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Abstract

Random forest (RF) analysis of genetic data does not require specification of the mode of
inheritance, and provides measures of variable importance that incorporate interaction effects. In
this paper we describe RF-based approaches for assessment of gene and haplotype importance, and
apply these approaches to a subset of the North American Rheumatoid Arthritis Consortium case-
control data provided by Genetic Analysis Workshop 16. The RF analyses of 37 genes identified
many of the same genes as logistic regression, but also suggested importance of certain single-
nucleotide polymorphism and genes that were not ranked highly by logistic regression. A new
permutation method did not reveal strong evidence of gene-gene interaction effects in these data.
Although RFs are a promising approach for genetic data analysis, extensions beyond simple single-
nucleotide polymorphism analyses and modifications to improve computational feasibility are

needed.

Background

Although it is expected that gene-gene interactions
contribute to complex traits, most studies assess genetic
associations with one single-nucleotide polymorphism
(SNP) or one gene at a time. Model-based methods for
studying gene-gene interactions in genome-wide associa-
tion studies have been proposed [1], but these methods
exacerbate multiple-testing problems and are computa-
tionally challenging. Moreover, they are generally used
to test only for two-way interactions that over-simplify
the disease-causing mechanisms.

Random forests (RFs) have been proposed as an
alternative strategy for the analysis of genetic data
[2-5]. Although RFs are not well suited for assessment
of statistical significance [6], they may prove useful for
prioritizing SNPs or genes for further study. RFs can be
applied when many potential predictors exist, and
have good predictive performance. More importantly,
these methods do not require specification of the
mode of inheritance, and assessment of variable
importance (VI) incorporates interaction effects. RFs
are usually fitted using single SNPs as predictors, and
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single-SNP importance measures are calculated. Con-
sideration of haplotype [7,8] or gene-level importance
measures may reveal additional effects.

In this paper we describe novel uses of the RF approach
for the assessment of gene and haplotype importance,
and apply the proposed approaches to the detection of
genes containing variations that predict rheumatoid
arthritis (RA).

Methods

Data

We analyzed genotypes of 868 cases and 1194 controls
from the North American Rheumatoid Arthritis Con-
sortium (NARAC) Genetic Analysis Workshop 16 data
for 17 candidate genes selected on the basis of a
literature search (PADI4, PTPN22, ITGAV, STAT4, IL1B,
CTLA4, IL13, LTA, HLA-A, HLA-B, HLA-C, VEGFA, TNF,
IL6, C5, TRAF1, and MS4A1) as well as 20 “null” genes
not suspected to have an impact on RA risk. SNPs with
low call rates (<95%) or not in Hardy-Weinberg
equilibrium (p < 0.001) were excluded. In addition,
random subsets of SNPs were excluded from several
large null genes, leading to 135 candidate-gene SNPs
and 110 null-gene SNPs. For haplotype analyses tag
SNPs were selected for each gene using H-clust http://
wpicr.wpic.pitt.edu/WPICCompGen/hclust/hclust.htm.
MACH [9] was used to impute missing genotypes
before analysis.

Basic RF analysis

The RF method implemented in the R package random-
Forest [10] was used to analyze 245 SNPs in 37 genes
with RA case/control status as the outcome. For a
detailed description of the RF approach, see Breiman
[6]. We used the default tuning parameter m,,, = \/5,
where p is the total number of predictor variables (p =
245) and generated forests with 5000 trees. Our results
are based on the scaled mean decrease in accuracy
measure of VI. We first used SNP genotypes coded as
0, 1, or 2 as predictors and ranked SNPs based on the
single-SNP VI. Subsequently, we considered novel ways
of assessing gene and haplotype importance.

Application of RFs for studying gene and

haplotype effects

To assess gene importance based on SNP VI measures,
we ranked genes according to 1) the maximum SNP
VI over all SNPs in a gene, or 2) the mean SNP VI for
a gene. Further, we implemented a RF analysis of
haplotype effects, similar to that proposed by Non-
yane and Foulkes [8]. The function Haplo.EM [11] in
the statistical package R was used to estimate the
posterior probabilities of all possible haplotype pairs
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in each gene, for each person, given their genotypes. A
pair of haplotypes in each gene was then drawn for
each person according to these probabilities, and a RF
with 10 trees was grown. This process of randomly
selecting haplotypes from their posterior distributions
and fitting a RF of 10 trees was repeated 100 times.
The 100 sets of 10 trees were then combined, and
the VI of each haplotype was calculated using the
full ensemble of 1000 trees. Measures of haplotype
importance were used to calculate gene importance
in a way similar to using SNP importance measures
(i.e., based on the maximum or mean haplotype VI
for a gene).

A permutation approach for investigating gene-gene
interactions

To assess the impact of genetic variations not only as
predictors of RA but also as modifiers of the effects of
other genes, we propose a gene-permutation approach.
We first fit a RF to the original data and obtain a measure
of VI of each SNP in each gene (VI,, ;, g=1,..G,i=1,..,n,
where G is the number of genes and n, is the number of
SNPs in gene g). We then permute the genotypes at all
SNPs within a gene of interest among the subjects.
Genotypes at all SNPs within a gene are permuted
together, maintaining the LD structure within that gene.
After permuting gene k we fit a RF to the resulting data,
and recalculate the VI measures of all SNPs (VI ;,- , where
g and i are defined as above and k denotes the permuted
gene, k = 1,...,G). Finally, we calculate the difference of
pre- and post-permutation SNP VI measures
(DVI§, =Vl = VIt k=1,.,G 8=1,..Gi=1,..n).
By permuting genotypes at all SNPs in a gene, the effect
of the gene and all of its interactions are removed,
leading to a decrease in the VI of SNPs in the permuted
gene (if it is associated with the disease) as well as
possibly any gene that interacts with the permuted gene.
Therefore, for a SNP in the permuted gene (k = g), the
difference in pre- and post-permutation VI assesses
importance of the SNP, whereas for a SNP not in the
permuted gene (k = g), a decrease in VI may reveal gene-
gene interactions. Conversely, SNPs in genes in LD with
the permuted gene are expected to increase in impor-
tance after permutation.

To demonstrate the utility of this permutation proce-
dure, we applied it to two simulated datasets consisting
of genotypes at ten unlinked SNPs for 100 cases and 100
controls. Both datasets were generated assuming two
biallelic risk loci: SNP 1 with alleles a and A with p(A) =
0.60 and SNP 2 with alleles b and B with p(B) = 0.33.
Genotypes were randomly generated from these allele
frequencies assuming Hardy-Weinberg equilibrium.
Affected status was then randomly generated conditional
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on the genotype assuming the following penetrance
matrices:

aa aA AA aa aA AA

Model 1 - bb | .04 .06 .09 Model 2 bb |.05 .10 .20 .
bB | .08 .12 .18 bB | .10 .10 .10
BB | .16 .24 .36 BB | .20 .10 .05

The first 100 cases and 100 controls were retained for
analysis. For the dataset generated under Model 1, allele
A at SNP1 had a relative risk of 1.5 regardless of the
genotype at SNP2, and allele B at SNP2 had a relative
risk of 2 regardless of the genotype at SNP1. Model 2
represents a situation with weak marginal effects of SNPs
1 and 2, and a strong interaction between, the two SNPs.

Results

Results of the original RF analysis and a log-additive-
model logistic regression (LR) analysis are summarized
in Table 1. Although most top-ranking SNPs for the two
approaches are in the same genes (HLA-C, HLA-B, C5/
TRAF1, and TNF), SNPs in different genes were also
identified. For instance, SNP 152476601 in PTPN22 has
the third smallest p-value in LR analysis, but does not
rank high in the RF analysis. SNPs in PADI4 and VEGFA
have high RF importance measures, but do not have one
of the lowest p-values. For genes identified by both
approaches, different SNPs were often identified as the
most relevant. With both approaches, the highest
ranking SNPs were in candidate genes rather than in
“null genes".

Gene-level results based on the original SNP-RF as well
as the haplotype RF are summarized in Table 2. Again,
haplotypes in candidate genes ranked higher than “null
gene” haplotypes, with haplotypes in HLA-C, HLA-B, and
C5/TRAF1 having highest VI. Genes that ranked high

Table I: Top ten ranked SNPs based on logistic regression
p-values and RF VI (MDA)

SNP (gene)

Logistic regression Original RF

rs2074488 (HLA-C)
rs946 1680 (HLA-C)
rs2476601 (PTPN22)
rs2523619 (HLA-B)
rs3093662 (TNF)
rs3761847 (TRAFI)
rs2156875 (HLA-B)
rs239547| (HLA-C)
rs13207315 (HLA-C)
rs7026551 (C5)

rs2249742 (HLA-C)
rs2523619 (HLA-B)
rs833069 (VEGFA)
rs2501787 (PADI4)
rs10116271 (C5)

rs2596503 (HLA-B)
rs12685344 (C5)

rs2395471 (HLA-C)
rs3093662 (TNF)

rs2596501 (HLA-B)
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Table 2: Top five ranked genes based on alternative RF
approaches

Original RF Haplotype RF
max VI mean VI max VI mean VI
HLA-C VEGFA HLA-C cs

HLA-B TNF HLA-B TNF
VEGFA HLA-A c5 HLA-A
PADI4 HLA-B VEGFA VEGFA
cs HLA-C PADI4 ILI3

based on individual SNP importance were also identified
when haplotype importance was used.

Results of the gene-permutation approach applied to two
simulated datasets are shown in Figure 1. As expected,
for data simulated under a model with no interaction
between the two causal SNPs (SNP1 and SNP2),
permutation of SNP1 leads to a large change in
importance of SNP1, but not in the importance of
SNP2, and vice versa. For data simulated under a model
with a strong interaction of SNPs 1 and 2, permuting
either one of these SNPs leads to a large difference in
variable importance for the other causal SNP. When a
similar gene-permutation approach was applied to the
RA data, rankings based on differences in VI for SNPs in
the permuted gene (DVI;I», where k = g) were very
similar to the original SNP RF rankings. However,
removing the effects of any particular gene via permuta-
tion did not have a strong impact on the importance of
SNPs in any other genes (i.e., DVI;,- , where k = g, were
low for all k and g). Thus, this approach did not detect
any important gene-gene interactions in the NARAC
data.

Discussion

We applied variations of RFs to study 17 RA candidate
genes and 20 genes not believed to be related to RA. As
expected, on average candidate genes ranked higher in
terms of RF VI than “null” genes. The RF with SNPs as
predictors generally identified the same genes as LR, but
often different SNPs in those genes produced the top
ranking signals. One potential reason is that for the LR
analysis log-additive SNP effects were assumed, while the
RF analysis made no assumption about the mode of
inheritance of the disease. Also, the RF VI measure that we
used, the permutation-based mean decrease in prediction
accuracy, is expected to be biased towards more common
risk alleles, because SNPs with low minor allele frequencies
contribute to fewer cases in the population and thus tend
to have lower VI. Another difference between RF and LR
that may have contributed to our results is that RF analysis
takes into account interactions with other variables. This
potentially includes interactions with SNPs in the same
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Application of the gene-permutation method to investigate SNP and interaction importance in simulated
data. Labels along the x-axis identify the permuted SNP. Darker shades of green represent a bigger DVI. The first column of
each plot shows the changes in variable |mportance of all SNPs after permuting SNPI (DVI ), the second column shows the

change in importance after permuting SNP2 (DVI?), etc. Thus, the diagonal shows DVI(g

for k = g, while off diagonal k = g. A,

SNPI and SNP2 have marginal effects but no interaction effect. B, SNPs | and 2 interact to influence the probability of disease.

gene, which may reflect haplotype effects. Thus RFs, as
opposed to single SNP LR analysis, may be better suited to
identifying SNPs that impact disease via haplotype effects.
This is in line with our finding that genes ranked as most
important based on single-SNP RF analysis also ranked
highly based on a haplotype RF analysis. Simulations are
needed to further investigate these potential causes of
differences in results between LR and RF analysis.

It has been suggested that one of the key advantages of
RFs is that VI measures capture both main and
interaction effects; however, this has not been proven
empirically using large genetic datasets. Our gene-
permutation strategy did not reveal strong gene-gene
interactions. Several reasons may be postulated. First,
perhaps the analyzed SNPs do not interact substantially
in their effect on RA risk. This is a possibility, given the
fact that candidate genes were selected based on previous
association studies that focused on single-gene tests.
Also, standard RFs may not be optimal for detection of
interacting variables in highly dimensional data arising
from genetic studies. Further investigation of these
possibilities is necessary because the success of future
genetic studies depends on using methods that are best
suited to the true underlying disease models.

Conclusion

RFs are a promising approach for genetic data analysis,
and extensions beyond simple SNP analyses may
enhance their ability to detect predictors of complex
diseases. Improved computational strategies are needed
to apply these methods on a genome-wide scale, as well
as simulation studies comparing the novel RF
approaches with traditional statistical methods.
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