures. RIN predicted 4 true positives (Y12, T91, W247,
and H251) on the orthosteric binding site of A1R (Table S1
and Figure S1a) with 16.7% sensitivity, 87.1% specificity, 10%
precision, and 81.5% accuracy. Here, the low sensitivity and
precision are due to the other hub residues determined for the
protein structure that may be either evaluated as allosteric sites
or residues critical in allosteric communication. When the
second shell residues were included in the calculations, the
number of true positives increased to 12 for A1R, improving all
statistics. Considering the theoretical dataset and its second
shell further improved the number of true positives for the
orthosteric binding region of A1R, achieving 48.7% sensitivity,
90.4% specificity, 47.5% precision, and 84.1% accuracy. The
true positives on four reference data sets predicted by RIN on
the orthosteric region of A1R are marked as red spheres in
Figure S1a. Overall, the orthosteric binding sites were
successfully predicted by RIN for 18 distinct class A GPCR
with up to 77.8% sensitivity, 51.9% precision, 92.5% specificity,
and 86.2% accuracy, based on all four data sets. Here, the
statistics were noted to remarkably increase either with the
inclusion of more crystal structures in the experimental dataset
or by extending the dataset to the theoretical second shell.

The same approach was followed for the statistical analysis
of predicting known allosteric sites. The richness of the
structural data highlights numerous allosteric binding sites with
various ligands on GPCR class A proteins. For example, the
β2-adrenergic receptor (β2AR) has three distinct allosteric sites
that accommodate the NAM AS408 and Cmpd-15P bound to
the allosteric site 1 (extrahelical allosteric site) and allosteric
site 3 (intracellular allosteric binding site), while the positive
allosteric modulator (PAM) Cmpd-6FA bound to the allosteric
site 2.67 RIN also accurately predicted the known allosteric
drug binding regions on GPCR class A proteins. For instance,
when the experimental dataset of β2AR was considered, the
sensitivity and precision values were 11.1 and 1.8%,
respectively, if at least 1 true positive was predicted for a
distinct allosteric site. When the second shell residues were
included, the number of true positives as well as sensitivity and
precision percentages improved. On the other hand, RIN
predicted no true positives on experimental and theoretical
binding sites for the CC chemokine receptor 7 (CCR7) in
complex with the allosteric antagonist Cmp2105,68 where the
calculations were done for one crystal structure. However, it
predicted 1 true positive (Y96) on the experimental second
shell and 2 true positives (Y96, N99) on the theoretical second
shell dataset on the intracellular allosteric binding pocket.
Similarly, the allosteric binding site residues (agonist INT-777
bound region)69 on GPBAR and allosteric binding site 2
(BPTU bound region, lipidic interface)70 on the P2Y1 receptor
were predicted when the second shell residues were included.
Since RIN is based on the contact topology of the protein, it is
important to include numerous structures in the analysis.
Nonetheless, the model can correctly predict the location of
the allosteric binding sites based even on one crystal structure.

The statistical analysis confirmed that the hub residues
indeed mark the orthosteric and known allosteric sites for the
whole dataset of 105 GPCR class A structures. To further
evaluate the significance of the predictions, a Z-score analysis
was performed considering the hub residues and the
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experimental drug-binding site dataset for the orthosteric and
allosteric sites of the investigated receptors. A Z-score < − 1.0
indicates that the residue is close to the ligand-binding site,
suggesting a function in binding and/or a role in the allosteric
mechanism of the protein. Z-scores of the hub residues are
given in Supporting Information Figures S1−S18 separately for
the orthosteric and allosteric sites. True positives predicted on
the orthosteric, and allosteric experimental binding sites are
marked in red. Mean Z-scores for the orthosteric, and allosteric
sites were at least −1.93 (CCR2) and −1.36 (B2AR),
respectively. With a more focused look, the majority of the
mean Z-scores were around −2.0 highlighting the success of
the RIN model in predicting known allosteric residues based
on structures without the inclusion of ligands in the
calculations.
Determination of the Putative Allosteric Binding

Sites. Among the dataset, SILCS GCMC-MD simulations of 7
class A GPCR structures, namely adenosine A1 receptor
(A1R), β2-adrenergic receptor (β2AR), chemokine receptor

CXCR2, dopamine receptor D1 (DRD1), free fatty acid
receptor (FFA1, also known as GPR40), muscarinic receptor
type 2 (M2), and δ-opioid receptor (OPRD) were performed.
SILCS simulations and subsequent SILCS-Hotspots45 were
used to assess the druggability of putative allosteric sites for the
class A GPCRs that were suggested by the RIN model. The
SILCS method provides a detailed map of potential fragment
binding sites on the target protein. This method incorporates
extensive fragment screening in the field of the FragMaps with
SILCS-MC docking and fragment clustering. Consequently, it
identifies potential fragment binding sites, or Hotspots, and
prioritizes them based on mean LGFE scores or other user-
selected metrics.

For the identification of binding sites appropriate for drug-
like molecules, first, Hotspots next to the hub residues within a
distance of 5 Å were considered. Not only the most favorable
Hotspots based on mean LGFE scores but also sites with
adjacent Hotspots were preferred based on the assumption
that 2 or more fragments need to be linked to create drug-like

Figure 1. RIN and SILCS calculations predicted the known binding sites and proposed six putative allosteric sites for A1R. (A) Structure of A1R
(tan cartoon) with the SILCS-Hotspots (vdW spheres, colored by ranking from least favorable mean LGFE (blue) to most favorable mean LGFE
(red)) from two perspectives. Hub residues in the residue interaction network are colored in ruby in the cartoon representation. Fragments on
Hotspots associated with proposed sites (#1−6) are displayed as spheres. The details of the site prediction are given in Table S2. (B) FragMaps
displayed on the structure for each site in mesh including the apolar (green, − 0.9 kcal/mol), H-bond donor (blue, − 0.9 kcal/mol), H-bond
acceptor (red, − 0.9 kcal/mol), negative (orange, − 1.2 kcal/mol), and positive (cyan, − 1.2 kcal/mol) FragMap types.
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molecules (molecules with molecular weight >200 Da).
Furthermore, the number of fragments in the Hotspots of
interest was considered for binding site prediction. In the
following, we first discussed the findings for the known binding
sites, i.e., orthosteric and allosteric, if the investigated crystal
structures included a ligand. Then, potential allosteric sites
predicted based on the combination of hub residues and
SILCS predictions were given. In addition, for each case, we
performed a spectral analysis of the graphs generated by the
RIN model to reveal the distinct structural domains on the
receptors similar to a previous study,56 and to show that both
known and predicted binding sites are located at the interface
of structural domains.
Adenosine A1 Receptor. The adenosine A1 receptor

(A1R) is a prospective pharmacological target for the treatment
of neuropathic pain.71 Developing a selective agonist and/or
antagonist against the A1R is vital in preventing any side effects

associated with conserved sites. Recently, benzyloxy-cyclo-
pentyladenosine (BnOCPA) has been discovered as an A1R
selective agonist used as an analgesic drug without inducing
sedation, bradycardia, hypotension, or respiratory depression.72

A1R is also essential for cardiac, and renal activities, which
highlights A1R as an attractive drug target.73

We investigated 5 crystal structures listed in Supporting
Information Table S1 involving orthosteric agonist and
antagonists, and a PAM using the RIN model to determine
the hub residues that have a high capacity to send and receive
perturbations throughout the receptor structure. RIN was able
to predict the orthosteric and allosteric binding sites with high
statistical values. Similarly, SILCS-Hotspot calculations based
on the crystal structure with PDB ID 7ld4 successfully found
the known binding sites of A1R (Table S2). The number of
fragments engaged in the orthosteric site was up to 87
belonging to Hotspot 4 (−4.28 kcal/mol mean LGFE)

Figure 2. RIN and SILCS findings for β2AR. (A) Structure of β2AR (tan cartoon) with the SILCS Hotspots (vdW spheres colored from least
favorable mean LGFE (blue) to red (most favorable mean LGFE)) and the hub residues (in ruby) is shown from two perspectives. Fragments on
Hotspots associated with proposed sites (#1−6) are displayed as spheres. Details of the site prediction are given in Table S3. (B) FragMaps
displayed on the structure for each site in mesh, explicitly showing the generic apolar (green, −0.9 kcal/mol), generic H-bond donor (blue, −0.9
kcal/mol), generic H-bond acceptor (red, −0.9 kcal/mol), negative (orange, −1.2 kcal/mol), and positive (cyan, −1.2 kcal/mol) FragMap types.
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overlapping with selective covalent antagonist DU172,
antagonist PSB36, and endogenous agonist adenosine.
DU172 also overlapped with the Hotspot 54. In addition,
Hotspot 2 is within 5 Å of orthosteric site ligands. From Table
S2, it seems that no hub residues were detected near Hotspots
2, 4, and 54 within a distance of 5 Å. In fact, RIN was able to
predict 4 true positives for both orthosteric and allosteric sites
of A1R according to the experimental dataset (Table S1). This
discrepancy is due to the tight cutoff distance of 5 Å between
the hub residues and Hotspots used to propose putative
binding sites. For some known binding sites, also including the
orthosteric binding site of A1R, the distance between a Hotspot
and a hub residue was slightly higher than 5 Å. On the other
hand, Hotspots 6 and 57 with a total of 87 fragments were
found next to the PAM in the protein−lipid interface. In this
case, the hub residue L276 was located near Hotspot 6. These
results, which are illustrated in Figure 1A, showed the success
of the implemented methodology in predicting known binding
sites of A1R.

The druggability of the putative allosteric sites predicted by
RIN was determined with the SILCS-Hotspots calculations for
the crystal structure PDB ID 7ld4. Here, we focused on the
favorable Hotspots involving a high number of fragments with
high LGFE values that are within a 5 Å distance of the hub
residues (Table S2). Besides the known binding sites, RIN and
SILCS-Hotspots determined six putative allosteric sites mostly
at the protein−lipid interface. These are shown in Figure 1A
and listed in Supporting Information Table S2. Sites #1 and #2
mark two distinct cavities occupied by numerous fragments.
Mean LGFE values of Hotspots 3, 41, and 42 at site #1 were
−4.75, −3.05, and −3.03 kcal/mol, respectively, and the
number of fragments was up to 83, all indicating the
druggability of this site. Site #2 accommodates Hotspots 7,
8, and 68, with a total number of fragments of 180. Site #2 is
surrounded by the hub residues L96, A100, V103, and W188
and adjacent to the highly conserved DRY motif that regulates
conformational states of class A GPCRs.74 Sites #3, and #4 are
neighboring sites engaging with Hotspot 28 (mean LGFE −
3.32 kcal/mol) with 62 fragments, and Hotspot 40 (mean
LGFE is −3.12 kcal/mol), respectively. Another plausible
allosteric drug binding site #5 faces the extracellular site,
whereas site #6 is neighboring the orthosteric site of A1R.
There are other predicted sites with a low number of
fragments, which may be also evaluated as potential allosteric
sites (Table S2, last row). Figure 1B shows the FragMaps for
A1R obtained from the SILCS-Hotspots calculations for the
putative allosteric sites #1−6. Sites #1, #3, #4, and #5 are
mostly occupied with apolar fragments and a few H-bond
acceptor fragments. Site #2 accommodates apolar, H-bond
acceptor, and H-bond donor groups, whereas site #6 which is
an embedded cavity in the receptor is dominated by H-bond
donor, H-bond acceptor, negative and positive fragments.

β2-Adrenergic Receptor. β2-adrenergic receptor (β2AR)
interacts with adrenaline and is prominent in airway smooth
muscles as well as cardiac and uterine muscles. It is clinically
investigated for bronchial asthma and chronic obstructive
pulmonary disease.75 The protein is widely expressed with
distinct densities on various immune cells, including T cells, B
cells, dendritic cells (DCs), and macrophages,76 which makes
β2AR an important target in numerous diseases. The
orthosteric site of β2AR is occupied by several agonists and
antagonists, as shown by structural data (PDB IDs: 6oba, 6n48,
7dhi, 7dir, 7bz2, 6ni3, 6prz, 6ps1, 6ps3, 6ps5, 6ps0, 6ps4, 6mxt,

5x7d, 5d5b, 4qkx, 4ldo, 4ldl, 3pds). Since agonists activate all β
subtypes, a selective β2AR agonist as well as a selective
antagonist have not been approved by the FDA so far,75 and
efforts to identify novel allosteric modulators for the protein
are ongoing including the application of the SILCS method-
ology.51

RIN and SILCS-Hotspots predicted the orthosteric and
three known allosteric sites (Supporting Information Table S1
and S3) illustrated on the β2AR crystal structure with PDB ID
5x7d (Figure 2A). The Hotspots 20, 31, 41, 47, 55, and 67
determined by the SILCS-Hotspots calculations are located in
the orthosteric pocket. The known allosteric ligand AS408,
overlaps with Hotspots 1 and 12 at allosteric site 1 also
accommodating the hub residues E122 and P211 from RIN.
Hotspots 8 and 15 are adjacent to Cmpd-6FA at allosteric site
2. Next to allosteric site 2, Cmpd-15PA at allosteric site 3
overlaps with Hotspots 23, 58, and 60. FragMaps displayed in
Figure 2B indicate that the orthosteric site of β2AR interacts
with apolar and positively charged moieties consistent with the
functional groups in adrenaline and other known agonists.
While allosteric site #1 is predicted to bind apolar and
positively charged ligands, allosteric sites 2 and 3 are predicted
to engage apolar molecules.

Calculations suggested six potential allosteric binding sites
for β2AR (Figure 2A and Table S3). Site #1 is located at the
transmembrane region accessible from the intracellular site. It
is marked by Hotspots 24, 36, 38, and 51 with a mean LGFE
score of about −2.5 kcal/mol. Hub residue M215 on site #1
has been previously reported to undergo conformational
changes in the full agonist/G protein-bound and the inverse
agonist-bound forms.77 In addition, the hub residue Y326 of
the NPxxY motif is critical for receptor activation.78 Site #1 has
recently been identified as an allosteric site by SILCS
calculations for β2AR conformers generated from MD
simulations as verified by in vitro and ex vivo assays.51 Site
#2 is located at the lipid−protein interface indicated by
Hotspots 40 and 54, with a considerable number of fragments.
Sites #3 and #4 are indicated by Hotspots 2 (mean LGFEs
−3.27 kcal/mol) and 10 (mean LGFEs −2.85 kcal/mol),
respectively. Although these sites are narrow accommodating a
small number of fragments, they can be considered as putative
allosteric sites accessible from the extracellular face. Similarly,
sites #5 and #6 are occupied by a lower number of fragments.
However, both sites accommodate a high number of hub
residues next to motifs, such as CWxP78 and NpxxY,78

underlining these sites as critical. Also, M279 which assumes
different conformations at different states of the receptor,
similar to M215,77 is found in sites #5 and 6. Based on the
FragMaps (Figure 2B), site #1 can be targeted by H-bond
donor/acceptor groups and ligands with positive or negative
charge. Apolar fragments occupy site #1 as well. Site #2 is
predicted to accommodate ligands containing apolar, H-bond
donor, and acceptor groups. For sites #3−6, mostly apolar
FragMaps are observed.
Chemokine Receptor CXCR2. CXCR2, a subtype of the

chemokine receptor family expressed by neutrophils, is
essential in leukocyte recruitment and integrin activation.79

Malignancies, particularly melanoma, have autocrine activation
of CXCR2.80,81 A poor prognosis for patients is associated with
overexpression of CXCR2, suggesting that CXCR2 plays a
crucial role in pro-tumor actions.80 Thus, CXCR2 is evaluated
as an anticancer drug target.82
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The allosteric site of CXCR2 with the allosteric antagonist
00767013 in the intracellular region is successfully predicted
by RIN using apo-structures PDB ID 6lfl, 6lfo and holo-
structure PDB ID 6lfm (hub residue Y314) and SILCS-
Hotspots based on the crystal structure PDB ID: 6lfl (Hotspots
94 and 15) (Figure 3A). FragMaps suggested that the
intracellular region is suitable for negatively charged ligand
binding (Figure 3B). On the other hand, the binding cavity of
00767013 can establish H-bonds and apolar interactions.

Eight distinct druggable sites were suggested for CXCR2 as
displayed in Figure 3A and listed in Table S4. All these sites
accommodate a high number of fragments, underlying the
plausibility of the sites for drug targeting. Site #1, consisting of
Hotspots 6 with 84 fragments and 22 with 41 fragments, is
occupied by H-bond donor and acceptor groups along with
apolar fragments (Figure 3B). On the other hand, site #2, with
Hotspots 3 and 8 mean LGFE up to −4.39 kcal/mol, is
occupied mostly by apolar FragMaps. FragMaps also predicted
that molecules with apolar and H-bond acceptor moieties may
bind to sites #3 and #4, occupied by Hotspots 21 and 7,
respectively. Site #5 comprises toggle switch residues (F130
and W264)83 detected as hub residues by RIN, and Hotspot 9
with 52 fragments at this particular site. Sites #6 and #8 at the
protein−lipid interface, engage with apolar molecules, and #7

at the extracellular region are also promising as drug-targeting
regions.
Dopamine Receptor DRD1. Dopamine receptors con-

stitute a critical part of the central nervous system, playing
roles in locomotion, cognition, and emotion.84 Numerous
clinical disorders, including hyperprolactinemia, Parkinson’s,
schizophrenia, Tourette syndrome, attention deficit/hyper-
activity, and Huntington’s syndrome, are caused by dysfunc-
tion of dopamine neurotransmission and its receptors.
Especially dopamine 1 (D1) receptor is associated with
memory, attention, impulse control, renal function, and
locomotion.85 Moreover, neuropsychiatric disorders and signal
transduction pathways in the cell which involve phospholipase
C activation and intracellular calcium release are related to
D1.85

Calculations with RIN using 13 ligand-bound crystal
structures listed in Table S1 and SILCS-Hotspots using PDB
ID: 7crh predicted the orthosteric and allosteric sites of DRD1
(Figure 4 and Table S5). The orthosteric site is occupied by
Hotspots 7, 11, and 24, with highly favorable mean LGFE
values. DRD1 agonists retrieved from crystal structures listed
in Table S1 overlap with Hotspot 24 including 66 unique
fragments, while adenosine overlaps with Hotspot 7. Positive
allosteric modulator LY3154207 located close to the intra-

Figure 3. RIN and SILCS findings for CXCR2. (A) Structure of CXCR2 (tan cartoon) with the SILCS Hotspots (vdW spheres colored from least
favorable mean LGFE (blue) to red (most favorable mean LGFE)) and the hub residues (in ruby) is shown from two perspectives. Fragments on
Hotspots associated with proposed sites (#1−8) are displayed as spheres. Details of the site prediction are given in Table S4. (B) FragMaps
displayed on the structure for each site in mesh, explicitly showing the generic apolar (green, −0.9 kcal/mol), generic H-bond donor (blue, −0.9
kcal/mol), generic H-bond acceptor (red, −0.9 kcal/mol), negative (orange, −1.2 kcal/mol), and positive (cyan, −1.2 kcal/mol) FragMap types.
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Figure 4. RIN and SILCS findings for DRD1. (A) Structure of DRD1 (tan cartoon) with the SILCS Hotspots (vdW spheres, colored from least
favorable mean LGFE (blue) to red (most favorable mean LGFE)) and the hub residues (in ruby) is shown from two perspectives. Fragments on
Hotspots associated with proposed sites (#1−13) are displayed as spheres. Details of the site prediction are given in Table S5. (B) FragMaps
displayed on the structure for each site in mesh, explicitly showing the generic apolar (green, −0.9 kcal/mol), generic H-bond donor (blue, −0.9
kcal/mol), generic H-bond acceptor (red, −0.9 kcal/mol), negative (orange, −1.2 kcal/mol), and positive (cyan, −1.2 kcal/mol) FragMap types.

Figure 5. RIN and SILCS findings for FFA1. (A) Structure of FFA1 (tan cartoon) with the SILCS Hotspots (vdW spheres, colored from least
favorable mean LGFE (blue) to red (most favorable mean LGFE)) and the hub residues (in ruby) is shown from two perspectives. Fragments on
Hotspots associated with proposed sites (#1−6) are displayed as spheres. Details of the site prediction are given in Table S6. (B) FragMaps
displayed on the structure for each site in mesh, explicitly showing the generic apolar (green, −0.9 kcal/mol), generic H-bond donor (blue, −0.9
kcal/mol), generic H-bond acceptor (red, −0.9 kcal/mol), negative (orange, −1.2 kcal/mol), and positive (cyan, −1.2 kcal/mol) FragMap types.
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cellular region of DRD1 is next to Hotspots 21 and 89 and it is
within 5 Å of Hotspots 10 and 105.

Ten allosteric sites are proposed for DRD1 based on
Hotspot occupancy and hub residues, which are detailed in
Table S5 and displayed in Figure 4A. Notably, proposed sites
are populated by numerous hub residues, mostly involved in
GPCR motifs that are affected by receptor activation. For
instance, site #1 is indicated with Hotspots 12, 28, and 46 with
a high number of fragments, and hub residues next to the
NPxxY motif. Site #7 also neighbors the NPxxY motif. Another
plausible site is site #2 with the hub residue V283, which is
adjacent to the toggle switch residue W285. The DRY motif
residue Y122 and Hotspot 50 mark site #5 as an attractive
target site. Figure 4B displays the FragMaps on the structure
from different perspectives. Notably, positive FragMaps are
populated at the extracellular site, whereas negative FragMaps
are noted for the intracellular site. With a closer look at the
putative sites, mostly apolar and a small amount of H-bond

donor/acceptor groups are predicted to have an affinity to sites
#1, #2, #5, #8, #9, #10, and #11. Sites #3, #4, and #5, which
are closer to the intracellular site bind negative fragments. Sites
#12 and #13 are noted to engage apolar fragments.
Free Fatty Acid Receptor FFA1. Free fatty acid receptor

(FFA1), also known as G protein-coupled receptor 40, is
located in intestinal enteroendocrine cells and pancreatic β
cells. It is triggered by saturated or unsaturated fatty acids, and
its partial agonists have been studied for the treatment of type
2 diabetes due to regulating insulin secretion.86 The known
allosteric sites 1 and 2 of FFA1 were successfully predicted by
RIN (crystal structures with PDB IDs: 4phu, 5kw2, 5tzy, 5tzr)
and SILCS-Hotspots (crystal structure PDB ID: 4phu) as
detailed in Table S6 and shown in Figure 5A. Allosteric site 1 is
near the extracellular site and allosteric site 2 is at the
transmembrane region. Calculations suggest that allosteric site
1 can bind both polar and apolar ligands while apolar ligands

Figure 6. RIN and SILCS findings for M2. (A) Structure of M2 (tan cartoon) with the SILCS Hotspots (vdW spheres, colored from least favorable
mean LGFE (blue) to red (most favorable mean LGFE)) and the hub residues (in ruby) is shown from two perspectives. Fragments on Hotspots
associated with proposed sites (#1−10) are displayed as spheres. Details of the site prediction are given in Supporting Information Table S7. (B)
FragMaps displayed on the structure for each site in mesh, explicitly showing the generic apolar (green, −0.9 kcal/mol), generic H-bond donor
(blue, −0.9 kcal/mol), generic H-bond acceptor (red, −0.9 kcal/mol), negative (orange, −1.2 kcal/mol), and positive (cyan, −1.2 kcal/mol)
FragMap types.
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are predicted to have affinity for the allosteric site 2 (Figure
5B).

The results from RIN and SILCS-Hotspots calculations
indicated two plausible allosteric regions for FFA1 (Figure
5A). Site #1 is occupied by Hotspots 1, 28, and 34 with mean
LGFE values changing between −4.80 and −2.50 kcal/mol,
while the cumulative number of fragments engaged in site #1 is
11. On the other hand, site #2 with Hotspots 50 and 51 is
adjacent to the orthosteric site of the GPCR. FragMaps
indicate that site #1 can accommodate apolar ligands, whereas
site #2 is appropriate for negatively charged ligands (Figure
5B).
Muscarinic Receptor Type 2. Muscarinic receptor type 2

(M2), a subtype of Muscarinic acetylcholine receptors, plays a
role in heart rate and temperature regulation.87 The smooth
muscles of the airway express both M2 and M3 muscarinic
receptors, with a preponderance of M2 receptors. The
adrenergic system’s role in mediating the relaxation of the
airway smooth muscle is inhabited by activation of the M2
receptors.88

Here, we investigated eight crystal structures of M2 (PDB
IDs: 3uon, 4mqs, 4mqt, 5yc8, 5zk3, 5zk8, 5zkb, 5zkc, 6oik,
6u1n) using RIN to calculate the hub residues with a high
capacity to send and receive a perturbation. Then, the SlLCS-
Hotspots simulations were performed based on PDB ID 3uon.
Hotspots within 5 Å of the hub residues were identified, and
mean LGFE values and the number of fragments were
considered to first assess the ability of this approach to find
known binding sites, and then to suggest druggable allosteric
sites (Table S7 and Figure 6A). RIN and SILCS successfully
predicted the orthosteric site and the nearby known allosteric
site at the extracellular region. SILCS Hotspots 6, 7, 45, and 64
overlap with the antagonist and agonist in the orthosteric
pocket, while Hotspots 33, 61, and 77 occupy the allosteric site
of M2 where LY2119620 binds. Analysis of the FragMaps
indicated that a positively charged ligand is expected to have
favorable interactions with the allosteric site of M2, while the
orthosteric site is predicted to interact with apolar and H-bond
donor/acceptor groups as well as positively charged ligands

Figure 7. RIN and SILCS findings for OPRD inactive state. (A) Structure of OPRD (tan cartoon) with the SILCS Hotspots (vdW spheres, colored
from least favorable mean LGFE (blue) to red (most favorable mean LGFE)) and the hub residues (in ruby) is shown from two perspectives.
Fragments on Hotspots associated with proposed sites (#1−11) are displayed as spheres. Details of the site prediction are given in Table S8. (B)
FragMaps displayed on the structure for each site in mesh, explicitly showing the generic apolar (green, −0.9 kcal/mol), generic H-bond donor
(blue, −0.9 kcal/mol), generic H-bond acceptor (red, −0.9 kcal/mol), negative (orange, −1.2 kcal/mol), and positive (cyan, −1.2 kcal/mol)
FragMap types.
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(Figure 6B), consistent with the structure of muscarine and
related compounds.

RIN and SILCS proposed ten putative binding sites for M2
at the intracellular region and protein−lipid interface, as shown
in Figure 6A. Based on the FragMaps, apolar ligands are
predicted to occupy the proposed sites located in both the
intracellular region and protein−lipid interface (Figure 6B).
Notably, sites #1, #3, and #4 are occupied by the highest
number of fragments associated with fragments 50 and 83. Site
#2 in the intracellular region of M2 is occupied by Hotspot 9
with 30 fragments. Hotspots 20 and 54, of which the
cumulative fragments amounted to 41, reside in site #5. Sites
#6 and #7 at the protein−lipid interface are adjacent to TM2
and TM7. While site #6 contains Hotspots 3, 4, 26, and 51,
Hotspots 13, 30, 34, and 52 are located in site #7. Notably, site
#7 contains NPxxY motif residues P437 and Y440. Sites #8, #9

and #10 at the lipid−protein interface are each occupied by a
total of 25, 15, and 21 fragments, respectively.

δ-Opioid Receptor. OPRD is a target for the treatment of
neurological and psychiatric disorders,89 as well as chronic
pain.90 The structural motifs of the opioid receptors are largely
conserved, despite poor sequence conservation.91 The
orthosteric regions containing agonists and antagonists are
indicated by the crystal structures of the δ-opioid receptor
(PDB IDs: 4ej4, 4rwa, 4rwd, 6pt3, 8f7s, 4n6h, 6pt2), where the
active and inactive conformers were available for the
calculations. In the inactive conformer, OPRDinactive, the
orthosteric antagonist Naltrindole overlaps with Hotspot 5,
while it is adjacent to Hotspot 41 (Figure 7A and Supporting
Information Table S8).52 The binding region of another
peptide antagonist, DIPP-NH2, is near the Hotspots 1, 3, 5,
and the Hotspots 11 and 41 together with the hub residues

Figure 8. RIN and SILCS findings for the OPRD-active state. (A) Structure of OPRD (tan cartoon) with the SILCS Hotspots (vdW spheres,
colored from least favorable mean LGFE (blue) to red (most favorable mean LGFE)) and the hub residues (in ruby) is shown from two
perspectives. Fragments on Hotspots associated with proposed sites (#1−8) are displayed as spheres. Details of the site prediction are given in
Table S9. (B) FragMaps displayed on the structure for each site in mesh, explicitly showing the generic apolar (green, −0.9 kcal/mol), generic H-
bond donor (blue, −0.9 kcal/mol), generic H-bond acceptor (red, −0.9 kcal/mol), negative (orange, −1.2 kcal/mol), and positive (cyan, −1.2
kcal/mol) FragMap types.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c06172
ACS Omega 2024, 9, 40154−40171

40165

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c06172/suppl_file/ao4c06172_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c06172/suppl_file/ao4c06172_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06172?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06172?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06172?fig=fig8&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c06172/suppl_file/ao4c06172_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06172?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06172?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


V217 and H301. Moreover, SILCS and RIN calculations
detected the Na+ binding pocket as one of the most druggable
sites, marked by Hotspots 1 and 2 with highly favorable LGFE
values. It is worth noting that hub residue W274 is located at
the Na+ binding pocket, and is part of the CWxP motif.92 In
addition, at the orthosteric binding site hub residue F270 of
the PIF motif92 was found by the calculations. Based on
FragMaps (Figure 7B), the Na+ binding pocket has a predicted
affinity for positively charged ligands, as expected. On the
other hand, a variety of FragMaps was observed to bind the
orthosteric site, including H-bond donor/acceptor, positive
and negative maps as well as apolar FragMaps. This is
consistent with the wide range of different classes of molecules
that interact with the opioid receptors.93,94

Calculations suggested ten allosteric binding sites for
OPRDinactive shown on the crystal structure PDB ID: 4ej4 in
Figure 7A and detailed in Supporting Information Table S8.
The majority of the sites are near the intracellular region. For
example, site #1, easily accessible from the intracellular region,
involves the hub residues I259, M262, and L321 and Hotspots
54, 78, and 86. Sites #3, 5, and 6 were also detected in the
intracellular region. Particularly, site #6 is engaged with
Hotspot 16, and accommodates the DRY motif hub residue
D145. Here, 39 unique ring fragments of which the mean
LGFE is −3.35 kcal/mol bind site #6. Site #2 can be accessed
from the extracellular region and is close to the orthosteric

pocket, paving the way to design bitopic ligands for OPRD.
The number of fragments is 89 with a mean LGFE of −3.96
kcal/mol which highlights this site as highly druggable. Sites #4
and 7 neighboring each other are located at the protein−lipid
interface. In the vicinity of site #4, Hotspots 13 and 19 reside,
whereas site #7 is occupied by Hotspots 25 and 36. Site 4 is
also adjacent to site #11, which is occupied by Hotspots 17
and 87, with 14 and 18 fragments, respectively. Sites #8, #9,
and #10 have fewer fragments than other proposed sites.
Nonetheless, these sites accommodate a high number of hub
residues, which makes them interesting. FragMaps results are
shown for each suggested site in Figure 7B. Here, various
chemical moieties are noted to have affinity to sites #1−7
whereas only apolar fragments bound sites #8−11.

In addition, the active conformer of the receptor, OPRDactive,
was studied by RIN to propose hub residues based on this
contact topology, which is slightly different from the inactive
state. The active conformer modeled from 6pt3.pdb in our
previous study52 was also investigated using the SILCS-
Hotspots calculations. OPRD agonists, KGCHM07 and DPI-
287 overlapped with the location of Hotspots 1 and 2 in the
active conformer (Table S9). DPI-287 is adjacent to Hotspots
11 and 71 as well. In addition, Hotspot 27, involving 57 ring
fragments, is located in the vicinity of the orthosteric site.
Similar to findings for OPRDinactive, SILCS-Hotspots and RIN
point to the intracellular region of OPRDactive as highly

Figure 9. Distinct structural domains of A1R from nonzero Fiedler vectors 1, 2, and 3, are shown in cyan and wheat. (A) The positions of the
known binding sites are indicated by the ligands from the crystal structure (PDB ID: 7ld3). (B) Predicted sites are displayed by the hub residues
(in firebrick surface) and the Hotspots (in spheres) along with their numbering given in Table S2.
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druggable (Figure 8A). Site #1 is composed of Y233, I259, and
M262, and Hotspots 3, 6, and 8 with mean LGFE down to
−4.25 kcal/mol. Hotspot 8 has the highest number of 88
unique fragments, while Hotspot 3 is engaged with 11
fragments. Both mean LGFE values, a high number of
fragments, and different types of fragments (Figure 8B)
indicated site #1 as highly druggable. Site #2 (Hotspots 20,
35, 44; hub residues M262, V265, L321) is neighboring site #1
and promises another attractive binding site with a high
number of fragments up to 84. Site #3 is located at the
protein−lipid interface and can be evaluated as a putative
binding site. Here, numerous hub residues as well as Hotspots
10, 15, 24, and 58, with mean LGFE values of −3.73 to −2.76
kcal/mol, are located. Site #4 accommodating the hub residue
K122 is located at the extracellular region of OPRDactive and is
occupied by Hotspot 98 of which the fragment number is 24.
Other sites #5 to #8 seem to be relatively less druggable due to
their low number of fragments; nonetheless, fragments with H-
bond donor or acceptor groups are predicted to have an
affinity for sites #7 and #8 (Figure 8B).
Graph Spectral Analysis. The topology of the seven case

studies, i.e., A1R, β2AR (active and inactive), CXCR2, DRD1,
FFA1, M2, and OPRD (active and inactive), was decomposed
into residue clusters, or structural domains, with graph spectral
analysis. Here, the first three nonzero Fiedler vectors were
considered to determine the domains formed based on the
neighboring of the residues. Hotspots from SILCS simulations
were then superposed on the decomposed structures. We
noted a pattern, where the known orthosteric and allosteric
binding sites, hub residues together with the favorable
Hotspots were aligned along the structural domain interfaces
indicated by the first three nonzero Fiedler vectors. These
structural domains are formed by close-neighboring nodes that
are expected to move together in low-frequency motions
similar to the dynamic domains from the Gaussian Network
Model.27 The spectral analysis seems to reveal highly
connected residues that tend to move as a rigid domain
during the functional dynamics of the protein. Consequently,
the interfaces of the structural domains indicated by spectral
analysis have a high potential to act as hinge regions to
coordinate global motions and, consequently, may participate
in allosteric control.

Figure 9 shows the results for the A1R. Domains are
distinguished by different colors for each vector. The
orthosteric and allosteric binding sites of A1R are at the
domain interfaces (Figure 9A). The same observation was also
made for the other investigated structures, shown in Figures
S19A−S25A. Moreover, we also noted that the domain
interfaces pass through or are aligned along the hub residues
of proposed sites (Figure 9B) accommodating numerous
fragments as listed in Table S2. For instance, hub residue L90
and Hotspot 41 of site #1, hub residues L96, W188, and
Hotspot 7 of site #2, and hub residue L276 and Hotspot 40 of
site #4, reside along the structural domain interfaces of Fiedler
vector 1. Site #4 indicated by the hub residue L276 and
Hotspot 40 is at the domain interface detected by Fiedler
vector 1. On the other hand, spectral analysis from Fiedler
vector 2 indicated hub residue C85-Hotspot 42 (site #1), and
hub residues L96, W188 - Hotspots 7 and 68 (site #2) at the
domain interface. Sites #1 and #2 were also observed on the
domain interfaces of Fiedler vector 3. In addition, hub residue
I71 - Hotspot 82 of site #5 is located at the domain interface of
Fiedler vectors 2 and 3. The consistency of the graph spectral

analysis with the RIN results suggested that the binding of a
compound at a domain interface has a high potential to
allosterically modulate the conformational dynamics of the
receptor and thereby impact biological activity.

Similarly, for the other structures, the first three nonzero
Fiedler vectors from the graph spectral analysis reveal that the
proposed allosteric sites accumulate on the domain interfaces,
making our predictions highly plausible. Domain decom-
positions for the structures are displayed in Figures S19B−
S25B, where the indicated sites can be found in more detail in
Tables S2−S9.

■ CONCLUSIONS
Analysis of a collection of well-characterized proteins with
multiple known ligands indicated that the RIN model can
successfully predict known binding sites of class A GPCRs by
determining the hub residues of the network constructed based
on contact topology. The druggability of hub residues for 7
distinct class A GPCRs, namely adenosine A1 receptor, β2-
adrenergic receptor, chemokine receptor CXCR2, dopamine
receptor D1, free fatty acid receptor, muscarinic receptor type
2 (M2), and δ-opioid receptor, was then evaluated with the
SILCS-Hotspots technology. It was shown that known ligand-
binding sites were found at the mutual sites marked by the hub
residues and by the frequently sampled SILCS Hotspots.
Moreover, the mutual sites were located at the interfaces of
highly interconnected nodes according to the graph spectral
analysis. The node clusters seemed to form large domains with
an ability to move collectively, as in a functional hinge motion.
Thus, the domain interfaces can provide strategical spots to
design allosteric modulators. Finally, numerous putative
allosteric binding sites, remote from the orthosteric sites
were proposed for the 7 class A GPCRs, which are highly
critical in various diseases. The computational approach
presented here combines the key topological properties of
the protein structure and the detailed fragment-based mapping
and can serve as a highly useful tool to explore allosteric
binding regions of proteins and their complexes. To further
improve the predictions in exploring best binding sites,
developing a metric using rank-ordering can be beneficial.
However, this necessitates careful validation through a large
dataset, such as that applied during the development of a
recently improved ranking of the SILCS Hotspots using a
machine-learning model.95
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Thornton, J. M. PDBsum: Structural Summaries of PDB Entries.
Protein Sci. 2018, 27 (1), 129−134.
(66) Yuce, M.; Sarica, Z.; Ates, B.; Kurkcuoglu, O. Exploring

Species-Specific Inhibitors with Multiple Target Sites on S. Aureus
Pyruvate Kinase Using a Computational Workflow. J. Biomol. Struct.
Dyn. 2023, 41 (8), 3496−3510.
(67) Liu, X.; Masoudi, A.; Kahsai, A. W.; Huang, L.-Y.; Pani, B.;

Staus, D. P.; Shim, P. J.; Hirata, K.; Simhal, R. K.; Schwalb, A. M.;
Rambarat, P. K.; Ahn, S.; Lefkowitz, R. J.; Kobilka, B. Mechanism of b
2 AR Regulation by an Intracellular Positive Allosteric Modulator.
http://science.sciencemag.org/.
(68) Jaeger, K.; Bruenle, S.; Weinert, T.; Guba, W.; Muehle, J.;

Miyazaki, T.; Weber, M.; Furrer, A.; Haenggi, N.; Tetaz, T.; Huang,
C. Y.; Mattle, D.; Vonach, J. M.; Gast, A.; Kuglstatter, A.; Rudolph, M.
G.; Nogly, P.; Benz, J.; Dawson, R. J. P.; Standfuss, J. Structural Basis
for Allosteric Ligand Recognition in the Human CC Chemokine
Receptor 7. Cell 2019, 178 (5), 1222−1230.e10.
(69) Yang, F.; Mao, C.; Guo, L.; Lin, J.; Ming, Q.; Xiao, P.; Wu, X.;

Shen, Q.; Guo, S.; Shen, D.-D.; Lu, R.; Zhang, L.; Huang, S.; Ping, Y.;
Zhang, C.; Ma, C.; Zhang, K.; Liang, X.; Shen, Y.; Nan, F.; Yi, F.;
Luca, V. C.; Zhou, J.; Jiang, C.; Sun, J.-P.; Xie, X.; Yu, X.; Zhang, Y.
Structural Basis of GPBAR Activation and Bile Acid Recognition.
Nature 2020, 587 (7834), 499−504.
(70) Zhang, D.; Gao, Z. G.; Zhang, K.; Kiselev, E.; Crane, S.; Wang,

J.; Paoletta, S.; Yi, C.; Ma, L.; Zhang, W.; Han, G. W.; Liu, H.;
Cherezov, V.; Katritch, V.; Jiang, H.; Stevens, R. C.; Jacobson, K. A.;
Zhao, Q.; Wu, B. Two Disparate Ligand-Binding Sites in the Human
P2Y1 Receptor. Nature 2015, 520 (7547), 317−321.
(71) Draper-Joyce, C. J.; Bhola, R.; Wang, J.; Bhattarai, A.; Nguyen,

A. T. N.; Cowie-Kent, I.; O’Sullivan, K.; Chia, L. Y.; Venugopal, H.;
Valant, C.; Thal, D. M.; Wootten, D.; Panel, N.; Carlsson, J.; Christie,
M. J.; White, P. J.; Scammells, P.; May, L. T.; Sexton, P. M.; Danev,
R.; Miao, Y.; Glukhova, A.; Imlach, W. L.; Christopoulos, A. Positive
Allosteric Mechanisms of Adenosine A1 Receptor-Mediated An-
algesia. Nature 2021, 597 (7877), 571−576.
(72) Wall, M. J.; Hill, E.; Huckstepp, R.; Barkan, K.; Deganutti, G.;

Leuenberger, M.; Preti, B.; Winfield, I.; Carvalho, S.; Suchankova, A.;
Wei, H.; Safitri, D.; Huang, X.; Imlach, W.; La Mache, C.; Dean, E.;
Hume, C.; Hayward, S.; Oliver, J.; Zhao, F.-Y.; Spanswick, D.;
Reynolds, C. A.; Lochner, M.; Ladds, G.; Frenguelli, B. G. Selective
Activation of Gαob by an Adenosine A1 Receptor Agonist Elicits
Analgesia without Cardiorespiratory Depression. Nat. Commun. 2022,
13 (1), No. 4150.
(73) Glukhova, A.; Thal, D. M.; Nguyen, A. T.; Vecchio, E. A.; Jörg,

M.; Scammells, P. J.; May, L. T.; Sexton, P. M.; Christopoulos, A.

Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype
Selectivity. Cell 2017, 168 (5), 867−877.e13.
(74) Rovati, G. E.; Capra, V.; Neubig, R. R. The Highly Conserved

DRY Motif of Class A G Protein-Coupled Receptors: Beyond the
Ground State. Mol. Pharmacol. 2007, 71 (4), 959−964.
(75) Abosamak, N. E. R.; Shahin, M. H. Beta2 Receptor Agonists and

Antagonists. https://www.ncbi.nlm.nih.gov/books/NBK559069/.
(76) Kolmus, K.; Tavernier, J.; Gerlo, S. B2-Adrenergic Receptors in

Immunity and Inflammation: Stressing NF-κB. Brain, Behav., Immun.
2015, 45, 297−310.
(77) Kofuku, Y.; Ueda, T.; Okude, J.; Shiraishi, Y.; Kondo, K.;

Maeda, M.; Tsujishita, H.; Shimada, I. Efficacy of the B2-Adrenergic
Receptor Is Determined by Conformational Equilibrium in the
Transmembrane Region. Nat. Commun. 2012, 3 (1), No. 1045.
(78) Jones, E. M.; Lubock, N. B.; Venkatakrishnan, A.; Wang, J.;

Tseng, A. M.; Paggi, J. M.; Latorraca, N. R.; Cancilla, D.; Satyadi, M.;
Davis, J. E.; Babu, M. M.; Dror, R. O.; Kosuri, S. Structural and
Functional Characterization of G Protein−Coupled Receptors with
Deep Mutational Scanning. eLife 2020, 9, No. e54895.
(79) Stadtmann, A.; Zarbock, A. CXCR2: From Bench to Bedside.

Front. Immun. 2012, 3, No. 263.
(80) Korbecki, J.; Kupnicka, P.; Chlubek, M.; Gorący, J.; Gutowska,

I.; Baranowska-Bosiacka, I. CXCR2 Receptor: Regulation of
Expression, Signal Transduction, and Involvement in Cancer. Int. J.
Mol. Sci. 2022, 23 (4), 2168.
(81) Yang, J.; Richmond, A. Constitutive IkappaB Kinase Activity

Correlates with Nuclear Factor-kappaB Activation in Human
Melanoma Cells. Cancer Res. 2001, 61 (12), 4901−4909.
(82) Sharma, B.; Nawandar, D. M.; Nannuru, K. C.; Varney, M. L.;

Singh, R. K. Targeting CXCR2 Enhances Chemotherapeutic
Response, Inhibits Mammary Tumor Growth, Angiogenesis, and
Lung Metastasis. Mol. Cancer Ther. 2013, 12 (5), 799−808.
(83) Liu, K.; Wu, L.; Yuan, S.; Wu, M.; Xu, Y.; Sun, Q.; Li, S.; Zhao,

S.; Hua, T.; Liu, Z.-J. Structural Basis of CXC Chemokine Receptor 2
Activation and Signalling. Nature 2020, 585 (7823), 135−140.
(84) Missale, C.; Nash, S. R.; Robinson, S. W.; Jaber, M.; Caron, M.

G. Dopamine Receptors: From Structure to Function. Physiol. Rev.
1998, 78 (1), 189−225.
(85) Mishra, A.; Singh, S.; Shukla, S. Physiological and Functional

Basis of Dopamine Receptors and Their Role in Neurogenesis:
Possible Implication for Parkinson’s Disease. J. Exp Neurosci 2018, 12,
No. 117906951877982.
(86) Feng, X.-T.; Leng, J.; Xie, Z.; Li, S.-L.; Zhao, W.; Tang, Q.-L.

GPR40: A Therapeutic Target for Mediating Insulin Secretion. Int. J.
Mol. Med. 2012, 30 (6), 1261−1266.
(87) Moss, R.; Sachse, F. B.; Moreno-Galindo, E. G.; Navarro-

Polanco, R. A.; Tristani-Firouzi, M.; Seemann, G. Modeling Effects of
Voltage Dependent Properties of the Cardiac Muscarinic Receptor on
Human Sinus Node Function. PLoS Comput. Biol. 2018, 14 (10),
No. e1006438.
(88) Hirshman, C. A.; Lande, B.; Croxton, T. L. Role of

M2Muscarinic Receptors in Airway Smooth Muscle Contraction.
Life Sci. 1999, 64 (6−7), 443−448.
(89) Pradhan, A. A.; Befort, K.; Nozaki, C.; Gavériaux-Ruff, C.;

Kieffer, B. L. The Delta Opioid Receptor: An Evolving Target for the
Treatment of Brain Disorders. Trends Pharmacol. Sci. 2011, 32 (10),
581−590.
(90) Quirion, B.; Bergeron, F.; Blais, V.; Gendron, L. The Delta-

Opioid Receptor; a Target for the Treatment of Pain. Front. Mol.
Neurosci. 2020, 13, No. 52.
(91) Granier, S.; Manglik, A.; Kruse, A. C.; Kobilka, T. S.; Thian, F.

S.; Weis, W. I.; Kobilka, B. K. Structure of the δ-Opioid Receptor
Bound to Naltrindole. Nature 2012, 485 (7398), 400−404.
(92) Wong, T.-S.; Li, G.; Li, S.; Gao, W.; Chen, G.; Gan, S.; Zhang,

M.; Li, H.; Wu, S.; Du, Y. G Protein-Coupled Receptors in
Neurodegenerative Diseases and Psychiatric Disorders. Signal Trans-
duction Targeted Ther. 2023, 8 (1), No. 177.
(93) Pathan, H.; Williams, J. Basic Opioid Pharmacology: An

Update. Br. J. Pain 2012, 6 (1), 11−16.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c06172
ACS Omega 2024, 9, 40154−40171

40170

https://doi.org/10.1038/nmeth.4067
https://doi.org/10.1038/nmeth.4067
https://doi.org/10.1038/nmeth.4067
https://doi.org/10.1002/jcc.20945
https://doi.org/10.1002/jcc.20945
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://doi.org/10.1002/pro.3289
https://doi.org/10.1080/07391102.2022.2051743
https://doi.org/10.1080/07391102.2022.2051743
https://doi.org/10.1080/07391102.2022.2051743
http://science.sciencemag.org/
https://doi.org/10.1016/j.cell.2019.07.028
https://doi.org/10.1016/j.cell.2019.07.028
https://doi.org/10.1016/j.cell.2019.07.028
https://doi.org/10.1038/s41586-020-2569-1
https://doi.org/10.1038/nature14287
https://doi.org/10.1038/nature14287
https://doi.org/10.1038/s41586-021-03897-2
https://doi.org/10.1038/s41586-021-03897-2
https://doi.org/10.1038/s41586-021-03897-2
https://doi.org/10.1038/s41467-022-31652-2
https://doi.org/10.1038/s41467-022-31652-2
https://doi.org/10.1038/s41467-022-31652-2
https://doi.org/10.1016/j.cell.2017.01.042
https://doi.org/10.1016/j.cell.2017.01.042
https://doi.org/10.1124/mol.106.029470
https://doi.org/10.1124/mol.106.029470
https://doi.org/10.1124/mol.106.029470
https://www.ncbi.nlm.nih.gov/books/NBK559069/
https://doi.org/10.1016/j.bbi.2014.10.007
https://doi.org/10.1016/j.bbi.2014.10.007
https://doi.org/10.1038/ncomms2046
https://doi.org/10.1038/ncomms2046
https://doi.org/10.1038/ncomms2046
https://doi.org/10.7554/eLife.54895
https://doi.org/10.7554/eLife.54895
https://doi.org/10.7554/eLife.54895
https://doi.org/10.3389/fimmu.2012.00263
https://doi.org/10.3390/ijms23042168
https://doi.org/10.3390/ijms23042168
https://doi.org/10.1158/1535-7163.MCT-12-0529
https://doi.org/10.1158/1535-7163.MCT-12-0529
https://doi.org/10.1158/1535-7163.MCT-12-0529
https://doi.org/10.1038/s41586-020-2492-5
https://doi.org/10.1038/s41586-020-2492-5
https://doi.org/10.1152/physrev.1998.78.1.189
https://doi.org/10.1177/1179069518779829
https://doi.org/10.1177/1179069518779829
https://doi.org/10.1177/1179069518779829
https://doi.org/10.3892/ijmm.2012.1142
https://doi.org/10.1371/journal.pcbi.1006438
https://doi.org/10.1371/journal.pcbi.1006438
https://doi.org/10.1371/journal.pcbi.1006438
https://doi.org/10.1016/S0024-3205(98)00586-4
https://doi.org/10.1016/S0024-3205(98)00586-4
https://doi.org/10.1016/j.tips.2011.06.008
https://doi.org/10.1016/j.tips.2011.06.008
https://doi.org/10.3389/fnmol.2020.00052
https://doi.org/10.3389/fnmol.2020.00052
https://doi.org/10.1038/nature11111
https://doi.org/10.1038/nature11111
https://doi.org/10.1038/s41392-023-01427-2
https://doi.org/10.1038/s41392-023-01427-2
https://doi.org/10.1177/2049463712438493
https://doi.org/10.1177/2049463712438493
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06172?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(94) Wang, Y.; Zhuang, Y.; DiBerto, J. F.; Zhou, X. E.; Schmitz, G.
P.; Yuan, Q.; Jain, M. K.; Liu, W.; Melcher, K.; Jiang, Y.; Roth, B. L.;
Xu, H. E. Structures of the Entire Human Opioid Receptor Family.
Cell 2023, 186 (2), 413−427.e17.
(95) Nordquist, E. B.; Zhao, M.; Kumar, A.; MacKerell, A. D., Jr.

Combined Physics- and Machine-Learning-Based Method to Identify
Druggable Binding Sites Using SILCS-Hotspots. J. Chem. Inf. Model.
Accepted for publication, 2024. DOI: 10.26434/chemrxiv-2024-
hrqq9-v2.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c06172
ACS Omega 2024, 9, 40154−40171

40171

https://doi.org/10.1016/j.cell.2022.12.026
https://doi.org/10.26434/chemrxiv-2024-hrqq9-v2
https://doi.org/10.26434/chemrxiv-2024-hrqq9-v2
https://doi.org/10.26434/chemrxiv-2024-hrqq9-v2?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.26434/chemrxiv-2024-hrqq9-v2?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06172?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

