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Abstract: In recent years, photonic crystal fibers (PCFs) have attracted increasing attention. Compared
with traditional optical fibers, PCFs exhibit many unique optical properties and superior performance
due to their high degree of structural design freedom. Using large-mode area (LMA) fibers with
single-mode operation is essential to overcoming emerging problems as the power of fiber lasers
scales up, which can effectively reduce the power density and mitigate the influence of nonlinear
effects. With a brief introduction of the concept, classification, light transmission mechanism, basic
properties, and theoretical analysis methods of PCFs, this paper mainly compiles the worldwide
development of large-mode area and polarization-maintaining (PM) PCFs, and finally proposes
possible technical routes to realize the single-mode operation of LMA-PCFs and PM-LMA-PCFs.
Finally, the future development prospects of the PCFs are discussed.

Keywords: large mode area; polarization-maintaining; photonic crystal fiber; microstructure fiber;
high-power fiber lasers; single-mode operation

1. Introduction

Photonic crystal fibers [1–3] are also known as microstructured fibers [4] or porous
optical fibers [5]. They are a particular type of optical fiber characterized by the periodic
arrangement of microstructures around a solid or hollow defective core, forming the fiber’s
cladding, as shown in Figure 1. Silica-based PCFs can be divided into two types, i.e.,
solid-core fibers and hollow-core fibers [6]. The solid-core PCFs are fibers with silica glass
capillaries arranged around the core in a periodic pattern, and the refractive index of the
core material is higher than that of the cladding material. Hollow-core PCFs are fibers with
silica glass capillaries arranged in a periodic pattern around a silica glass tube, and the core
area contains an air hole. PCFs’ light-guiding mechanism is greatly distinguished from the
total internal reflection (TIR) light-guiding mechanism of conventional optical fibers.

Figure 1. Microstructural arrangement of solid-core PCFs and hollow-core PCFs [7].

Based on the different light-guiding mechanisms in solid-core and hollow-core PCFs,
we can further categorize PCFs into three main types, i.e., TIR-PCFs, hollow-core photonic
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bandgap fibers (HC-PBGFs), and hollow-core anti-resonant (HC-AR) PCFs. First, the TIR-
PCFs are refractive index guided, which uses a modified total internal reflection principle
for light transmission. In other words, light is confined to the higher refractive index
region in the solid-core. TIR-PCFs include the dispersion-compensated and dispersion-flat
PCFs for dispersion control, and the ones with large mode areas for high-power laser
transmission (Figure 2a,b). Those with a high birefringence characteristic (Figure 2c) can
also be applied to maintain the polarization states in the PCFs. Figure 2e shows a solid-
core large-pitch photonic crystal fiber. This fiber allows for large mode area single-mode
operation based on higher-order mode delocalization. PCFs for optical filtering, optical
coupling devices, and highly nonlinear PCFs for generating supercontinuum spectra are
exemplified in Figure 2a. Secondly, hollow-core photonic bandgap fibers (HC-PBGFs) use
the photonic bandgap effect to confine light to an air core that has a lower refractive index
than the surrounding region, as depicted in Figure 2f, for which the energy of the optical
field is concentrated in the large air hole of the core where the defect is formed, using the
defect state to guide light [6]. Photonic bandgap-type PCFs have specific requirements for
light waves, and only waves meeting certain wavelengths can appear to transmit in them
with the photonic bandgap effect. For the third type, as shown in Figure 2d, the hollow-core
anti-resonant (HC-AR) PCFs confine light to the core by suppressing the gap coupling
between the light propagating in the core and the outer cladding glass or cladding tube
through the light-guiding mechanism of anti-resonant reflection. The light transmission
mode is propagated in the core air for both HC-PBGF and HC-AR PCFs, which are unified
as hollow-core photonic crystal fibers (HC-PCFs). HC-PCFs, due to their broadband light
conduction and ultrahigh laser damage threshold, play essential roles in ultrashort and
ultra-intense laser pulse transmission [8], single-cycle pulse generation [9], and low-latency
optical communication [10], etc.

Figure 2. Microstructural arrangement of PCFs. (a) Total internal reflection (TIR) [11]; (b) Total
internal reflection (TIR) [12]; (c) Polarization-Maintaining Photonic Crystal Fiber [13]; (d) Hollow-core
anti-resonant (HC-AR) PCFs [14]; (e) Solid-core large-pitch photonic crystal fiber [15]; (f) Hollow-core
photonic bandgap fibers (HC-PBGFs) [16].

2. Properties and Theoretical Analysis Methods of PCFs

PCFs have many unique optical properties compared to conventional optical fibers.
These include the endlessly single-mode property [17–22], low confinement loss [23], ad-



Materials 2022, 15, 1558 3 of 23

justable dispersion property [24], high birefringence property [25], large mode area [26,27],
and large numerical aperture, which exhibit dominant advantages in overcoming various
challenges faced by traditional fiber lasers as laser power scales up rapidly. For instance,
the PCFs may achieve a sizable single-mode field area, which can effectively reduce the
power density and mitigate the influence of nonlinear effects. It can also improve the fiber
material’s damage threshold while ensuring the single-mode transmission quality. As
another example, the PCFs can achieve a large numerical aperture of the inner cladding,
which helps to improve the optical pumping coupling efficiency and make high-power
output possible with a relatively short fiber length.

2.1. Endless Single-Mode Transmission Characteristics Analysis

PCFs can be designed to have the endless single-mode property, where only the
fundamental mode can propagate through the fiber core for all wavelengths [18]. The cutoff
wavelength analysis of PCFs is not as simple as conventional fibers, because all modes
propagating in PCFs with a finite number of air hole rings are leaky [28]. An analysis of the
single-mode property for different structures of optical fibers requires careful consideration
of the most reasonable analysis method to be used.

Conventional refractive index guided fibers usually use the V-parameter to calculate
the normalized frequency. When the calculated V ≤ 2.405, it can be judged as having a
single-mode operation [6]. The refractive index of the cladding and core in conventional
fibers is uniformly distributed and it is easy to calculate the V-parameter and analyze the
single-mode property. Another single-mode verification method for conventional fibers is
when the confinement loss of the fundamental mode is <0.1 dB/m, while the confinement
loss of all higher-order modes is >1 dB/m. Usually, when the confinement loss of the first
higher-order mode is >1 dB/m, it can be judged as having a single-mode operation [29].

Compared with conventional double-clad fibers, PCFs are more flexible due to the
large freedom of their structural design. Single-mode property analysis can be performed by
calculating the V-parameter, Q-parameter, effective area and effective refractive index of the
second-order mode, confinement loss, core overlap factor, etc. However, the applicability
of each method is different, so it is necessary to analyze different fiber structures and select
an appropriate criterion.

By calculating Q-parameters for different normalized wavelengths λ/Λ and estimating
the negative minima at different air hole diameter to pitch ratios (d/Λ), the single-mode
operating interval of the PCFs can be obtained. The criterion of confinement loss adopted
for single-mode operation judgment in traditional optical fibers also applies to PCFs.
However, the confinement loss of PCFs strongly correlates with the number of air hole
rings. With the increasing number of air hole rings, the confinement loss can be reduced
greatly to 10−7~10−11 orders of magnitude, which is almost negligible. Hence, when the
number of air hole rings in the inner cladding is large, the confinement loss is no longer
applicable as a single-mode criterion for PCFs. When the V-parameter method is used, it is
necessary to calculate the effective refractive index of the fundamental space-filling mode
(nFSM) and the guided fundamental mode (ne f f ) in the air hole cladding.

For different fiber structures, the values of the effective core radius ρ are different.
Many different definitions of the effective core radius were proposed for fiber structures
with a triangular lattice replacing an air hole, such as 0.5Λ [30], Λ/

√
3 [31], 0.625Λ [32],

0.64Λ [33] and Λ [18,34]. The calculated V ≤ π can be used as a judge for single-mode
operation. Currently, the control of the laser output mode is no longer strictly limited by the
refractive index difference between the fiber core and the cladding. Modal analysis in terms
of the V-parameter has some technical limitations, such as the fact that the definition of the
core diameter seems to be nonunified in different studies [30–34]. The mode of the fiber
can be finely adjusted by the appropriate design of the fiber cross-section geometry, so that
the introduction of the core to the overlap factor can be used to determine the percentage of
fundamental modes. Three main methods judging whether one PCF can be in single-mode
operation or not are introduced afterwards separately.
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Method One: Q-parameter calculation [6,19,35,36].
The analytical method for the cutoff wavelength can be demonstrated by calculating

the Q-parameter, which is evaluated by analyzing the turning point of α/k0 with respect
to λ*/Λ. There is a significant negative minimum at λ*/Λ in the calculation of the Q-
parameter, and the Q-parameter’s expression is shown in Equation (1) [35], where α is the
loss constant, and k0 is the wavenumber [19].

Q =
d2 log

[
α
k0

]
d2 log(Λ)

(1)

By fixing the wavelength λ, the Q-parameters for different normalized wavelengths
λ*/Λ and estimating the negative minima at different d/Λ conditions, the single-mode
and multimode operation intervals of the PCFs can be obtained. As shown in Figure 3a, the
larger the number of air hole rings, the sharper the turning point of the Q-parameters [36],
and the more reliable this analytical method is. It should be emphasized that the Q-
parameter method effectively determines the cutoff wavelength only for PCFs with a large
number of air apertures.

Figure 3. (a) Variation in the Q value with normalized wavelength λ*/Λ as the number of air hole
rings varies [36]; (b) cutoff wavelength of fiber cores replacing 1 and 7 air hole PCFs [6].

Method two: Normalized cutoff frequency (V) [18–20,35,37].
The V-parameter is easy to calculate in standard fibers, because it depends on the

core radius and the refractive index difference, which are well defined. For PCFs, the
V-parameter differs from that of standard fibers, and the normalized frequency V is shown
in Equation (2) [18–20,37]:

V =
2πρ

λ

√
n2

e f f − n2
FSM, (2)

where ne f f is the effective refractive index of the fundamental guided mode, and nFSM is
the effective refractive index of the fundamental space-filling mode in the air hole cladding.
Usually, Λ is the hole-to-hole distance (also called pitch) of the triangular lattice. For the
studied PCFs, a suitable effective core radius needs to be selected, and ρ in the equation
represents the effective radius of the fiber core. ρ can be defined as 0.5Λ, Λ/

√
3, 0.625Λ,

0.64Λ, where Λ depends on the fiber structure.
In 2009, Stefano Selleri et al. studied triangular PCFs with different core geometries,

with a focus on the cutoff wavelengths of PCFs with one and seven air holes removed [35].
The boundary describing the single-mode and multimode operation regions in the phase
diagram of the restless single-mode region was calculated by considering the leakage loss
of the second-order mode. As shown in Figure 3b, for the fiber with a core replaced by one
air hole, its operation is in single-mode without cutoff when d/Λ < 0.405. For the fiber with
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its core replaced by seven air holes, single-mode operation is maintained without cutoff
when d/Λ < 0.035.

The numerical aperture (NA) of an optical fiber is an essential parameter, which
indicates the ability of the end face of the fiber to receive incident light, and the magnitude
of its value determines the ability of the fiber to receive light and the effect on mode
dispersion. The numerical aperture of PCFs is expressed as Equation (3):

NA =
√

n2
0 − n2

e f f , (3)

where ne f f is the effective refractive index, which is related to the structural parameters of
the cladding. When the aperture of the cladding changes, the effective refractive index ne f f
also changes, so the NA versus d/Λ curve can also be calculated.

Method Three: Core overlap factor (Γ) [38,39]

Γ =
x

hex
i(x, y)dxdy, (4)

i(x, y) =
1
P

Re
[

E× H∗

2
·ẑ
]

. (5)

The expression of the overlap integral is shown in Equation (4), and hex is the cross-
section of the core’s hexagonal fiber core doping. In Equation (5), i(x, y) is the normalized
intensity distribution of the guided mode [38,39], where P is the integral of the intensity over
the entire fiber cross-section. The fundamental mode intensity distribution is calculated
from the Poynting vector definition, which involves the three components of both the
electric and the magnetic fields of the guided mode. The overlap integral is an important
parameter to describe the single-mode property of ytterbium (Yb)-doped PCFs with a
large mode area. It provides the interaction between the Yb ions and the optical signal
as well as describing how tightly the modes are confined in the fiber core, helping to
distinguish whether the modes are guided or not. The concept of normalized intensity
is derived from the definition of the Poynting vector, which is the energy flow density
vector in the electromagnetic field, so the dual integral over the core and the entire cross-
section can be calculated using the time-averaged energy density. First, the magnetic field
H = (Hx, Hy, Hz) on the fiber cross-section is calculated by finite element analysis, and
then the electric field E = (Ex, Ey, Ez) is obtained by Maxwell’s equations based on the
distribution of the magnetic field. Finally, the core overlap factor (Γ) is obtained by double
integration of the normalized intensity of the fiber core region.

In 2012, Mette Marie Jørgensen et al. proposed a single-mode determination criterion
when optimizing a distributed mode-filtered fiber amplifier [38]. This determination
criterion is based on the evaluation of the mode overlap in the doped core region, defined
as the normalized integral of the mode intensity over the core region. To obtain effective SM
operation by means of a differential amplification mechanism, it defines the fundamental
mode (FM) overlap integral as higher than 0.8, and the overlap difference between FM and
the most detrimental higher-order mode (HOM) should be >0.25, which can be used as
a criterion for single-mode operation in optical fibers. This method is more suitable for
analyzing the structure of a fiber core replacing multiple air holes than the V-parameter
method, and the calculation results are more accurate.

2.2. Mode Area (Aeff) and Mode Field Diameter (MFD)

The main parameters affecting the transmission characteristics of PCFs include the air
hole diameter (d) and pitch (Λ), fiber diameter (D), and core diameter (Dcore). Therefore,
by adjusting the air hole size in the cladding, the refractive index difference (∆n) between
the cladding and the core of the PCFs can be precisely controlled to reach a minimal value,
thus achieving endlessly single-mode operation. At the same time, ∆n reduction can also
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effectively increase the mode field area [17,40]. The mode field area of a PCF is expressed
as Equation (6):

Ae f f =
(
∫ ∫ ∣∣E2

∣∣dxdy)2∫ ∫
|E4|dxdy

. (6)

E in the formula is the transverse electric field component of the PCFs. The wider the
transverse electric field distribution of the cross-section is, the larger the mode field area,
which is an essential guide for designing large mode area (LMA) PCFs. The effective mode
field diameter (MFD) is expressed as Equation (7):

MFD = 2

√
Ae f f

π
. (7)

2.3. Fundamental Mode Confinement Loss

Loss is a significant factor that must be considered for optical fibers. The loss of
conventional optical fibers has been reduced over the last 30 years. The minimum loss of
step index fused silica fiber at 1550 nm can be reduced as low as 0.017 dB/km [18,34]. For
both solid-core and hollow-core PCFs, the leakage loss or confinement loss needs to be
considered. This loss arises due to the limited number of air holes in the fiber cross-section,
and therefore, all PCFs guiding modes are leaky. For example, in a solid-core PCF, the light
is confined to the core by air holes, and if the air holes do not provide strong confinement,
the light leaks out. The expression for the confinement loss of PCFs [25] is shown in
Equation (8):

Closs =
40π

ln(10)λ
Im
(

ne f f

)[dB
m

]
, (8)

where ne f f is the effective refractive index of the fundamental mode and Im
(

ne f f

)
refers

to the imaginary part of the effective refractive index of the fundamental mode. The unit of
limiting loss is usually dB/m. According to the mode selection theory of PCFs. Single-mode
operation can be achieved in PCFs when the fundamental mode loss is <0.1 dB/m, and
all higher-order mode loss is >1 dB/m [29]. The first higher-order mode has the lowest
confinement loss of all higher-order modes. It is only necessary to determine whether
the confinement loss of the first higher-order mode is >1 dB/m to determine whether all
higher-order modes are >1 dB/m. Therefore, the fiber is judged to achieve effective single-
mode operation if the requirements are met. When the number of cladding air hole rings is
small for PCFs, the fiber single-mode operation can be judged by the fundamental mode
and the first higher-order mode confinement loss. However, as the number of cladding air
hole rings increases further, the confinement loss decreases sharply. It is impossible to use
confinement loss as a single-mode criterion for PCFs.

2.4. Dispersion Property

Dispersion is a physical phenomenon that causes pulse spreading in fiber optic trans-
mission due to different pulse frequencies or propagation speeds of various mode compo-
nents [24]. Dispersion impacts the transmission capacity and distance of the fiber. Disper-
sion can be regulated by the fiber material, fiber structure, and light transmission mode.
Materials with negative dispersion properties can counteract dispersion. Microstructured
fibers can also be designed to tailor dispersion. The dispersion is controlled by changing
the size and distribution of the air holes in the fiber cross-section. Among the methods of
transmitting light, people use optical solitons to transmit light in optical fibers, which can
maintain the same shape and speed for a long time and transmit a long distance.

The PCFs dispersion can be tailored to a large degree of freedom due to the flexibility
to adjust the fiber microstructure and the high refractive index difference between the silica
substrate (ne f f = 1.45) and the air hole (ne f f = 1.0). PCFs can obtain a wider dispersion
range than standard optical fibers.
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PCF dispersion mainly consists of material dispersion (Dm) and waveguide dispersion
(Dw). Different materials have different refractive indices. The light of different wavelengths
transmits at different speeds in the fiber material, resulting in dispersion production, which
causes pulse spreading. Since most PCFs are made of the same type of pure silica or
modified silica-based materials, the material dispersion is the same for different structures
of PCFs. The material dispersion can be calculated by Sellmeier’s formula (Equation (9)):

n(λ) =

√
1 + ∑

i≥1

Aiλ2

λ2 − Bi
, (9)

where Ai and Bi are Sellmeier coefficients, and λ is the wavelength (in µm).
The waveguide dispersion of PCFs is closely related to their microstructure, which can

be varied by changing the cross-section structure to obtain different waveguide dispersions
by means of Equation (10):

DW = −λ

c

d2ne f f

dλ2 , (10)

where ne f f is the effective refractive index and λ is the transmission wavelength (in µm). To
obtain the waveguide dispersion, the effective refractive index versus wavelength should
be found first. The effective refractive indices of different modes of PCFs at different
wavelengths can be obtained using COMSOL simulation software.

2.5. Birefringence Property

There are two orthogonal fundamental modes, HEx and HEy in a normal single-mode
fiber. The propagation constants of these two modes are assumed to be the same, i.e.,
βx − βy = 0. In this case, the linearly polarized light transmitted in the fiber can keep the
polarization direction unchanged [26,41–43], and the fiber is regarded to have polarization-
maintaining capability. The ideal single-mode fiber can be assumed to have an ideal circular
cross-section with a circularly symmetric distribution of the refractive index. However, in
practice, the core will cause anisotropy of the refractive index in different directions due to
external reasons, so that the two base molds polarized in the x-direction and y-direction
have different propagation constants (βx 6= βy). In fact, βx − βy = 0 does not exist. For
instance, fiber coupling will inevitably introduce deformation and stress, thus introducing
birefringence, which leads to a change in the fundamental mode’s polarization state along
with the fiber axially. Periodic polarization mainly changes from linearly polarized light
through elliptically and circularly polarized light and back to linearly polarized light.

The vital parameter B describes the birefringence property of an optical fiber. It is
defined as the difference between the effective refractive indices of the two orthogonal
polarization modes, which directly reflects the magnitude of birefringence in a single-mode
fiber, as expressed in Equation (11):

B = nx − ny = ∆ne f f =
∆β

k0
. (11)

where ∆ne f f is the difference between the refractive indices corresponding to the two
orthogonally polarized polarization modes. For linear polarization, ∆β is the difference
in the propagation constants of the two linear polarization modes polarized along the
slow and fast axes; for circular polarization, ∆β is the difference in propagation constants
between right-handed and left-handed circularly polarized waves. The birefringence of
highly birefringence fibers [6] is approximately in the order of 10−4. For low-birefringence
fiber, the birefringence B is ~10−9, while for a conventional single-mode fiber, B is about
10−5~10−6.
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The stress in material changes the refractive index of the fiber through photo-elastic
effect. This causes birefringence in the waveguide device [44] and affects its performance.
Equations (12)–(14) describes the change in refractive index due to the photo-elastic effect:

Nx = N0 − B1 × σx − B2 ×
(
σz + σy

)
, (12)

Ny = N0 − B1 × σy − B2 × (σx + σz), (13)

Nz = N0 − B1 × σz − B2 ×
(
σx + σy

)
, (14)

where B1 and, B2 are the first and second stress-optic coefficients, respectively. σx and σy
are the positive stress in the x- and y-axis directions, respectively. N0 is the refractive index
of the unstressed material. The anisotropic variation of the refractive index will lead to a
higher birefringence value due to the fiber’s stress-optical effect [44]. The birefringence
values Bs is expressed as Equation (15):

Bs = Ny − Nx = (B2 − B1 )
(
σy − σx

)
. (15)

3. Research Progress in PCFs

One of the major technological achievements of the twentieth century was the devel-
opment of a low-loss silica fiber [45,46] with a transmission loss of only 20 dB/km using
a modified chemical phase deposition (MCVD) method by Corning Incorporated in the
1970s. From then on, fiberoptics has become an important part of the global communication
network. In addition to optical communications, medical devices, sensors, fiber lasers,
laser machining and manufacturing, and other fields, have all developed rapidly due to
emerging novel fiberoptics. With the fast development of science and technology, the
performance requirements of traditional optical fibers have gradually increased.

In 1992, Philip Russell proposed the concept of photonic crystals in optical fibers for
the first time [47], by introducing two-dimensional photonic crystals in the fiber cladding
that are close in size to the wavelength of light, where the fiber core has a defective structure
missing an air hole and light is restricted to propagate in the fiber core. In 1996, J.C. Knight
fabricated the first refractive index guided photonic crystal fiber with a solid-core [48].
In 1999, he produced the first bandgap-type hollow-core photonic crystal fiber for light
transmission in air. The successful manufacture of HC-PCF enriched the theory of photonic
crystals and further opened the door to the development of large-mode area PCFs.

With the rapid development of high-power fiber lasers, the further increase in laser
output power is greatly limited by the nonlinear effect, which results in laser-induced
optical, thermal, and mechanical damage to the fiber. The nonlinear effect can be prohibited
by increasing the fiber’s mode field area, i.e., the larger the mode field area, the weaker the
nonlinear effect. Therefore, the design of an LMA-PCF can solve the problem of nonlinear
effect-induced fiber damage in the power scaling of fiber lasers [49].

3.1. Progress of LMA-PCFs

Since 1995, research on large-mode field PCFs has progressed rapidly. Figure 4
shows the landmark research advances in single-mode (SM) LMA-PCFs and polarization-
maintaining (PM) LMA-PCFs from 1996 to 2021, and their detailed fiber structure parame-
ters, mold field diameters and PM performance are summarized in Table 1. In Figure 4, the
blue points in the figure show the development of the mode field diameter of refractive
index guided PCFs. The orange points show the development of PM-LMA-PCFs, for
which the birefringence reaches a magnitude of 1 × 10−4. Currently, the world’s leading
institutions studying PCFs include the University of Bath, the University of Southampton,
the University of Jena, IRMA (USA), the US Air Force Research Laboratory (AFRL), NKT
and Crystal Fiber in Denmark, NTT Laboratories in Japan, and the Beijing University
of Technology, Huazhong University of Science and Technology, National University of
Defense Technology, and Shanghai Institute of Optics and Fine Mechanics (SIOM), in China.
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Figure 4. The landmark research advances in single-mode (SM) LMA-PCFs and polarization-
maintaining (PM) LMA-PCFs from 1996 to 2021.

Table 1. Specific parameters of the single-mode LMA-PCFs and PM-LMA-PCFs compared in Figure 4.

Year

Fiber Structure Parameters
Core Diameter (Dcore)

Cladding Diameter (Dclad)
Air Hole Diameter (dair)

Pitch (Λ)

Fiber
Structure
Schematic

Mold Field Diameter
and

PM Performance

Countries
and

Institutions
Refs.

2000
Dclad = 63 µm, Λ = 1.96 µm

the small holes, d1 = 0.40 µm
the large holes, d2 = 1.16 µm

/
PM-LMA-PCF
MFD = 3.8 µm
B = 3.7 × 10−3

University of Bath, UK [41]

1996 Dcore = 4.6 µm, Λ = 2.3 µm,
D = 0.2–1.2 µm (8 air hole rings). / MFD = 4.6 µm University of Southampton, UK [48]

2003 Dcore = 7.5 µm (Yb3+-doped)
Structure 1: d/Λ = 0.30, Structure 2: d/Λ = 0.55 / MFD = 11 µm University of Bath, UK [50]

1998 Dcore = 22.5 µm, Λ = 9.7 µm, d = 1.2 µm Figure 5a MFD = 22 µm University of Bath, UK [51]

2005 Λ = 12.3 µm, dair/Λ = 0.09, dBS/Λ = 0.25,
αBS = 5·10−7/K, αFS = 10·10−7/K Figure 6a

PM-LMA-PCF
MFD = 28 µm
PER = 15.5 dB

University of Jena, Germany [52]

2012 Dcore = 48 µm, (7-cell defect core).
Λ = 12 µm, d/Λ = 0.17. / MFD = 30 µm Optics and Electronics

Laboratory, Fujikura. Japan. [53]

2005 Dcore = 35 µm, d/Λ = 0.33, Dclad = 117–141 µm, Figure 5c MFD = 30 µm University of Jena, Germany [54]

2004
Dcore = 40 µm, Dclad = 170 µm, NA = 0.03

d = 1.1µm, Λ = 12.3 µm
(4 air hole rings)

Figure 5b MFD = 35 µm University of Jena, Germany [55]

2021
Dcore = 40 µm,

(19-cell defect core)
Λ = 9.4 µm, d/Λ = 0.8.

/
PM-LMA-PCF
MFD = 35 µm
PER = 17 dB

French National Center for
Scientific Research (CNRS) [56]

2015 Three low index B-doped silica stress rods on both
sides of the fiber core Figure 7c MFD = 38 µm

PER = 21 dB
Clemson University, Air Force

Research Laboratory, US [11]

2012 DC-200/40-PZ-Yb Figure 7b
PM-LMA-PCF
MFD = 40 µm

PER = 25~30 dB
NKT Photonics, Denmark [57]

[58]

2011 ΛS = 8.5 µm, Λ1 = 17 µm,
d = 3.94 µm Figure 5h MFD = 42 µm Vrije Universiteit Brussel,

Belgium [59]

2017 Dcore = 50 µm, Dclad = 260 µm
d = 2.5 µm, Λ = 20 µm / MFD = 50 µm Shanghai Institute of Optics and

Fine Mechanics (SIOM) [60]

2006
Dcore = 60 µm,

(19-cell defect core).
d/Λ = 0.19 (4 air hole rings).

Figure 5e MFD = 50 µm University of Jena, Germany [61]

2008 Dclad = 200 µm, Dcore = 70 µm, NA = 0.6,
(19-cell defect core). Figure 5f

PM-LMA-PCF
MFD = 54 µm

polarization better than 85%
Crystal Fibre A/S, Denmark [62]

2018 Dcore = 58 µm, Dcore = 79 µm /
PM-LMA-PCF

MFD = 45/58 µm
B = 3.54 × 10−5

University of Limoges, CNRS,
France

[27]
[63]

2011 Dcore = 85 µm (Yb3+-doped), Λ = 14.5 µm,
0.1 < d/Λ < 0.3 Figure 5g MFD = 59 µm NKT Photonics, Denmark [64]

2022 / /
PM-LMA-PCF
MFD = 65 µm
PER = 18 dB

Yangtze Soton Laser CO. (OYSL),
China [65]

2015 DC-285/100-PM-Yb / PM-LMA-PCF
MFD = 75 µm NKT Photonics, Denmark [66]



Materials 2022, 15, 1558 10 of 23

Figure 5. Schematic structure of LMA-PCFs (a) 22.5 µm core diameter developed at Bath Univer-
sity [51]; (b) 35 µm mode field diameter rod PCF designed at Jena University [55]; (c) Yb-doped PCF
with a mode field diameter of 30 µm developed at Jena University [54]; (d) 100 µm Yb-doped rod
PCF developed at the AFRL [67]; (e) 50 µm mode field diameter developed at Jena University [61];
(f) 54 µm mode field diameter reported by Crystal Fiber A/S [62]; (g) 59 µm mode field diameter PCF
developed by NKT [64]; (h) 42 µm mode field diameter reported by the University of Brussels [59].

Figure 6. Fiber cross-sections and design structure. (a) A single-polarization single transverse mode
large mode area PCF developed at the University of Jena, Germany, 2005 [52]; (b) A new highly
birefringent large-mode area PCF proposed by Ming-Yang Chen at Jiangsu University, 2007 [68].
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Figure 7. (a) (2008) Wroclaw University of Technology introduced small holes in the central region
of the core to induce birefringence; (b) (2013) NKT fabricated fiber named DC-200/40-PZ-Yb [58];
(c) (2015) Clemson University developed single-polarized, single-mode operating Yb-polarized all-
solid-state photonic bandgap fiber [11]; (d) (2008) 54 µm mode field diameter reported by Crystal
Fiber A/S [62].

The first PCF (Figure 5a) was developed in 1998 by J.C. Knight et al. at the University
of Bath, UK [51]. Its mode field diameter is only 22 µm and the mode field area is 380 µm2.
In 2004, a large-core diameter single transverse-mode Yb-doped PCF with an increased
mode field diameter of 35 µm and mode field area of approximately 1000 µm2 was designed
at the University of Jena, Germany [55]. As shown in Figure 5b, seven air holes are replaced
in the fiber core and the core section is doped with Yb ions. The fiber has a core diameter of
40 µm, an inner cladding diameter of 170 µm and outer cladding diameter of 590 µm, an
air hole diameter of d = 1.1 µm (four air hole rings) and a pitch of 12.3 µm, and a numerical
aperture of 0.03. In experimental tests, this fiber was used to amplify a 10 ps pulse to a peak
power of 60 kW. In 2005, the University of Jena reported a novel Yb-doped fiber (Figure 5c)
that combines the advantages of rod fiber and fiber gain media [54]. It has the external
dimensions of a rod with a fiber diameter of a few millimeters. The fiber has a core diameter
of 35 µm, a cladding diameter of 117–141 µm, d/Λ = 0.33, and a mode field diameter of
30 µm.

In 2006, a Yb-doped rod PCF with a core diameter of 100 µm and an output mode field
diameter of 85 µm (Figure 5d) was reported by U.S. Air Force Research Laboratory [67].
The rod PCF, as an amplifier master oscillator, gave a peak power of 4.5 MW, corresponding
to a pulse energy of 4.3 mJ and an average power of 42 W, with a slope efficiency of
60%, and an M2 of 1.3. In the same year, another Yb-doped PCF was reported by the
University of Jena [61]. This PCF’s structure is shown in Figure 5e, where the cladding
consists of a triangular hole structure with d/Λ = 0.19, and the core consists of a part
missing 19 air holes. The corresponding core diameter is 60 µm, and the fundamental
mode field diameter reaches 50 µm. This fiber has low nonlinearity and can amplify short
laser pulses to very high peak power. In 2008, Crystal Fiber A/S, Denmark, reported
a Yb-doped single transverse mode rod-type PCF [62] that combines low nonlinearity
and polarization-maintaining property. Its structure is shown in Figure 5f, this structure
obtains high birefringence values by introducing two stress regions with higher refractive
indices and different thermal expansion coefficients in the photonic crystal cladding. The
mode field area of the fundamental mode is up to 2300 µm2 with a mode field diameter of
approximately 54 µm. With this fiber, a polarization of >85% up to 163 W output power
was obtained without any polarization element inside the cavity. The beam quality is
improved with M2 reduced to 1.2, compared with that of the Yb-doped rod PCF reported
by AFRL [67]. The single-polarization wavelength range is 1030~1080 nm, which has a
good overlap with the gain band of the Yb-doped silica fiber.
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In 2011, NKT Denmark designed a large mode area PCF [64] with a higher-order
mode filter structure. As shown in Figure 5g, the cladding structure of this fiber is not
only a two-dimensional photonic crystal formed by air holes, but it also introduces a
high refractive index ring structure at intervals around the air holes, which is resonantly
coupled to the higher-order mode of the fiber core and acts as a spatially distributed mode
filter (DMF). The fiber core consists of Yb-doped silica replacing the missing 19 air holes,
with a core diameter of 85 µm, a hole-to-hole distance of 14.5 µm, and d/Λ as a variable.
Single-mode characteristics are demonstrated in this Yb-doped rod fiber with a length of
50 cm by filtering the higher-order modes with the addition of a DMF. This fiber amplifier’s
fundamental mode field diameter at 1064 nm is 59 µm, and the pump absorption at 976 nm
is 27 dB/m. In 2011, the University of Brussels, Belgium, reported a bendable PCF for
short pulse high-power fiber laser application [59]. This fiber has a dual lattice structure,
which is achieved by introducing air holes with different air hole and hole pitch ratios in
the cladding, as shown in Figure 5h. It has a single-mode mode field area of 1454 µm2

without bending and a mode area of 655 µm2 in a fiber with a bend radius of 10 cm. The
bending loss in the higher-order mode is greater than 50 dB/m, while the bending loss in
the fundamental mode is less than 0.01 dB/m, thus enhancing the single-mode operation.

In 2012, the Optics and Electronics Laboratory (Fujikura Japan) investigated a highly
efficient single-mode all-solid-state PCF [53] for a high-power fiber laser with a large
effective area and low bending loss. The fiber core diameter is 48 µm, and the cladding
consists of five layers of high refractive index germanium-doped silica, which achieves
a mode field area of 712 µm2 in the first bandgap, a mode field diameter of 30 µm with
a beam quality factor M2 of 1.05, close to the diffraction limit. Its fundamental mode
loss is <0.1 dB/m. In 2017, the Shanghai Institute of Optics and Fine Mechanics (SIOM)
and the German Institute of Microstructure Technology (GIMT) jointly investigated a
method to control Al/F doping in silica glass by controlling the Yb doping combination
through Al3+/F–/P5+ co-doping. A modified sol-gel method is used to prepare the low-
refractive index silica core glass preform. This glass preform maintains excellent optical
homogeneity (refractive index variation < 2.6 × 10−4) and spectral properties of Yb3+

suitable for fabricating high-power LMA-PCF amplifiers [60]. Finally, a large mode area
fiber with a core diameter of 50 µm was obtained by the stacked capillary drawing method.
The fiber has single-mode operation with a beam quality factor M2 = 1.4. In the 1030 nm
pulsed amplified laser experiment, an average amplification peak power of 97 W and
an optical efficiency of 54% were obtained for a 6.5 m long fiber. In 2021, the French
National Center for Scientific Research (CNRS) reported a Yb-doped core PCF with a
unique cladding structure [56]. The preform core was also prepared using the sol-gel
method, and the structure effectively suppressed higher-order modes, allowing the fiber to
transmit a single-mode. The mode field diameter reaches 35 µm, with a beam quality factor
M2 =1.18 and a polarization extinction ratio of up to 17 dB. An average power of more than
90 W can be obtained through experimental tests at a wavelength of 1030 nm with a slope
efficiency of 75%.

3.2. Progress of PM-LMA-PCFs

To simplify the polarization control device in laser systems, the PCFs with both a
large mode area and polarization-maintaining properties are in great and urgent demand
to provide a competitive solution, compared with conventional polarization-maintaining
fibers. The latter realizes polarization-maintaining properties through introducing built-in
stress elements (such as PANDA, bow-tie and elliptical-stress-layer fibers) or incorporating
noncircular cores. In contrast, PCFs have greater flexibility to obtain a large mode field
area, high birefringence, and adjustable dispersion by structural design. Their potential
advantages in terms of transmission characteristics, structural feasibility, cost-effectiveness,
and operating band expansion have laid the foundation for the renewal of polarization-
maintaining fibers. The development of large mode field polarization-maintaining PCFs
has been greatly accelerated by worldwide research.
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In 2000, the first highly birefringent PCF which has a birefringence value of 3.7 × 10−3

at 1550 nm and a beat length of 0.41 mm was successfully developed by Ortigosa-Blanch
et al. at the University of Bath [41]. In 2005, T. Schreiber et al. at the University of
Jena reported the structural design of a single-polarization, single transverse mode LMA-
PCF [52] by adding a refractive index-matched stress-applied element to the photonic
cladding (Figure 6a). A single-polarization window of ultra-broadband 750~1250 nm was
obtained at a bending radius of 1.4 m, while maintaining a large mode area of approximately
700 µm2. For high-power operation in a highly polarized laser, an extinction ratio of 15.5 dB
and output power of up to 25 W were obtained. In 2007, Mingyang Chen et al. of Jiangsu
University proposed a novel highly birefringent large-mode area fiber (Figure 6b) [68].
Birefringence in the fiber was achieved by introducing an anisotropic microstructured
core, which consists of an upper doped silica background and a lower doped silica rod.
Numerical studies showed that the fiber can achieve a high birefringence in the order of
2 × 10−4 with a mode field area of >300 µm2.

In 2008, Grzegorz Golojuch at the Wroclaw University of Technology (WRUT), induced
mode birefringence by incorporating several small holes in the central region of the core,
breaking the hexagonal symmetry of the fiber cross-section (Figure 7a) [69]. The fiber has
a mode field diameter of 10 µm and a cutoff wavelength of 1.3 µm, and the birefringence
reaches 1 × 10−4 at 1300 nm and 1.5 × 10−4 at 1500 nm. In the same year [62], the
University of Jena and Crystal Fiber A/S jointly reported a Yb-doped single transverse-
mode rod-type PCF that combines low nonlinearity and polarization-maintaining property
(Figure 7d), whose mode field diameter reaches 54 µm. In 2013, NKT developed a fiber
(DC-200/40-PZ-Yb) consisting of a 40 µm Yb-doped core, a 200 µm pump cladding, and
a stress polarization-maintaining structure (Figure 7b) [57,58]. The stress zone consists
of 13 rods on the left and right sides of the core, and the stress zone is separated from
the core by a layer of air hole rings. The outer side of the stress zone has no air holes
and is connected to the base material. This PM-LMA-PCF can realize high polarization
performance with an extinction ratio of 25–30 dB. In 2015, Clemson University and Air
Force Research Laboratory co-developed an all-solid-state Yb-doped polarizing PCF for
single-polarization, single-mode operation (Figure 7c). Three low index boron-doped
stress rods on both sides of the fiber core produced birefringence. These boron rods also
provided light confinement through total internal reflection. It had an effective mode area
of approximately 1150 µm2 and a polarization extinction ratio of up to 21 dB [11].

In 2019, NKT Photonics reported a double-clad Yb-doped polarization-maintaining
fiber called “DC-250/30-PM-Yb-FUD” with a core diameter of approximately 30 µm (mode
field diameter, 24 µm) and 250 µm inner cladding consisted of silica and doped silica [70].
The stress zone consists of hexagons of doped silica rods on both sides of the fiber core,
with each hexagon consisting of 30 rods. The polarization is generated by inducing stress-
related birefringence in the core that produces a polarization extinction ratio > 18 dB. In
the same year, Yangze Soton Laser CO. (OYSL) in China also successfully developed a
large mode area Yb-doped fiber combined with polarization-maintaining ability, which
has a core diameter of 40 µm and the fiber structure is very similar to the NKT’s PM-LMA-
PCF (Figure 7b). It has excellent single-mode characteristics. Very recently, Yangze Soton
Laser CO. successfully realized a breakthrough in rod-type PM-LMA-PCF [65]. The fiber’s
structure and performance are akin to NKT’s DC-200/40-PZ-Yb, whose core diameter
reaches 85 µm with a mode field diameter of 65 µm and mode field area > 3000 µm2, and
it can maintain single-mode operation at 1030 nm band with a lower beam quality factor
(M2 < 1.1). This fiber’s polarization extinction ratio was up to 18 dB.

In summary, significant breakthroughs in the structure design, preform preparation
and fiber fabrication technology for PCFs have been made, which have overall contributed
to performance improvement. This is conducive to the development of high-power laser
and femtosecond lasers with the presence of LMA-PCFs and PM-LMA-PCFs, which have a
broad application potential in scientific lab research, industrial laser processing, national
defense, and other fields. Until now, the largest mode field diameter that has been achieved
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is 75 µm in the DC-285/100-PM-Yb-Rod rod-type PCFs by NKT in 2011 [66], whose struc-
ture is proprietary. This rod-type PCF disappeared from the market in 2015. It is noted that
China’s technology in LMA-PCFs has developed in leaps and bounds, e.g., LMA-PCFs and
PM-LMA-PCFs products have appeared and realized wide industrial applications in recent
years. However, there is still a big gap between China and its international counterparts in
terms of detailed fiberoptics technology and products.

4. Technical Path to Large Mode Area and Polarization-Maintaining PCFs

The most advantageous property of LMA-PCFs is adjustable dispersion, flexible and
adjustable numerical aperture, and compact structure, especially with the ability to reduce
nonlinear effects by significantly reducing the unit power density loaded on the fiber
cross-section, and thus increase laser damage thresholds. These make LMA-PCFs a new
research hotspot in fiberoptics for high-power laser applications.

The technical routes to achieve a large field area in a single-mode, as summarized in
Figure 8, include four main categories. The first category is optimizing the fiber material
property. High-order modes can be suppressed by doping the core or inner cladding
to control the doping distribution and reduce the high-order mode gain. In 2016, the
University of Limoges designed a single-mode microstructured fiber with a large mode area
highly doped with rare earth ions [71]. The structure consists of a microstructured cladding
formed by four layers of high refractive index germanium-doped silica rods surrounding a
hexagonal rare earth-doped silica core. The cladding rods have a parabolic refractive index
distribution. The cladding hole spacing is 10 µm, the core area is approximately 500 µm2,
and single-mode operation can be achieved. In 2003, Stanford University [72] proposed
a new fiber called the gain-guided, index anti-guided (GG-IAG) fiber, which has a large
diameter core with a negative refractive index step from the cladding to the core, combined
with a large enough gain coefficient in the core. Large gain coefficients with very large
mode areas are very favorable for robust single transverse mode operation.

Figure 8. Technical routes [11,39,58,64,71–81] to achieve single-mode large field area for PCFs.
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The second category is the design of fiber microstructures. The primary method
introduces a two-dimensional photonic crystal structure into the cladding. The size of
the air holes in the cladding and the hole-to-hole distance were adjusted to regulate the
refractive index difference between the cladding and the core to achieve a low-refractive
index difference. Part III of this paper describes the major research advances in LMA-PCFs.
In addition to introducing two-dimensional photonic crystal structures in the cladding,
leaky channel fibers (LCFs) with large air holes or large-pitch fibers (LPFs) with large
hole-to-hole distance can be designed to filter out higher-order modes using air holes
to form a mode sieve. A single-mode and a large mode area can also be achieved by
designing air core fibers with anti-resonant cladding and microstructured core structures.
In 2007, IMRA designed a leaky channel fiber [28,73]. This type of fiber that can be
precisely designed to produce large leakage losses in higher-order modes while maintaining
negligible transmission losses in the fundamental mode. As shown in Figure 9b, the passive
leaky channel fiber has a mode field area of 1417 µm2 and a mode field diameter of 42.5 µm
in the 1064 nm band, and the fundamental mode loss is 0.17 dB/m at 1064 nm. The Yb-
doped leaky channel fiber is shown in Figure 9c, it has a calculated mode field diameter of
63.4 µm and a mode field area of 3160 µm2 in the 980 nm band. In 2009, IMRA reported a
new design [51] of an all-solid-state large mode area fiber for high-power Yb-doped fiber
lasers and amplifiers. It consists of a single ring of down doped silicon rods around a
seven-cell pure silicon core (Figure 9a). This structure achieves both single-mode operation
and low bending loss. These fibers have a near parabolic refractive index distribution with
a slight refractive index difference between the core and cladding, capable of reaching
∆n ~ 6 × 10−5. Stress-induced PCFs have a tiny refractive index difference between the
core and the low-refractive index channel, allowing for a greater increase in core diameter
while maintaining single-mode operation. However, refractive index accuracy control is
highly demanding and challenging for the fabrication of LMA-PCFs.

Figure 9. (a) All-solid large mode area (LMA) fiber [51] reported by IMRA, 2009. (b) LCF for passive
leaky channel fiber designed by IMRA, 2007 [73]; (c) LCF for Yb-doped leaky channel fiber designed
by IMRA, 2007 [73]; (d) large-pitch photonic crystal fiber [12].

The third method that can be used is introducing a discriminating mechanism for
higher-order modes. The mode matching technique excites only the fundamental mode of
the fiber by injecting seed radiation, and this method can be used for all types of few-mode
fibers. However, as the mode field area increases, single-mode operation becomes difficult.
The bend-selective mode is a typical single-mode operation that uses the difference in bend
loss between the fundamental mode and higher-order modes to achieve higher-order mode
filtering. A new method for obtaining single transverse mode operation in multimode
fiber amplifiers was reported in 2000 by the U.S. Naval Research Laboratory [82,83]. A 6-m
gain fiber with a core diameter of 25 µm was wound around a cylindrical shaft to produce
significant bend loss for all modes except the fundamental mode, with the bend loss acting
as a distributed spatial filter. A laser amplification efficiency of 64% is obtained, and a
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single-mode output is achieved with a beam quality factor M2 ≈ 1.09. It is also possible
to design resonant filtering modules, which can be achieved by a cladding structure with
a characteristic solution that matches the effective refractive index of the higher-order
modes. Designing resonant filter structures is very challenging. In 2011, the NKT company
designed a large mode area PCF [64] with a higher-order mode filter structure, as shown
in Figure 5g, which allows resonant coupling of higher-order modes from the fiber core
and acts as a spatially distributed mode filter (DMF). A final alternative is to introduce
modal sieve structures. For example, the leaky channel fiber (LCF) is a higher-order modal
sieve structure. It is also possible to combine several approaches in one fiber. For example,
in 2021, Pu Zhou of the National University of Defense Technology, China, developed
an all-solid photonic bandgap fiber that considers multi-resonant coupling and leakage
channels [84]. The fiber core comprises seven silica rods instead of seven germanium rods.
The microstructured cladding comprises four layers of germanium-doped high-refractive
index silica rods arranged in a specific order in a low-refractive index background material.
The concept of multiple leakage channels and multiple resonant coupling is introduced
in the cladding. The dependence of the fiber on the bending direction is eliminated by
designing the position of the germanium rod distribution so that the bending loss between
the fundamental mode and the higher-order modes has a high loss ratio. At a bending
radius of 45 cm, a mode field area of >900 µm2 and a loss ratio of approximately 495
was obtained.

The fourth category is mode conversion, which can be achieved using higher-order
mode transmission or coupling the higher-order mode of the core into other cores of the
cladding. In 2014, the University of Michigan reported progress in increasing the core size
of effective single-mode chiral coupled core (CCC) Ge-doped and Yb-doped double-clad
fibers to the range of 55 to 60 µm. It experimentally demonstrated its robust single-mode
performance [74].

When one designs a fiber with a large mode area, it is first necessary to determine
the range of the fiber mode field diameter. The field diameter limit of a traditional single-
mode step fiber mode is approximately 15 µm. To further increase mode area, one can use
discriminatory mechanisms that include higher-order modes in the fiber. The identification
mechanism of higher-order modes mainly includes mode matching, bending selection
mode, resonant filter mode, etc. These methods make it possible to achieve a mode field
diameter of approximately 15~50 µm. A fiber with such a diameter size can be called a large
mode area (LMA) fiber. When introducing pattern-matching techniques into very large
pattern areas, they need to be combined with other pattern filtering strategies. Moreover,
single-mode implementation through mode matching is usually insufficient for high-power
fiber lasers and amplifiers. When the mode field diameter exceeds 50 µm, it can be called a
very large mode area (VLMA), and single-mode operation can be achieved by introducing
microstructured fibers [50].

However, very stringent structure and refractive index selection is required due to
the large mode area [12]. This can also be achieved by introducing the concept of mode
sieves through a large-pitch fiber, where higher-order modes leak out of the large-pitch
cladding. This can also be referred to as leaky cladding, which is not usually present in
high-power pumped double cladding fibers. Therefore, rod-shaped double-clad PCFs are
typically used to provide a large mode area for high-power fiber lasers. The primary role
of the outer cladding of a double-clad fiber in high-power fiber lasers and amplifiers is
to achieve thermal degradation. Because it is a rod-shaped fiber, when targeting a large
mode area PCF, one does not need to consider the fiber loss caused by bending, but rather
the impact of thermal damage on fiber performance in high-power fiber lasers. With the
help of different structures of PCFs, large mode field diameter fibers with single-mode
operation can be realized, which is highly essential for developing high-power fiber lasers.
PCFs are also highly birefringent. The polarization control device in the laser system can be
simplified [85] by setting up a polarization-maintaining unit in the PCFs to ensure a large
mode area, single-mode laser output.
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According to the inducing factors, the birefringence of optical fibers can be classified
into stress-induced birefringence and geometry-induced birefringence. Stress-induced
birefringence is due to the different doping in the core and cladding and resultant difference
in thermal expansion coefficients of the materials. In the fiber drawing process, different
thermal stresses are generated due to different thermal expansion coefficients of the core
and cladding, which leads to the anisotropy of the core material and stress birefringence.
In contrast to stress-induced birefringence, geometry-induced birefringence (so called
intrinsic birefringence) is related to the geometric structure of the core. This noncircular
structure of the core may be due to the original structural design of the fiber, or the core may
become elliptical from a circle due to the fiber drawing process. In contrast to circularly
symmetric fibers, the stresses generated vary largely along the long and short axes due to
the asymmetry of the core structure. As a result, the anisotropic glass becomes anisotropic,
with a consequent change in the refractive index along the major axes (i.e., nx and ny).
Optical fibers exhibit intrinsic birefringence as a result of their internal anisotropy, and the
higher the core ellipticity is, the higher the value of birefringence.

The main ways to introduce birefringence can be realized through the following ways
depicted in Figure 10. First, structural birefringence can be introduced by adjusting the size
and shape of the air holes around the core or adjusting the core shape to change the uniform
distribution of the refractive index in both directions, i.e., by reducing the symmetry of
the PCFs. This method can introduce higher birefringence in PCFs when the initial mode
field diameter is small. Ortigosa-Blanch developed the world’s first birefringent PCF [41]
at the University of Bath in 2000, for which a high birefringence value of 3.7 × 10−3 at
1550 nm was achieved with a mode field diameter of only 3.8 µm. The development
of a highly birefringent large mode area silica all-glass fiber (HB-LMA) was reported in
2021 by Warsaw University in Poland. The core of this fiber has a regular nanostructure
inside. This microstructure makes the fiber anisotropic. By optimizing the germanium
and fluorine doping levels of silica in the core and cladding, a birefringence value of
1.92 × 10−4 was obtained in a fiber with a core diameter of 30 µm and an effective mode
area of 573 µm2, respectively. The same method was used to design a single-mode fiber
with a core diameter of 40 µm and a mode field area > 1000 µm2 [75]. The structural
birefringence value decreases rapidly as the mode field area increases. Therefore, stress
birefringence needs to be introduced to further increase the birefringence, which generally
induces stress parts (SAPs) with different thermal expansion coefficients from the core
inside the fiber.

Figure 10. Technical route to achieve LMA-PCFs with high birefringence value [52,58,62,75].
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The largest mode field area of a single-mode polarization-maintaining PCF was re-
ported jointly by the University of Jena, Germany, and Crystal Fiber and A/S, Denmark [62].
The fiber structure is shown in Figure 11a. The fiber has a mode field diameter of 54 µm.
Figure 11b shows the near-field intensity distributions of the slow (upstream) and fast
axes (downstream) at four different wavelengths. It is suitable for use in high peak power,
high-energy fiber lasers, and amplifiers.

Figure 11. (a) Schematic diagram of the fiber structure (b) near-field intensity distribution of the slow
(upstream) and fast axes at four different wavelengths [62].

For polarization-maintaining PCFs, conventional Panda-type polarization-maintaining
fibers can be combined with PCFs. High birefringence is achieved by introducing a stress
part (SAP) into the fiber. Multiple combinations of the above methods can also be used to
design new structures of highly birefringent PCFs. For example, introducing large air holes
around the core of elliptical hole PCFs to increase the birefringence or introducing structures
with different thermal expansion coefficients (stress birefringence) while changing the
symmetry of the core structure (structural birefringence).

Compared with conventional optical fibers, the excellent optical properties of photonic
crystal fibers [27,63,86,87] cause them to have a wide range of promising applications in
fiber lasers and amplifiers, fiber sensors, supercontinuous spectrum light sources, and fiber
optic communications. Photonic crystal fibers also play a very important role in the laser,
communication, and life science fields [88].

Since the first low-loss optical fiber was developed successfully, fiber optic communi-
cation has gradually become the main transmission medium of modern communication
networks. With the increasing demand for information transmission, the requirements
for fiber optic communication systems have evolved toward a very large capacity, ultra-
high-speed, ultra-high bandwidth, and ultra-long distance transmission. The capacity of
traditional optical fiber communication systems is limited due to the problems of loss,
dispersion and nonlinear effects. PCFs are a new type of optical device, and the optical
transmission medium brings new vitality to fiber optic communication.

The development of sensing technology of PCFs makes them more sensitive and
accurate than traditional optical fibers for sensing and measuring parameters such as the
temperature, strain, pressure, refractive index, etc. This can be used to develop various
types of sensors for gases, liquids, biology, and pressure, etc. In 2016, N. Ayyanar et al.
developed a new hydrostatic pressure sensor using a highly birefringent photonic crystal
fiber. A pressure sensitivity of 87.5 pm/MPa was generated through its transmission
spectrum [89]. Hoo, Y.L. et al. of the Hong Kong Polytechnic University filled a PBG-PCF
with gas and determined the concentration of the gas by monitoring the attenuation of
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the light passing through the gas. Since the light in the PBG-PCF is transmitted in air,
it has higher sensitivity [90]. There are many types of PCF with many unique optical
properties, which means that PCF’s sensing elements have many characteristics unmatched
by traditional optical fibers, and they are increasingly being used in fiber optic sensing.

Highly nonlinear TIR-PCFs can be used to generate supercontinuous spectra. By
varying the PCF structure, flexible and adjustable dispersion characteristics, cutoff-free
single-mode characteristics, and high nonlinear coefficients [91] can be obtained, resulting
in wide and flat SC. Ebnali-Heidari et al. achieved low-loss, ultra-flat dispersion by filling
the PCF with an optical fluid to control the dispersion. The superflat supercontinuum
spectrum of 640~1180 nm was found to be achieved by simulations with femtosecond
pulses centered at 1250~1625 nm [92]. The dispersion of ordinary passive fibers and rare
earth doped fibers cannot be flexibly adjusted as required. Additionally, it is not easy to
produce a wavelength component shorter than the central wavelength of the pump light.

The first PCF laser was developed at the University of Bath, UK, in 2000. Using a
titanium gem laser (970 nm) pumping a Yb3+-doped photonic crystal fiber which was
81 mm long, a laser output of 1040 nm was obtained [93]. In the research and application
of high-power fiber lasers, PCFs have gradually developed into one of the research hot
spots in the field of fiber lasers due to their many excellent characteristics. PCFs can be
used in lasers not only as a gain medium directly, but also as a dispersion compensation
and transmission of optical energy. By optimizing the structure of a PCF, the output power
of the fiber laser can be increased, the beam quality of the fiber output can be optimized,
and the system of the fiber laser can be simplified.

5. Conclusions

The concept, classification, and light-guiding mechanism of PCFs are first intro-
duced in this review, followed by the theoretical analysis method and properties of PCFs,
and a brief review of the development of PCFs with increasing mode area and tailored
polarization-maintaining properties with a global scope. On this basis, this review high-
lights several of the main technical paths and design methods to achieve a large-mode field
and polarization-maintaining property. With the rapidly growing demand for high-speed,
high-capacity information transmission and high-power fiberoptics in industry, the research
on large-mode area PCFs is in high demand and becoming more extensive, with which has
come the emergence of new LMA-PCFs with different microstructures. The peculiar optical
properties of PCFs make it possible to overcome many difficulties faced by traditional
fiber lasers. PCFs are widely used in the fields of high-power fiber lasers and amplifiers,
high-speed information transmission, high-power energy transmission, high-sensitivity
sensors, supercontinuum light sources, deflectors, fiber grating and dense WDM systems.

However, there are still some problems to overcome: (1) For the improved refractive
index guided PCFs, the fiber core replacing one or more layers of air hole ring can signifi-
cantly increase the mode field area, but the single-mode cutoff wavelength is affected by
large fluctuations. There is no unified theoretical analysis to study the effect of PCFs as
the core diameter increases and the different normalization parameters of the fiber change
on the single-mode property. (2) The current theoretical simulations have been used on
many new structures of LMA-PCFs, but most of the designed structures are too complex
and specialist in nature, as they have very small refractive index variation differences. In
the real fiber design process, it is difficult to realize the precise structural control of PCFs
and so it is hard to successfully design PCFs with a complex structure but very uniform
refractive index distribution. (3) The current PCF products that achieve mass production
are generally too expensive, and they are mostly used only in the laboratory and cannot be
more universally applied in industrial fields. (4) To strengthen PCF theoretical simulation
analysis and optimize the fabrication process, studies need to integrate the fundamental
research with PCFs’ potential applications in a better way. It is believed that as the research
progresses, the gap between theoretical simulation and fiber fabrication will be gradually
narrowed, and the LMA-PCFs will have more broad application potential.
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