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Abstract

Pathogen monitoring, detection and removal are essential to public health and outbreak

management. Systems are in place for monitoring the microbial load of hospitals and public

health facilities with strategies to mitigate pathogen spread. However, no such strategies

are in place for ambulances, which are tasked with transporting at-risk individuals in immu-

nocompromised states. As standard culturing techniques require a laboratory setting,

and are time consuming and labour intensive, our approach was designed to be portable,

inexpensive and easy to use based on the MinION third-generation sequencing platform

from Oxford Nanopore Technologies. We developed a transferable sampling-to-analysis

pipeline to characterize the microbial community in emergency medical service vehicles.

Our approach identified over sixty-eight organisms in ambulances to the genera level,

with a proportion of these being connected with health-care associated infections, such as

Clostridium spp. and Staphylococcus spp. We also monitored the microbiome of different

locations across three ambulances over time, and examined the dynamic community of

microorganisms found in emergency medical service vehicles. Observed differences identi-

fied hot spots, which may require heightened monitoring and extensive cleaning. Through

metagenomics analysis it is also possible to identify how microorganisms spread between

patients and colonize an ambulance over time. The sequencing results aid in the develop-

ment of practices to mitigate disease spread, while also providing a useful tool for outbreak

prediction through ongoing analysis of the ambulance microbiome to identify new and

emerging pathogens. Overall, this pipeline allows for the tracking and monitoring of patho-

genic microorganisms of epidemiological interest, including those related to health-care

associated infections.
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Introduction

The epidemic potential of disease causing microorganisms (pathogens) and the spread of

antibiotic resistance continues to pose a serious threat to global health security [1]. Examples

of such emergent threats include the bacterial meningitis epidemic in Sub-Saharan Africa

[2] and the cholera outbreak in Haiti (2010) [3]. As a result, the World Health Organization

(WHO) has acknowledged the need for a rapid pathogen detection platform to mitigate

pathogen transmission and manage outbreaks in a reasonable timeframe [1]. Additionally,

the rise of multidrug resistance in pathogens linked to health-care associated infections

(HAIs), such as Clostridium difficile and Staphylococcus aureus, highlight the importance of

pathogen identification and monitoring of antibiotic resistance genes to reduce their impact

on disease spread and to combat the rise of antibiotic resistance [4, 5]. Within Canada, HAIs

lead to death in more than 8,000 cases each year, indicating that HAIs are a serious public

health concern [6]. For example, between 2008 and 2012 a reported 9% of patients infected

with methicillin-resistant Staphylococcus aureus (MRSA) died [7]. The cost associated with

increased morbidity and mortality stemming from HAIs is significant and must also be

considered.

In response to the threat of HAIs and pathogen-associated disease, most hospitals have

implemented pathogen monitoring and decontamination procedures to help prevent the

spread and occurrence of HAIs, including standardized guidelines for hand hygiene and sur-

face cleaning [8–11]. In contrast, no standardized evidence-based pathogen monitoring or

detection process currently exists within the emergency medical services (EMS) sector, which

plays a pivotal role in prehospital care. Ambulances, which frequently transfer injured, immu-

nocompromised and often infectious patients between various public and hospital environ-

ments, are potential vehicles of HAI transmission [12]. The absence of a pathogen detection

and reporting framework makes pathogen exposure risks difficult to evaluate and monitor.

Furthermore, this absence hinders the identification of suitable strategies to mitigate pathogen

transfer to patients, EMS personnel and the public.

Little is known about the epidemiological importance of EMS-patient contact on pathogen

transmission between the community and hospitals, as well as the types of pathogens con-

tained within ambulances. A limited number of studies from 1986 to 2016 have reported on

the types of bacteria found in ground ambulances, but have not addressed the complete micro-

bial environment or transmission of pathogens between the EMS, patients and community

[12–25]. In these studies, swabs or air samples were taken and bacteria were identified by

subsequent culturing under varied conditions depending on the pathogen of concern. This

approach provides a biased view of the vehicle microbiome, focusing on specific types of bacte-

ria and consequently neglecting slow-growing bacteria, unculturable bacteria, eukaryotes or

viruses that are undetectable via cell culturing. Additionally, the dependence on a microbiol-

ogy laboratory increases the time (>48 hours) and cost associated with the identification of

microbes present. A review by Hudson et al. (2017) provides a more detailed summary of the

literature on pathogen prevalence in EMS vehicles [26].

As an alternative to previous cell-culturing methods, a study by O’Hara and colleagues

(2017) used a shotgun sequencing approach to profile the microbial community of ambulances

within the United States [27]. Their results showed the identification of microbial species asso-

ciated with HAIs, highlighting the use of metagenomic techniques to characterize the ambu-

lance microbiome. Although promising as a pathogen identification tool, no platform has

been developed to rapidly and portably monitor the dynamic microbial community of ambu-

lances which changes drastically with patient turnover, emergency personal turnover and

cleaning cycles.

Rapid metagenomics analysis of EMS vehicles
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In this study, we aim to develop a detection and monitoring platform with the potential for

on-site and rapid sequencing utilizing the MinION Nanopore sequencing device from Oxford

Nanopore Technologies (ONT). This device offers several key advantages to previous DNA

sequencing platforms; it is relatively inexpensive, small, and portable providing the potential

to perform DNA sequencing in remote locations [28–32]. The MinION device is also capable

of producing ultra-long sequencing reads (>10,000 bp) [33], enabling easier de novo whole

genome sequencing of bacteria [34–36], viruses [37–39] and eukaryotes [40–42]. While cur-

rent versions of the MinION show lower read accuracy compared to more established

sequencing platforms, such as Illumina MiSeq, Illumina HiSeq and PacBio RSII, similar reso-

lution has still been achieved with this technology [43–45]. Additionally, Nanopore DNA

sequencing is expected to improve with continued product development. The MinION device

has already shown potential as a pathogen surveillance tool [37, 46, 47], including detection of

Ebola virus transmission in remote Guinea West Africa [28], monitoring Salmonella outbreaks

in hospitals [48], identifying antibiotic resistance markers in clinical settings [49–52], and for

the real-time analysis of infected prosthetic devices [53].

We utilized the MinION sequencing technology to develop and demonstrate a complete

workflow for characterizing microbial communities in ambulance vehicles. DNA samples

recovered from surface swabs of three high-risk areas were obtained from three ambulances

over a three-week period and subjected to partial 16S ribosomal RNA (rRNA) gene amplifica-

tion and MinION DNA sequencing of amplicons for microbial identification. The 16S rRNA

gene has been shown previously to be a useful molecular marker for bacterial identification,

including for pathogens with clinical relevance [54]. This sequencing method and analysis

pipeline demonstrates the utility of this technology for the rapid surveillance of pathogenic

organisms in EMS vehicles. Additionally, we demonstrate the ability to identify important

areas in the vehicle to monitor, inform best cleaning practices and suggest what role the EMS

has on the spread of microorganisms and the ambulance microbiome in general. The devel-

oped technology is highly portable and scalable, which enables wide adoption by EMS in order

to safeguard themselves and others from harmful microorganisms.

Materials and methods

Study design

To assess the variation of the microbial community over time and between EMS vehicles,

three locations were sampled from three vehicles (Ambulance A, B and C) once a week over a

three-week period. A sampling control was included to mimic the sampling procedure without

physically touching any surface, providing a baseline measurement of bacteria present on the

swab or introduced during processing. The sampling workflow (Fig 1A) was designed to coin-

cide with standard cleaning protocols, beginning immediately after an extensive deep-clean, in

which all surfaces were cleaned thoroughly, followed by routine cleaning over the three-week

period.

Three high-risk contamination areas were chosen to be sampled: (i) SPO2 finger monitor,

(ii) rear cab interior door handle and (iii) bottom of the soft kits. These locations were identi-

fied by taking into consideration concerns expressed by EMS workers, locations sampled in

previous work [16, 18, 20, 21, 24], and our own observations from ride-alongs, as well as inter-

views with emergency personnel. The primary contact of each sample location varies, repre-

senting diverse sources of contamination and the potential for pathogen transmission to

different locations. Specifically, the SPO2 finger monitor is frequently used and comes into

direct skin contact with patients, providing specific information on patient contamination.

The rear cab interior door handle is used by emergency personnel when transferring patients

Rapid metagenomics analysis of EMS vehicles
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from the field into the vehicle and out of the vehicle to the hospital, providing information

on EMS worker contamination. Lastly, the soft kits are transported on-site to each emergency

call and are exposed to diverse environments, therefore it is representative of environmental
contamination.

Sampling procedure

Samples were acquired from each location under sterile conditions. A 4 cm2 area of each loca-

tion was swiped using Grade I 15 mm diameter Whatman filter paper (GE Healthcare Life

Fig 1. Nanopore sequencing workflow to rapidly identify bacteria in ambulances. (A) Samples are acquired from three locations in three vehicles

over a three-week period, followed by DNA isolation, 16S rRNA gene amplification and sample preparation. The prepared library is then sequenced

using the MinION and analyzed to identify bacterial species present. Taxonomic identification is possible within 24 hours from initial sample

acquisition. (B) Bioinformatics analysis pipeline for generating taxonomic data.

https://doi.org/10.1371/journal.pone.0219961.g001
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Sciences, Mississauga, ON, CAN) soaked in 70% ethanol. Samples were stored in 500 μL of

70% ethanol at -20˚C until further processing. Sampling kits were prepared under sterile con-

ditions prior to sampling. Nitrile gloves and sterile tweezers were used when handling filter

paper to minimize external sample contamination. Each week an environmental control

was included to identify bacteria introduced after sampling or during subsequent processing,

where the filter paper was handled to mimic the sampling procedure but did not physically

swipe a location.

DNA extraction

To extract DNA from the filter paper, a protocol from [55] was adapted. Ethanol was evapo-

rated using a rotary evaporator for 2 hours. 400 μL of alkaline lysis buffer (200 mM KOH, 50

mM DTT) was added to each filter paper and mixed by inversion. Samples were incubated on

a heat block at 65˚C for 10 min and centrifuged at 17 000 x g for 1 min. 300 μL of the sample

was transferred to a new 1.5 mL micro centrifuge tube. 30 μL of 3M sodium acetate (pH 5.3),

5 μL of 0.5% linear polyacrylamide (LPA) carrier and 750 μL of cold 100% ethanol was added

to each tube and vortexed. The samples were placed on ice for 10 min and centrifuged at 17

000 x g for 5 min. The resulting pellet was washed twice with 500 μL of 70% ethanol and re-

suspended in 20 μL of filtered nuclease-free water.

Bacterial 16S rRNA gene amplification

Specific universal primers, U341F (5' - CCTACGGGRSGCAGCAG - 3') and
U1053R (5' - CTGACGRCRGCCATGC – 3’) [56], were used to amplify the hypervari-

able regions V4, V5 and V6 covering approximately 50% of the 16S rRNA gene. These regions

were previously identified in silico as reliable and sensitive biomarkers for taxonomic classifi-

cation and phylogenetic studies [57]. ~10 ng of environmental DNA was amplified via poly-

merase chain reaction (PCR) using Phusion High-Fidelity polymerase (Thermo Scientific,

Waltham, MA, USA). The thermocycler conditions were set at 98˚C for 2 min; 30 cycles of

98˚C for 20 s, 64˚C for 15 s and 72˚C for 30 s; followed by 72˚C for 2 min. Amplicons were

confirmed using gel electrophoresis.

Amplicon barcoding and library preparation

For each week of samples, barcoding kit 1 (Oxford Nanopore Technologies, Oxford, UK) and

sequencing kit SQK-NSK007 (Oxford Nanopore Technologies) were used to generate the

DNA library of pooled samples for sequencing. Less than 1,000 ng of purified amplicon DNA

was end repaired and dA-tailed using the NEBNext Ultra II End-Repair/dA-tailing Module

(NEB, Ipswich, MA, USA) incubating at 20˚C for 5 min and 65˚C for 5 min, followed by

AMPure XP bead (Beckman Coulter Inc., Pasadena, CA, USA) cleanup per the manufacturer’s

instructions. Approximately 10–30 ng/μL was recovered. 20 μL of Adaptor Mix (Oxford Nano-

pore Technologies, SQK-NSK007) was added to 30 μL of the dA-tailed DNA. From the dA-

tailed/Adaptor Mix, 5 μL was removed, added to 5 μL of Blunt/TA ligase master mix (NEB)

and incubated at room temperature for 10 min, followed by EZ-10 spin column purification

(BioBasic). For a 50 μL PCR barcoding reaction, 1 μL of barcode from 1 to 12 (Oxford Nano-

pore Technologies, Barcoding Kit 1) was added to 24 μL of ligated product and amplified

using Phusion High Fidelity polymerase (Thermo Scientific). PCR barcoding conditions were

as follows: 98˚C for 2 min; 25 cycles of 98˚C for 15s, 64˚C for 15s and 72˚C for 1 min; followed

by 72˚C for 2 min. For each week of samples, the barcoded DNA was pooled together in the

appropriate ratios to prepare 1 μg of DNA in 45 μL of nuclease-free water. The pooled bar-

coded DNA was end-repaired and dA-tailed using the NEBNext Ultra II End-Repair/dA-
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tailing Module (NEB) at 20˚C for 5 minutes and 65˚C for 5 min, followed by AMPure XP bead

(Beckman Coulter Inc.) cleanup following the aforementioned protocol. 8 μL of nuclease free

water, 10 μL of Adaptor mix, 2 μL of Hairpin HP Adaptor (HPA), and 50 μL of Blunt/TA ligase

master mix was added to the dA-tailed pooled DNA and incubated at room temperature for

10 min. Then 1 μL of hairpin tether (HPT) was added and incubated at room temperature for

10 min. The adapted, tethered DNA was purified using MyOne C1 beads (Thermo Scientific)

and eluted in 25 μL of elution buffer, while incubating at 37˚C for 10 min. 5 μL of internal con-

trol DNA (DNA CS) was added to the sampling control for each sequencing preparation prior

to barcoding, and to the pooled samples after barcoding to assess sequencing accuracy. An

additional sample containing Pseudomonas aeruginosa genomic DNA was included as a sec-

ond internal control to validate amplification accuracy.

Nanopore sequencing

An R9.4 SpotON MinION flowcell was used and primed with Nanopore Priming Buffer in a

stepwise fashion, loading 800μL, and after 10 min, loading an additional 200μL. Platform qual-

ity control (QC) was performed prior to loading of the priming buffer to ensure proper func-

tioning of the MinION device. The library was then loaded onto the flowcell in a dropwise

fashion, allowing each drop to enter into the flowcell before loading the next. The MinION

was connected to the analysis computer and run using MinKNOW Version 1.4.2 using the

SQK-LSK208 protocol for 2D barcoded reads. The sequencing reaction proceeded for between

4 and 24 hours at which point the flowcell was washed using the provided Wash Buffer. A sub-

sequent library was loaded onto the flowcell thereafter; a maximum of three libraries were

sequenced on each flowcell. Raw reads were obtained as fast5 files and subsequently analyzed.

An identical procedure was followed for an R9 MinION flowcell prior to the R9.4 SpotON iter-

ation becoming available.

Sequencing data analysis

The bioinformatics pipeline is summarized in Fig 1B. Raw signals in fast5 files were basecalled

using Oxford Nanopore Technologies Albacore command line tool (v1.2.1). Quality assess-

ment of read data and conversion to fasta format was performed using poretools [58]. Best

quality reads were demulitplexed, their barcode and adaptors trimmed using porechop [59]

with a lenient barcode cut-off of 0.60, and filtered to remove reads less than 100bp and greater

than 1,500bp using cutadapt 1.91 [60]. The reads were binned based on the location from

which the DNA sample was obtained. Reads statistics for each run were obtained using Nano-
stat and NanoPlot [61].

Assigning taxonomy to each individual reads was done using QIIME 1.9.2 [62] using the

Ribosomal Database Project (RDP) classifier (using Naive Bayes classification) [63]. Assign-

ment for 16S amplified reads was done using the RDP classifier against Greengenes 13.8 rRNA

reference database [64]. Assigned numbers of reads for each barcode were then compared to

the total number of reads from the same barcode and multiplied by a factor of 1,000. This

yields the number of reads for a given taxon per 1,000 reads. Normalization allows the compar-

ison between samples and locations to accurately determine the abundance of a given taxon in

a specific location at a specific time relative to the entire microbial community of that location

or time point [65].

Quality of the read was assessed by aligning Lambda phage internal controls reads to a

Lambda phage genome reference sequence and calculating percentage identity and coverage.

BWA MEM v.189 [66] was used to align the reads to the reference genome with–x ont2d
option. The outputs were converted to sam files and processed with samtools [67]. A similar
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approach was followed for processing the Pseudomonas aeruginosa internal control reads. Tax-

onomic assignment was done using the RDP classifier [63] against Greengenes 13.8 rRNA ref-

erence database [64].

Phylogeny generation

Phylogenetic trees were obtained using assigned taxa and the PhyloT online program to gener-

ate trees in Newick format. The Newick trees were then uploaded to iTOL (Interactive Tree

of Life) and phylogenies were generated using phylogenetic information and molecular data

from NCBI taxonomic databases for organisms obtained in sequencing runs over 3 sampling

weeks.

Results

Nanopore MinION DNA sequencing workflow for ambulance microbiome

analysis

A total of five Nanopore DNA sequencing runs were performed. Run 1 and Run 2 included

Week 1 samples taken from Ambulance B; the same set of prepared samples was used for

both sequencing runs to assess reproducibility. Run 3 included the remaining samples from

Week 1 (Ambulance A and C), while Run 4 and 5 included all samples (Ambulance A, B and

C) from Week 2 and Week 3, respectively. The raw reads generated for the five runs ranged

from 1,369 to 79,044 reads and consisted of one dimensional (1D) forward, 1D reverse and

2D reads (Table 1). The observed variation in read count may result from error associated

with sample preparation and from the varied flow-cell chemistry available for each of the

sequencing reactions. To sort high quality reads from the raw data, the read length was set

to range from 100 bp [45] to 1,500 bp (the expected amplicon size is approximately 750 bp)

with an average quality score cut-off of 10 along the sequence [45], reducing the range in

read count to 538 to 57,589 reads (Table 2). This polishing step is used to ensure the presence

of enough sequence similarity between the reads generated and a reference genome for accu-

rate matching of the 16S rRNA gene. The mean read length of the filtered reads ranged from

499 bp to 819 bp (S1 Fig). The longer reads that were removed during the polishing step

were likely a result of adapter ligation, and corresponding generation of long, chimeric

reads [45]. The mean quality score of the filtered reads range from 10.4 to 12.8 (S1 Fig), indi-

cating that the error rate of our sequencing is approximately 1 in 10 bases (10%) as expected

[45, 68].

Nanopore sequencing accuracy was assessed by read coverage of internal control DNA

(DNA CS) mapped to the reference Lambda phage sequence using BWA MEM v.189 [66] (S2

Fig). Sequencing accuracy is defined as the number of matched nucleotides divided by the

Table 1. Raw Nanopore sequencing read statistics.

Run Week Ambulance Read Count Length (bp) Qscore

Mean Min Max Mean Min Max

1 1 B 79044 724 5 69289 12.7 10 30

2 1 B 46766 1287 5 133888 11.8 10 30

3 1 A,C 1369 1405 5 77362 10.5 10 20.9

4 2 A,B,C 13585 2087 5 174586 13 10 30

5 3 A,B,C 1626 2042 5 104662 11.7 10 17.8

Read length and quality scores of the Nanopore sequencing data runs.

https://doi.org/10.1371/journal.pone.0219961.t001
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total number of matches and mismatches. DNA CS was added to the sampling control prior to

barcoding (barcoded DNA CS), as well as to the pooled barcoded samples (unbarcoded DNA

CS). Both the barcoded and unbarcoded internal control DNA achieved a sequencing accuracy

greater than 71% with a mean accuracy of 85%. This is comparable to previous studies report-

ing accuracies in the range of 65–88% [49, 68–70]. The mean sequencing accuracy was similar

for barcoded (85%) and unbarcoded (85%) samples, indicating both provided reliable

sequencing information. To further validate the accuracy of 16S rRNA gene amplification, a

second internal control, also representing a commonly found HAI, containing Pseudomonas
aeruginosa genomic DNA was amplified, barcoded and sequenced for each run (S3 Fig).

Greater than 65% of reads mapped to the Pseudomonas aeruginosa 16S rRNA gene with a

mean accuracy of 83%, providing confidence in the amplification accuracy.

Ambulance microbial diversity

For Week 1, approximately 38% of the filtered reads were assigned to the order and family

classification, 5% to genus and 3% to species. For Week 2 and 3, a greater number of filtered

reads were assigned to each taxonomy with 65% of the reads from Week 2 and 76% of the

reads from Week 3 assigned to the order level, and 55% of the reads from Week 2 and 72% of

the reads from Week 3 assigned to the family level. Approximately 25% of the reads from

Week 2 and 3 were assigned to the genus level and 20% assigned to the species level. Of the

total filtered reads, 90.1% were classified as bacteria, 0.7% as archaea and 9.2% as unclassified,

with the latter referring to sequences that were not mapped to any reference genome.

A total of thirteen bacterial genera containing important pathogenic species were detected

in ambulances (Table 3). Of particular interest Clostridium spp. and Staphylococcus spp. were

detected, which are the leading cause of HAIs [71]. Other notable bacterial genera include:

Campylobacter, the leading cause of bacterial gastroenteritis in the developed world [72]; Lis-
teria, which results in a fatal bacterial illness [73, 74]; and Shigella, a highly contagious bacteria

that causes the infectious disease shigellosis [75, 76].

A phylogenetic tree was generated using the online program PhyloT (Fig 2A). Sixty-eight

unique organisms were identified at the genus level: two classified as Archaea, eighteen classi-

fied as Eukaryota, and forty-eight classified as Bacteria. The bacterial genera are further classi-

fied into six different phyla: Spirochaetes, Fusobacteria, Bacteroidetes, Actinobacteria,

Firmicutes, and Proteobacteria. These different phyla were not found in the control sample

and represent the diverse population of microorganisms present and that can be detected in

EMS vehicles. The phylogenetic tree illustrates the range of potential genera within an ambu-

lance at any given time and highlights that several of these genera contain opportunistic patho-

genic organisms, including Actinobacillus, Campylobacter, Capnocytophaga, Clostridium,

Haemophilus, Listeria, Pasteurella, Prevotella, Roseomonas, Shigella, Staphylococcus,

Table 2. Filtered Nanopore sequencing read statistics.

Run Week Ambulance Read Count Length (bp) Qscore

Mean Min Max Mean Min Max

1 1 B 57589 638 100 1500 12.8 10.0 18.3

2 1 B 19707 786 100 1500 11.7 10.0 16.9

3 1 A,C 558 499 100 1493 10.4 10.0 15.2

4 2 A,B,C 2493 819 100 1500 12.3 10.0 17.6

5 3 A,B,C 538 668 100 1438 11.4 10.0 17.8

Read length and quality scores of the Nanopore sequencing data runs after filtering.

https://doi.org/10.1371/journal.pone.0219961.t002
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Stenotrophomonas, and Streptococcus (indicated by the red star). Approximately 4% of the

reads assigned to the genera level are bacteria with pathogenic species. Although representing

a relatively minor component of the sequencing reads, the identification of any bacteria with

pathogenic species is an important consideration when transporting and treating immuno-

compromised patients.

The corresponding bar graph shows the variation in relative abundance of bacterial genera

with pathogenic species detected at each sampling location (Fig 2B) and in each ambulance

(Fig 2C), including sequencing reads that were not assigned to any location or ambulance. A

complete summary highlighting the variation in bacterial genera detected for all bacterial gen-

era is included in S4 Fig. While several of these genera are also members of the human micro-

biome [90], it is worth noting that representative species from these genera are capable of

causing illness, and are of concern to both medical professionals and immunocompromised

individuals as they pose a potential threat to the welfare of patients and paramedics within

ambulances.

Table 3. Opportunistic pathogenic bacteria identified in EMS vehicles at the genus level.

Genus Pathogenic Species Membrane Clinical Relevance References

Actinobacillus A. actinomycetemcomitans, A.

urea, A. hominis
Gram-

negative

- Referred to as an oral opportunistic pathogen

Associated Disease: Periodontitis; endocarditis; respiratory tract infections.

[77]

Campylobacter C. jejuni, C. coli Gram-

negative

- Common cause of bacterial gastro-enteritis

- Known to cause death in immunocompromised patients

Associated Disease: Enteritis.

[72]

Capnocytophaga C. bacteremia Gram-

negative

- Common cause of infection for immunocompromised patients with

granulocytopenia and oral ulcerations

Associated Disease: Bacteremia; endocarditis; pericardial abscess; lung infections;

bone infections.

[78]

Clostridium C. difficile, C botulinum, C
perfringens, C. tetani,

Gram-

positive

- Commonly associated with HAIs

Associated Disease: Enterocolitis; botulism; diarrhea; tetanus.

[79]

Haemophilus H. influenza, H. ducreyi, Gram-

negative

- Commonly associated with HAIs

Associated Disease: Respiratory infections; chancroid; sepsis and bacterial

meningitis in young children.

[80]

Listeria L. monocytogenes Gram-

positive

- Listeriosis has a 30% mortality rate

Associated Disease: Listeriosis, sepsis; meningitis; encephalitis; abscess formation.

[73, 74, 81]

Pasteurella P. multocida Gram-

negative

- Classified as a zoonotic pathogen.

Associated Disease: Pneumonia; chronic abscesses; edema; fibrosis.

[82]

Prevotella P. dentalis, P. melaninogenica Gram-

negative

Associated Disease: Abscess formation; wound infection; genital tract infection;

necrosis; oral and dental infection.

[83]

Roseomonas R. mucosa, R. gilardii, R. cervicalis Gram-

negative

-Typically associated with the human microbiota but has been emerging as an

opportunistic pathogen

Associated Disease: Bacteremia.

[84]

Shigella S. dysenteriae, S. flexneri, S. boydii,
S. sonnei

Gram-

negative

Associated Disease: Diarrhea; dysentery; inflammation of the colon and hemolytic

uremic syndrome.

[75, 76]

Staphylococcus S. aureus, S. epidermidis, S.

saprophiticus
Gram-

positive

- Multi-drug resistant pathogen

- Commonly associated with HAIs

Associated Disease: Osteomyelitis; endocarditis; surgical wound infection; urinary

tract infections.

[85, 86]

Stenotrophomonas S.maltophilia Gram-

negative

- Multi-drug resistant pathogen.

- Causes infection in cancer patients

Associated Disease: Respiratory tract infections; bacteremia; sepsis; endocarditis;

meningitis.

[87]

Streptococcus S.pyogenes, S. pneumoniae, S.

dysgalactiae, S. bovis
Gram-

positive

- Commonly associated with HAIs

- S. pneumoniae is the primary agent responsible for pneumonia

Associated Disease: Pharyngitis; scarlet fever; necrotizing fasciitis, myositis, toxic

shock syndrome; meningitis; neonatal sepsis; pneumonia; urinary tract infection;

skin infection; endocarditis.

[88, 89]

https://doi.org/10.1371/journal.pone.0219961.t003
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Fig 2. Diversity of bacterial genera detected in ambulances. (A) Phylogenetic analysis of ambulance microbiota with confidence to the genus level.

Colored segments correspond to unique phyla of bacteria. Organisms are unique to the EMS vehicles and were not identified in the control samples.

Pathogenic genera are indicated by a red asterisk. (B) Relative abundance of bacterial genera with pathogenic species, represented as the average

normalized sequencing reads detected over a three-week period from all ambulances for each sampling location and (C) from all sampling locations for

each ambulance.

https://doi.org/10.1371/journal.pone.0219961.g002
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Our analysis identified a “yet-to-be-cultured” genera: “Candidatus Carsonella”. This organ-

ism is given the “Candidatus” designation since it has not been cultured in the laboratory, and

thus would not have been detected using traditional cell-culturing methods [91]. We detected

non-harmful, commensal bacteria as expected such as Lactobacillus, common to the human

microbiome, as well as Bacillus, common to the urban built environment [92]. Several eukary-

otic mitochondria were also identified by our approach, and assignment of these organisms

was made confidently due to the presence of 16S rRNA genes in the mitochondrial genome.

The temporal change in relative abundance of the microbial composition in relation to

Week 1 is shown using heat maps at each taxonomic level (Fig 3). The heat maps illustrate the

log2-fold change in each taxonomic unit from Week 2 and 3 compared to Week 1 samples. A

z-score was calculated by taking the difference between the total normalized reads assigned to

a given taxon at Week 2 or 3 and Week 1 and dividing it by the square root of the sum of the

reads assigned to a given taxon for the same weeks. A p value is then calculated from the

assigned z-score, and if<0.05, the difference is considered significant [93]. This allows for

monitoring of enrichment of certain species over time such as Burkholderia, which had a fold

change increase of 9.72 and 9.87 in Week 2 and 3 relative to Week 1. For other microorgan-

isms, their abundance decreased over time, such as members of the family Caulobacteraceae,

which had a fold change decrease of 2.36 and 1.13 in Week 2 and 3 relative to Week 1. This

technique provides a tool for monitoring the dynamics of a microbiome over time, allowing

for trends to be monitored and recorded. Ultimately, this enables a better understanding of

pathogen transmission, cleaning effectiveness and identifying how the microbiome composi-

tion contributes to microbial spread.

Discussion

MinION sequencing platform

For rapid identification of the microbial community, the MinION was used, which is advanta-

geous due to its small size, portability, and rapidly developing sequencing technology. Sample

preparation and sequencing using the MinION is accelerated with each iteration of the plat-

form. For example, recently developed kits and devices, such as the ONT VolTRAX and Smid-

gION, simplify and speed up sample preparation, barcoding, and analysis, further highlighting

the potential for on-site sequencing of EMS vehicles. Recently commercialized flow cells can

now process up to 450 bases of DNA per second and per channel, allowing for fast data acqui-

sition. Additionally, the sequencing platform is scalable with use of the PromethION benchtop

sequencer which allows for many flow cells to be run in parallel yielding an increasingly more

comprehensive picture of the microbial community. Studies have also shown the use of ONT’s

sequencing devices to identify antibiotic resistance genes, as well as specific viruses, by using

alternative primers during amplification showing the diverse types of organisms that can be

identified using this platform [28, 49].

While the sequencing approach used is indeed streamlined and portable, there are elements

of the pipeline that could be improved. The first of these concerns is the number of very long

(>5,000bp) reads that were obtained from our sequencing runs, which were filtered out. These

are likely a result of improper adapter ligation and creation of chimeric species of the amplified

PCR products. This type of ligation artifact has been improved in current iterations of ONT

sequencing kits using ligase free adapter addition (16S Barcoding Kit SQk-RAB204). Second,

although our approach was reproducible, as results obtained in our first run were consistent

with the results of our second run using newly prepared samples, subsequent runs using the

same flow cell exhibited a reduced read number. This indicates a limitation to how many

times a flow cell can be re-used. The rapid development of the ONT system also necessitates
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flexibility in sample preparation and sequencing. As the sequencing runs are often carried out

on separate flow cells that may not behave in the same way, further optimization of the repro-

ducibility and quality of reads between flow cells should be considered. The Flongle, a new

device from ONT ideal for small-scale, rapid tests, provides real-time sequencing information

and can be used to assess the quality of a run before performing a large-scale experiment. This

device provides a promising approach for improving read quality and for real-time, on-site

assessment.

Fig 3. A comparison of fold-change of taxa found in ambulances relative to first sampling event. Heatmap illustrating the log2-fold change of

organisms sequenced using ONT MinION relative to the first week of sampling. Yellow squares correspond to an increase in a given taxa at a

corresponding week relative to Week 1, while blue squares indicate a decrease in abundance of a taxa relative to Week 1. Asterisks indicate a

significant change relative to Week 1 (p<0.05). All changes from week 2 are significant relative to week 1 as indicated by the red asterisk.

https://doi.org/10.1371/journal.pone.0219961.g003
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Towards deciphering the ambulance microbiome

Analysis of the sequencing data resulted in the identification of sixty-eight unique organisms

at the genus level. Our approach provided a new and more comprehensive picture of the

microbial community in ambulances in comparison to cell-culturing techniques used in

previous studies, which focused on the identification of specific pathogens of interest, such

as MRSA [15, 17–19, 21, 22]. This is a result of the ability to identify any organism via DNA

sequencing while cell-culturing techniques are limited by the need to know precisely what to

look for, as well as to know the correct culturing conditions at which the bacteria will grow.

For example, this work identified “Candidatus Carsonella”, which has not been cultured

further demonstrating our ability to detect novel bacteria. 16S rRNA genes were chosen for

bacterial identification due to their essentiality in prokaryotes and common use in taxonomic

identification [94, 95]. These genes are also present in mitochondrial genomes explaining why

a proportion of our reads are classified as Eukaryotes in the phylogenetic tree [96]. Regarding

the identification of organisms associated with HAIs [71], we detected three bacterial genera

that were also reported in the metagenomics analysis of ambulances in the United States; Hae-
mophilis, Staphylococcus, and Stenotrophomonas [27]. Additionally, we detected Clostridium
and Streptococcus, two genera commonly associated with HAIs, that were not reported in the

US based study.

The bacterial community was shown to vary both between locations and over time. Poten-

tial pathogenic bacteria were located primarily on the finger monitor in direct contact with

patients, secondarily on the door handle in direct contact with the EMS workers, and also

identified on the soft kits in contact with the environment. Differences were also observed

when comparing between ambulances and, in comparison to Week 1, select organisms were

decreased or enriched, suggesting that the cleaning products and cycle used were effective

for some bacteria but not all, and that more stringent disinfection might be required. The

observed differences in the microbial community may also be impacted by the frequency each

vehicle and piece of equipment is used, as well as the type of emergency responded to, which

would vary from week to week.

While it is likely not possible to ensure a workspace is sterile for the duration of the work-

day, our work shows that methods to monitor vehicle cleanliness can maintain proper hygiene.

Building on the described approach, emergency medical personnel will be able to rapidly ana-

lyze the microbial load in less than 24 hours and modify their cleaning practices as necessary.

This will reduce unnecessary cleaning and costs, while in general making targeted cleaning

much easier. Additionally, identification of select species within a few minutes can be intro-

duced using paper-based tests designed to detect pathogens of interest previously identified in

the sequencing runs [97]. Emerging technology from ONT, such as the VolTRAX, Flongle and

SmidgION, will increase the accessibility of microbiome analysis by providing simple, auto-

mated and easy to use sequencing devices that do not require a strong scientific background

for operation.

Limitations

This proof of principle study successfully identified variations in the EMS microbiome and the

presence of bacterial genera that contain important pathogenic species. As a result of re-using

flow cells, leading to a low sequencing read count, the identification of bacteria was limited to

the genus level. Sequencing is expected to improve with the availability of new flow cell chem-

istry continually being upgraded to provide better basecalling accuracy. Maximizing the

amount of DNA extracted will further improve the accuracy of identifying and detecting bac-

teria present. Previous work using a mock microbial community achieved species-level
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resolution with the MinION [43], suggesting increasing coverage of the 16S rRNA gene

improves read assignment. Further optimization is required to achieve this resolution when

processing environmental samples from EMS vehicles, which contain dirt and other material

not present in mock microbial communities.

By amplification of the 16S rRNA gene, we restricted identification in this study to bacteria

excluding the identification of viruses or fungi. To broaden the detection, less biased methods

such as Multiple Displacement Amplification (MDA) [55] to amplify whole genomes or the

use of additional primer pairs designed to identify fungi or viruses of interest can be integrated

[98, 99]. There is also the option to include a pre-treatment step using chemical agents, such as

propidium monoazide, which prevents DNA from dead cells to be amplified, ensuring amplifi-

cation of DNA from viable bacteria [100]. To be accessible by the EMS, the described pipeline

uses basic molecular biology tools and equipment. Including additional steps, such as MDA or

propidium monoazide treatment, can expand and improve the sequencing results.

Other efforts to streamline our pipeline include implementation of new kits and devices

available from ONT (such as “The Rapid Sequencing Kit” and the VolTRAX device), which

would allow for simplified sample acquisition, preparation and sequencing. On this back-

ground, the described MinION sequencing pipeline provides a tool to detect variations in the

EMS microbiome, which has great utility for assessing disease transmission and maintenance

within EMS. Improvements addressing the respective design limitations will further extend

the utility of the reported approach.

Conclusion

Our pipeline provides a detection and monitoring platform giving EMS personnel a means

of rapid feedback and evaluation of best cleaning practices within ambulances, and is a step

towards understanding the ambulance microbiome. Through our initial study, we demon-

strate the ability to identify potential hot spots that require more attention and monitoring

throughout cleaning cycles, such as the SPO2 finger monitor. For the three locations sampled,

we also provided our local EMS with the necessary data to identify cleaning products that

effectively eliminate the pathogens detected. Since many of the potentially pathogenic bacteria

were found on the finger monitor, an area of high contact by patients during transport and a

difficult area to clean, there is a high likelihood that ambulances are indeed vehicles for patho-

gens into hospitals and vice versa. We recommend that a more detailed analysis and tracking

of pathogen spread between these environments should be implemented to mitigate this

potential health hazard. Large-scale analysis of the sequencing data generated over a longer

period will also enable epidemiological studies and the identification of new emerging patho-

gens, improving our ability to predict and mitigate pathogen outbreaks.
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