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Abstract: Silver nanoparticles (AgNs) are known as a promising alternative tool to control fungal
diseases. AgNs were biologically synthesized using Trichoderma harzianum filtrate as an ecofriendly
approach. The presence of AgNs was confirmed by changing the color to brown, followed by UV-
Vis spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive spectra (EDS).
TEM studies showed that the size of AgNs average was 31.13 nm and the shape was spherical.
In vitro assays of AgNs showed a significant inhibitory effect on the growth of Sclerotinia sclerotiorum
(S. sclerotiorum) and Sclerotium rolfsii (S. rolfsii). The percentage inhibition on mycelial linear growth,
dry weight, and sclerotia formation of S. sclerotiorum and S. rolfsii at 100−L were 87.8, 82.7, 96.4, 52.8,
55.1, and 85.4%, respectively. The obtained results suggested that the biosynthesized AgNs have
antifungal activity against S. sclerotiorum and S. rolfsii. Foliar spray of bean and sunflower plants
with AgNs caused a decrease in disease severity, which promoted the plant protection against S.
sclerotiorum and S. rolfsii, respectively. Substantially, this study will extend our understanding of the
AgNs antifungal action for suppressing fungal diseases.

Keywords: silver nanoparticles; biogenic; Trichoderma extract; antifungal; Sclerotinia sclerotiorum and
Sclerotium rolfsii

1. Introduction

Nanotechnology is a growing discipline of research that has applications in numer-
ous sectors, including health and agriculture [1]. In agriculture, nanotechnology can be
exploited by using natural resources in the conservation, production, and protection of
crops [2]. Recently, biosynthesis of nanoparticles (NPs) or green synthesis of NPs has
received much attention due to the biocompatibility, low toxicity, and eco-friendly nature
of the process and its products [3]. The use of fungi as reducing and stabilizing agents in
the biogenic synthesis of silver nanoparticles has attracted interest due to the enormous
amounts of proteins produced, excellent yields, ease of handling, and low toxicity of the
residues [4]. Furthermore, the nanoparticles are coated with numerous biomolecules pro-
duced from the fungus during the production process, which might improve their stability
and biological activity [5]. Ibrahim et al. [5] showed that several fungus species have the
potential to be used in biogenic synthesis, allowing for the generation of nanoparticles with
a variety of properties, including size, surface charge, and shape. Silver nanoparticles made
from fungi might aid in disease management, with benefits such as minimal toxicity and
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high biocompatibility [6,7]. The discoveries indicated above might contribute to future re-
search into the use of these nanoparticles as antimicrobials in human and animal health and
agriculture [8]. The production of capping from fungal biomolecules, improved stability,
and biological activity are all advantages of the biogenic synthesis of silver nanoparticles
through fungi [9].

Trichoderma harzianum is a mycoparasitic filamentous fungus used as an agent in
biological control for combating plant pathogens that affect the production of several
agriculturally essential plant species [10]. The primary mechanism of its action is the
coiling of hyphae and the release of hydrolytic enzymes that degrade the cell wall of the
target fungus [10]. Fungi of the genus Trichoderma spp. present the NADH co-enzyme and
NADH-dependent enzymes such as nitrate reductase, which is essential in synthesizing
both the nanoparticles and the cappings that confer more stability [11,12].

The two phytopathogenic fungi Sclerotinia sclerotiorum and Sclerotium rolfsii are a
serious concern for a variety of crops, including tomato, beans, and sunflower, resulting in
economic losses in several countries worldwide. Resistant structures (sclerotia) can remain
viable in the soil for decades and can be widely distributed, leading to plant diseases that
cause annual economic losses [13]. Under favorable conditions, they affect all plant organs,
including stems, roots, fruits, petioles, and leaves. Considering these detrimental effects
of S. sclerotiorum and S. rolfsii [14], this study aimed to investigate in vitro activities of
the Ag nanoparticles obtained through biogenic synthesis by T. harizanium against the
phytopathogens and their possible effects on their host plant.

2. Materials and Methods
2.1. Causal Agent and Bioagent

Sclerotinia sclerotiorum isolate SS3 was obtained from bean pods, Sclerotium rolfsii
isolate Sr1 was obtained from sunflower with basal stem rot and the bioagent Trichoderma
harzianum isolate No. A1 d (TrA1d) was purchased from the Fitogen Plant Diseases lab.
Varsak Zeytinlik, Kepez, Antalya, Turkey [15].

2.2. Extracellular Synthesis and Characterization of AgNs

The fungal mycelium grown on potato dextrose agar (PDA) was inoculated into
the production medium (potato dextrose broth (PDB)) followed by incubation at 28 ◦C
for 5 days. Fully grown mycelium was washed with sterile distilled water to remove
medium components. 5 g of T. harzianum fungus wet biomass was added to a 100 mL
aqueous solution of 1 mM silver nitrate (AgNO3), and the resulting mixture was shaken
at 100 rpm for 12 days at 28 ◦C in the dark until the color shifted from bright yellow to
dark brown, indicating that the synthesis was complete. The reduction in metallic silver to
silver ions was used to make AgNs [16], by using collected dark brown solution, which
was washed three times with distilled H2O, and then dried overnight in the oven at 150 ◦C.
The obtained nanoparticles were analyzed by ultraviolet spectra at the wavelength range
from 200 to 700 nm (T80 spectrometer, PG Instruments Limited, Woodway Lane, Alma
Park, Leicestershire, LE17 5FB, United Kingdom). The nanoparticles were examined by
electron microscopy (TEM) using (JEOL JEM-100CX II, Tokyo, Japan). A solution of AgNs
was dropped to the grid. Energy dispersion spectrum (EDS) was performed to confirm the
presence of the elements.

2.3. Antifungal Activity of AgNs against S. sclerotiorum and S. rolfsii
2.3.1. Crude Culture Filtrate (CF)

One plug (5 mm diameter) of T. harzianum collected from actively developing margins
of PDA cultures was used to inoculate 250 mL Erlenmeyer flasks with 50 mL liquid sterilized
potato dextrose broth (PDB). Some stationary cultures were incubated at 25 ◦C for 15 days.
The cultures were vacuum filtered through filter paper, and the filtrates (CF) were kept at
2 ◦C for 24 h [17].
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2.3.2. Effect of AgNs on Some Growth Parameters of S. sclerotiorum and S. rolfsii

The effect of AgNs were evaluated at selected concentrations (25, 50, and 100 µg/mL),
with each concentration added to autoclaved nutritional agar medium in conical flasks and
then dispensed in Petri dishes (15 mL media/dish) and allowed to harden. Dishes were
then inoculated with S. sclerotiorum and S. rolfsii by placing cork borer made agar discs
(5 mm) taken from the periphery of fungal colonies grown for seven days after incubation
at 20 ◦C for S. sclerotiorum and 27 ◦C for S. rolfsii in the center of Petri plates containing
various concentrations of AgNs and AgNO3. For comparison, dishes with nutrient agar
medium without AgNs were inoculated identically. The two diameters of the fungal colony,
as well as the points at which the mycelium development approached the dish’s edge,
were measured. After 14 days, when the sclerotia had covered the control plates entirely,
sclerotia from each plate were collected, and their counts were recorded using a magnifying
40× lens [18].

2.3.3. Effect of AgNs on the Mycelial Dry Weight of S. sclerotiorum and S. rolfsii

The effect of several AgNs levels on the development of S. sclerotiorum and S. rolfsii
isolates in liquid nutrient broth (NB) medium were investigated (NB Discs of 5 mm diameter
were taken from the active edge of 7-day-old cultures of the tested S. sclerotiorum at 20 ◦C
and S. rolfsii at 27 ◦C isolates cultivated on nutrient agar medium and used to inoculate
250 mL Erlenmeyer flasks containing 50 mL autoclaved nutrient medium amended with
diverse doses of AgNs. The concentrations were prepared with sterile distilled water, and
aliquots were pipetted into an NB medium to generate concentrations of AgNs 25, 50, and
100 g/mL. Conical flasks with medium without AgNs were inoculated in the same way
as for the untreated control and served as a control. After being isolated from the fungal
biomass by filtering using Whatman No-1 filter paper and dried at 60 ◦C for 48 h, the
mycelial dry weight (MDW) of different treatments was assessed (mg MDW per 50 mL
liquid medium). The % suppression of fungal growth was calculated using the algorithm
reported previously [19].

2.3.4. Effects of AgNs on Root and Crown Rot Severity Caused by S. sclerotiorum

Test solutions of AgNs with 25, 50 and 100 µg/mL were added, the plants were
sprayed as mentioned previously and the soils were potted in 20 cm diameter sterilized
pots. The soil was mixed with S. sclerotiorum infested barley grains (3.0% w/w); all pots
were irrigated regularly and kept under greenhouse conditions. Seven days later, pots were
cultivated with seeds of bean cv. Giza 6, which had been surface sterilized. Ten seeds were
cultivated per pot, three pots were used per replicate and each treatment consisted of three
replicates. After 10, 20, and 40 days of planting, root and crown rot severity percentages
were assayed.

2.3.5. Disease Assessment

To assess the disease severity, a modified disease rating scale from 0 to 4 was used as
follows: 0 = healthy (no visible lesion), 1 = 0.1–2 cm lesion length on stem, 2 = 2.1–3 cm
lesion length on stem, 3 = 4.1–6 cm lesion length on stem, 4 = ≥ 6.1 cm lesion length on
stem or dead plant [20].

The disease severity was determined by the length of the lesion on the infected
stem [21]. The infected area was determined from the plants in each pot, and the mean
was obtained for each treatment. The disease severity was calculated using the formula of
Wheeler, [22]:

Disease severity = Sum of individual ratings/(No. of plants observed x Maximum disease rating) × 100 (1)

2.4. In Vivo Effects of AgNs Foliar Spraying on Sunflower Plants Infected by S. rolfsii

This research was conducted in a greenhouse located at Plant Pathol. Dept., Fac.
Agric., Minia University, EL-Minia, Egypt.
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It evaluated the effect of AgNs at concentrations of 25, 50 and 100 µg/mL in preventing
the infection of the root and collar rot incited by S. rolfsii on sunflower plants cv. Sagha
53. A total of 100 seeds were sown in five replicate pots for each treatment (5 seeds
per pot). S. rolfsii was grown on autoclaved barley grains (100 g and 65 mL water per
flask). The inoculation was performed using 5 mm diameter agar discs. The flasks were
incubated at 28 ◦C for 10 days to reach sufficient fungal growth, then mixed with soil at
2.5 percent w/w and placed into 15 cm diameter pots. The control was sterile soil that
was not infected with S. rolfsii. The seedlings at age of 3 weeks were sprayed with AgNs
solution at different concentrations and then sprayed again after 3 weeks. After 24 h, the
soil moisture was corrected to 50% of its water holding capacity, and the amount of water
loss was recovered [23].

Disease Assessment
The arbitrary (0–5) disease scale described by [24] was used to measure the disease

severity, in which: 0 = no infection, 1 = 1–20% infected plants; 2 = 21–40% infected plants;
3 = 41–60% infected plants; 4 = 61–80% infected plants; 5 = 81–100% infection. The disease
severity was determined using the method below.

Disease severity = 0A + 1B + 2C + 3D + 4E + 5F/5P × 100 (2)

where A, B, C, D, E, and F is the number of plants in each disease severity class and 5P
refers to the total number of plants (T) multiplied by the highest disease grade 5 [20].

2.5. Statistical Analysis

SAS 2013 software (SAS Institute, Cary, NC, USA) and analysis of variance have been
used to analyze the data (ANOVA). To examine for significant differences between the
main treatments, a general linear model (GLM) approach was applied. Tukey’s method
was used to compare the means (p < 0.05).

3. Results
3.1. Biosynthesis and Characterization of AgNs

The appearance of brown color indicated the biogenesis of nanoparticles. The UV-Vis
absorption spectra of AgNs suspension observed at 430 nm are presented in (Figure 1).
The TEM images indicated that the biosynthesized AgNs have a spherical shape with an
average particle size of 31.13 nm as shown in Figure 2A,B. The energy dispersion spectrum
(EDS) analysis indicated that obtained nanoparticles contained Ag 68.8, Al 22.1 and 9.1%
Cl (Figure 3).
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3.2. Antifungal Activity of AgNs
3.2.1. In Vitro Effect of AgNs on the Growth of Sclerotinia sclerotiorum and Sclerotium rolfsii

The current study found that bulk Ag effectively suppressed the development of
S. sclerotiorum and S. rolfsii on a nutrient agar (NA) medium. However, a greater effect
was shown by nanoparticles (Figure 4). AgNs at the final concentrations of 25, 50 and
100 µg/mL showed a mean inhibitory percentage S. sclerotiorum growth of 68.7, 70.7, and
87.8% compared with that of silver nitrate that presented a mean inhibitory activity of 55.2,
56.1, and 73.9%, respectively. The AgNs inhibition of linear growth of S. rolfsii was 52.8,
48.0, and 37.3% and for AgNO3 was 17.1, 16.2 and 14.3%, respectively (Figure 5).
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3.2.2. Mycelial Dry Weight (DW)

To determine antifungal activity, the pathogenic fungi’s mycelial dry weight was
measured. There was a significant reduction in mycelial dry weight since a considerable
inhibition of 82.7% in DW for S. sclerotiorum (Figure 6) and 55.1% for S. rolfsii was found at
100 µg/mL concentration (Figure 7).
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3.2.3. Number of Sclerotia

The number of sclerotia was used to calculate the inhibitory activity of AgNs in NB
broth. Figures 8 and 9 show that all the AgNs concentrations tested considerably reduced
the quantity of S. sclerotiorum sclerotia as compared to the control. The AgNs at100 µg/mL
concentrations were the most successful, with a percentage of inhibition of a number of
sclerotia of 96.4%, while S. rolfsii had a lower percentage of inhibition of 85.4%.
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3.2.4. In Vivo Effect of AgNs on the Severity of Root Rot Disease

Data presented in (Figure 10) showed the effect of different concentrations of AgNs
on disease severity in bean plants inoculated with S. sclertiorum. The disease severity
significantly decreased with the three tested concentrations, however, the most effective
was at 100 µg/mL which was 15% if compared to 70% for the infected bean plants. On
the other hand, sunflowers plants infected with S. rolfsii (Figure 11) showed a reduction in
severity from 20% to 65% for the infected control at a concentration of 100 µg/mL.
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4. Discussion

The use of fungi covers a large area in the synthesis of metal nanoparticles owing to
their easy handling and cultivation, high biomass production and the secretion of large
quantities of metabolites, enzymes, and extracellular proteins, thus making them promising
materials for use in the areas of health, agriculture, and the environment [25]. Silver
nanoparticles have unique optical, electrical, and thermal characteristics that make them
ideal for many biological applications [5]. Silver nanoparticles could adhere to the cell
walls and membranes of microorganisms and then may get inside the cells, impair the
cell structure, induce the production of reactive oxygen species, and disrupt the signal
pathway [26]. These properties make AgNs promising agents for the control of pathogens
in agriculture and human and animal health [23].

Due to the presence and spread of bacteria resistant to various antibiotics, silver-based
antiseptics have received increased attention in recent years. The fungus Trichoderma viride
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was used to biosynthesize silver nanoparticles by using aqueous silver (Ag+) ions that
were exposed to a T. viride filtrate, which were then reduced in solution, resulting in the
creation of very stable AgNs with sizes ranging from 5 to 40 nm [27]. It is important
to note that AgNs are generally employed for plant disease control as a result of their
suppressive action against a wide spectrum of diverse plant diseases [28]. We discovered
that synthesized AgNs had a good inhibitory action against hyphal development, sclerotia
production, and myceliogenic germination of sclerotia, indicating their potential use in
antifungal therapy. Furthermore, as we could not purify the synthesized AgNs in our study,
the inhibitory effects could have resulted from the AgNs and T. harzianum metabolites,
which may have had a synergetic effect. Kim et al. [28] examined the antifungal action
of AgNs against eighteen phytopathogenic fungi and the most significant suppression of
phytopathogenic fungi was at 100 ppm, which agrees with our results. The interaction of
AgNs with fungi induces several changes in the cell wall structure of the fungus, including
AgNs contact, accumulation, lamellar fragments, and the creation of micropores or fissures,
finally allowing AgNs to enter the cell. A similar study discovered that nanoparticles’
antifungal activity emerged from the first direct contact with fungal cell walls, generating
ROS formation, affecting membrane integrity, and changing morphological features [29].
The AgNs coated with fungi-derived capping has been shown to possess great biological
activity [9,30]. To protect plants against disease invasion, nanoparticles are applied to seeds
or leaves in the soil. As a result, the NPs may be able to control infections in a similar
way as chemical pesticides. AgNs have been used in plant disease management instead of
using chemical fungicides [31–33]. Lamsal et al. [32] found that cucumber plants treated
with AgNs showed the lowest disease incidence % at a concentration of 100 ppm. As a
result, the goal of this work was to get a better knowledge of the antifungal mechanism
of nanoparticles, which might possibly be effective in the prevention of various fungal
diseases. The use of AgNs in the form of nano pesticides in agroecosystems has not yet been
thoroughly investigated, and future research should concentrate on analyzing potential
hazards to achieve safer and more efficient agricultural practices [34].

5. Conclusions

In conclusion, nanotechnology is considered an innovation in agriculture as an al-
ternative tool to harmful pesticides. This study investigated whether it is possible to
biosynthesize silver nanoparticles using Trichoderma harzianum, which acts as a reducing
agent. The formation of AgNs was confirmed by UV spectroscopy. The biosynthesized
AgNs showed an inhibitory effect on S. sclerotiorum and S. rolfsii growth. The synthesized
nanoparticles possess a great capacity of suppressing S. sclerotiorum and S. rolfsii infections
in bean and sunflower plants, respectively. Although we were successful in biosynthesizing
AgNs, further research is needed to properly use fungus for biogenic synthesis, such as
understanding the processes of fungal metabolites that may have biological activity and
function in synergy with the nanoparticle.
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