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Purpose: To minimize computation latency using a predictive strategy to retrieve and
project tumor volume onto 2D MR beam eye’s view (BEV) cine from time-resolved four-
dimensional magnetic resonance imaging (TR-4DMRI) libraries (inhalation/exhalation) for
personalized MR-guided intensity-modulated radiotherapy (IMRT) or volumetric-
modulated arc therapy (VMAT).

Methods: Two time-series forecasting algorithms, autoregressive (AR) modeling and
deep-learning-based long short-term memory (LSTM), were applied to predict the
diaphragm position in the next 2D BEV cine to identify a motion-matched and
hysteresis-accounted image to retrieve the tumor volume from the inhalation/exhalation
TR-4DMRI libraries. Three 40-s TR-4DMRI (2 Hz, 3 × 80 images) per patient of eight lung
cancer patients were used to create patient-specific inhalation/exhalation 4DMRI libraries,
extract diaphragmatic waveforms, and interpolate them to f = 4 and 8 Hz to match 2D cine
frame rates. Along a (40•f)-timepoint waveform, 30•f training timepoints were moved
forward to produce 3×(10•f-1) predictions. The accuracy of position prediction was
assessed against the waveform ground truth. The accuracy of tumor volume projections
was evaluated using the center-of-mass difference (ΔCOM) and Dice similarity index
against the TR-4DMRI ground truth for both IMRT (six beam angles, 30° interval) and
VMAT (240/480 beam angles, 1.5°/0.75° interval, at 4/8 Hz, respectively).

Results: The accuracy of the first-timepoint prediction is 0.36 ± 0.10 mm (AR) and 0.62 ±
0.21 mm (LSTM) at 4 Hz and 0.06 ± 0.02 mm (AR) and 0.18 ± 0.06 mm (LSTM) at 8 Hz. A
10%–20% random error in prediction-library matching increases the overall uncertainty
slightly. For both IMRT and VMAT, the accuracy of projected tumor volume contours on
2D BEV cine is ΔCOM = 0.39 ± 0.13 mm and DICE = 0.97 ± 0.02 at 4 Hz and ΔCOM =
0.10 ± 0.04 mm and DICE = 1.00 ± 0.00 at 8Hz.
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Conclusion: This study demonstrates the feasibility of accurately predicting respiratory
motion during 2D BEV cine imaging, identifying a motion-matched and hysteresis-
accounted tumor volume, and projecting tumor volume contour on 2D BEV cine for
real-time assessment of beam-to-tumor conformality, promising for optimal personalized
MR-guided radiotherapy.
Keywords: MR-BEV-cine-guided radiotherapy, beam-to-tumor conformality, real-time motion prediction, latency,
Motion management
INTRODUCTION

One of the major advantages of magnetic resonance imaging
integrated linear accelerator (MR-Linac) is to provide MR-guided
radiotherapy (MRgRT), including real-time tumor motion
management, making respiratory gating accurate and tumor
tracking possible, especially for hypo-fractional stereotactic body
radiotherapy (SBRT) (1–3). As MRgRT provides patient-specific
imaging in real-time during treatment, adapting to inter-fractional
and intra-fractional patient anatomic variations, it offers the best-
personalized radiotherapy. Clinically, improved treatment
outcomes have been reported showing the benefit of sparing
critical organs at risk (OARs) so that the tumor lethal dose can be
prescribed and delivered to a mobile target, including lung, liver,
and pancreatic cancer (3, 4). Compared with conventional image-
guided radiotherapy (IGRT), MRgRT offers many advantages,
including real-time imaging with high soft-tissue contrast without
ionization radiation. So far, the intensity-modulated radiotherapy
(IMRT) technique is available in the MR-Linac and the
volumetrically modulated arc therapy (VMAT) technique should
be possible in the future.

Currently, dynamic 2D cine imaging in the sagittal and coronal
views can be employed for MR-guided IMRT to monitor
respiratory-induced tumor motion in real time covering the
major motions in the superior–inferior (SI) and anterior–
posterior (AP) directions. Although the two cine views infer a
3D tumor motion, they are partial and indirect views of a
volumetric tumor related to the radiation beam. Moreover,
potential through-plane tumor motion may interfere with
motion interpretation. The more effective, optimal view for
assessing the beam-to-tumor conformality should be the beam
eye’s view (BEV), which is how the radiation beam sees the mobile
tumor and only needs one cine scan (5–7). Previously, a 2D BEV
cine technique with tumor volume projection has been reported
feasible for better MRgRT (8). For IMRT treatment, adequate
accuracy and performance have been achieved to identify and
project a volumetric tumor onto the BEV by 2D–3D matching
between the 2D tumor image on the BEV cine images and a time-
resolved (TR) 4DMRI library containing volumetric images from
multiple breathing cycles (9–12). For MR-guided VMAT, which
may be available in the future, real-time communication and
computation are required for 2D cine imaging with a rotating BEV
and projecting tumor volume with minimal latency.

To overcome system latency, predictive strategies have been
applied to provide a just-in-time prediction of tumor motion in the
next 30–1,000 ms, using conventional Linac for tumor tracking,
2

including adjusting the radiation beam, a multi-leaf collimator
(MLC), or couch position to keep up with a tumor motion (13–
15).Variouspredictivemethodshavebeenevaluated, including time-
series-based (16), model-based (17), regression-based (18), and
machine-learning-based (19, 20) prediction methods. Short-term
motion prediction is an effective and efficient approach to overcome
the system latency and reduce the frequency of x-ray imaging.

Additionally, respiratory motion hysteresis is a commonly
occurring phenomenon in patients, resulting in variations in
tumor motion trajectory, orientation, and shape between
inhalation and exhalation (21, 22). Therefore, even at the same
tumor displacement in the superior–inferior (SI) direction, the
tumor shape, orientation, and anterior–posterior (AP) and left–
right (RL) positions may vary due to the motion hysteresis (15,
21–24). Therefore, without differentiating the inhalation and
exhalation processes, it may add uncertainties in retrieving the
motion-matched tumor volume for BEV projection.

In this simulation study, we aimed to minimize the latency in
matching a tumor volume by predicting the respiratory motion to
identify and project tumor volume in parallel with the next 2D BEV
cine acquisition. In addition, tominimize themotion hysteresis effect,
two TR-4DMRI image libraries of exhalation and inhalation were
created by grouping volumetric images based on their moving
directions. Two predictive algorithms, a conventional autoregression
(AR) modeling and a deep-learning-based long short-term memory
(LSTM) neural network, were applied and evaluated with the known
waveforms. The accuracy of tumor volume projection on the 2DBEV
cine images was evaluated against the ground truth embedded in the
TR-4DMRI datasets. This improved 2D BEV cine technique was
evaluated for both MR-guided IMRT and VMAT treatments.
METHODS

In this study, a predictive strategy was proposed and evaluated to
identify and project tumor volume onto 2D BEV cine images in
real time with minimized system latency and included
respiratory motion hysteresis. The workflow of the strategy is
shown in Figure 1.

Three Time-Resolved 4DMRI Image Datasets,
Waveform Extraction, and Interpolation
Eight lung cancer patients were recruited to participate in an
IRB-approved protocol study using TR-4DMRI for respirator-
induced tumor motion simulation and assessment in a 3T MRI
scanner (Ingenia, Philips Healthcare, Amsterdam, Netherlands).
June 2022 | Volume 12 | Article 898771
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Eight patients were scanned at simulation with 3D cine in free
breathing (FB) for 40 (s) at f = 2 Hz three times within one
imaging session. A T1-weighted, multi-shot, turbo field echo
pulse sequence was used with SENSE acceleration (6.0) and
partial Fourier approximation (0.8), so a total of 3 × 80
volumetric 3D cine images with a voxel size of 5 × 5 × 5 mm3

were acquired. Using the same scan protocol with less
acceleration (3.75), three 3D cines (2 × 2 × 2 mm3) in breath
hold (BH) at an arbitrary stage were acquired within 20 s. The
TR-4DMRI images were reconstructed based on the super-
resolution approach that has been developed via deformable
image registration between the low-resolution FB and high-
resolution BH images. Detailed 4DMRI scanning and
reconstruction methods and conditions can be found in the
previous publications (9–11).

The diaphragmatic motion waveforms were extracted from
TR-4DMRI using an in-house program in MATLAB
(MathWorks, MA). A navigator box (3 × 3 × 6 cm3) drawn on
the right diaphragmatic dome was used to calculate the average
voxel intensity at the same SI positions, and the point with the
largest gradient was determined as the diaphragm position. Over
the 80 images from a 40-s scan, diaphragmatic motion trajectory
in a scan series was used as a motion waveform in the superior–
inferior (SI) direction. Each of the three waveforms at the
frequency of f = 2 Hz was interpolated using the b-spline
function to f = 4 Hz and f = 8 Hz to match the possible
scanning rates of clinical 2D cine frame rate, containing a total
of 40•f timepoints.
Frontiers in Oncology | www.frontiersin.org 3
Just-in-Time Prediction to Overcome
System Latency in the 2D BEV
Cine Strategy
Two time-series forecasting algorithms were applied to predict
diaphragm motion based on the motion waveforms: (1) a
classical autoregressive (AR) modeling algorithm implemented
in the MATLAB Econometric Toolbox™ that uses past values as
inputs to a regression algorithm to predict future values and (2) a
deep-learning long short-term memory (LSTM) recurrent neural
network algorithm in the MATLAB Deep Learning Toolbox™

that processes input data by looping over the time steps and
updating the network state containing information over previous
time steps. Various parameters were tested for the best prediction
accuracy and performance in the two predictive algorithms, and
the optimal settings include using 30-s training data, 10 AR
polynomial degrees, and 20 hidden layers in the neural network
using the Adam (Adaptive Moment Estimation) optimizer with
the maximum of 150 epochs.

In each of the interpolated 40-s waveforms, a 30-s waveform
section with 30•f timepoints was applied as training data to
predict the diaphragm position at the next time point in 125 ms
at f = 8 Hz and 250 ms at f = 4 Hz. After a prediction, the training
dataset was moved one timepoint forward by adding one new
timepoint and removing one old timepoint. The remaining 10-s
waveform served as the ground truth to assess the prediction
accuracy of n = 10•f-1 predictions per motion waveform. For
each patient, a total of 3 × (10•f-1) predictions were made and
FIGURE 1 | The workflow of the predictive strategy to predict, identify, and project tumor volume onto 2D BEV cine, followed by the verification of projected tumor
volume using the center of mass and Dice similarity index against the ground truth for MR-guided IMRT and VMAT. In future clinical applications, the cine waveform
can be utilized as well (gray box).
June 2022 | Volume 12 | Article 898771
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evaluated to assess both patient-specific and population-based
accuracy of motion prediction.

Accounting Tumor Motion Hysteresis by
Identifying Tumor With Predicted
Motion Direction
The 3 × 80 TR-4DMRI images per patient were categorized as in
the inhalation and exhalation processes depending on the
diaphragm moving direction from the previous timepoint.
Therefore, two TR-4DMRI image libraries of inhalation and
exhalation were built with roughly 120 images each. The
estimated displacement interval on the diaphragm was 30 mm/
120 = 0.25 mm, and the exact interval may vary, depending on
the motion range, speed, and number of images. Note that the
motion interval can be reduced, as more 40-s TR-4DMRI series
could be acquired and added from simulation.

When the next diaphragm position is predicted, the moving
direction was first used to select the TR-4DMRI library
(inhalation or exhalation), and the predicted amplitude was
then applied to identify a matched diaphragm, and therefore
the corresponding tumor volume in the library. As exact
diaphragm matching may not be found in a library, a small
uncertainty should be added on top of the prediction uncertainty
for the diaphragm position displacement (ΔD), namely,

DDmatched = DDprediction + DDmatching (1)

Once a volumetric image was identified with a matched
diaphragm from a library, either for inhalation or for
exhalation, the tumor volume projection was evaluated as the
difference in the center of mass (ΔCOM) and the DICE similarity
index, compared with the image ground truth embedded in the
simulation dataset for accuracy assessment.

Accuracy of Tumor Volume Projection on
2D BEV Cine for MR-Guided IMRT
and VMAT
For IMRT treatment, six fixed beam angles (0°–150°) with 30°
intervals were used to assess the ΔCOM and DICE of the
projected tumor volumes between the predicted and ground
truth as a function of time during treatment delivery. Mimicking
a 6-beam IMRT plan, all TR-4DMRI images in the patient-
specific libraries were segmented for tumor volume using an
automated MATLAB program on all cuts parallel to the BEV
with a 2-mm interval and ready to be projected to the 2D BEV
images. The union of all projected contours was used as the final
tumor volume projection.

For VMAT treatment, the full rotation was divided into 240
sections with 1.5° intervals in 4-Hz simulation and used to assess
the ΔCOM and DICE between the tumor volume projections
from the predicted and ground truth. In the 8-Hz simulation, 480
sections per gantry rotation with 0.75° intervals were used. The
results were analyzed as a function of gantry angle, assuming that
the gantry rotates at a constant speed. It should be noted that
clinically the gantry position is known within the MR-integrated
Linac system and the beam angle will be updated. In the VMAT
Frontiers in Oncology | www.frontiersin.org 4
cases, much more beam angles were prepared with pre-
segmented tumor volume ready to be used.

For both IMRT and VMAT cases, the results of tumor volume
projection resulting from the predictions at 125 and 250 ms were
evaluated using the ΔCOM and Dice index based on 8- and 4-Hz
interpolated waveforms, respectively. The two-tailed Student’s t
test was used for all comparison, and a p-value of less than 0.05
was considered statistically significant different.
RESULTS

Prediction Accuracy of the AR Modeling
and LSTM Deep-Learning Network
Figure 2 illustrates the prediction and matching errors based on
the 4- and 8-Hz waveforms. Only the first time point will be used
as the diaphragm position in the next 2D BEV cine image for
accuracy evaluation, while prediction errors for the first 10 time
points are provided, which tend to level off around 1,000 ms at
both frequencies. The prediction accuracy is higher at 8 Hz than
at 4 Hz, primarily due to more training points being used.
Furthermore, the AR method predicts more accurately
(0.4 mm) and takes less time (0.4 s) than the LSTM prediction
(0.6 mm, 1.5 s) at 4 Hz under the current computing conditions,
as shown in Table 1. The same trend is observed using the 8-Hz
waveform, as shown in Table 2.

Tumor Motion Hysteresis and
Compensation Using Exhalation and
Inhalation Libraries
The motion of the diaphragm spends slightly more time (more
images) in exhalation than inhalation phases, as shown in
Table 1. Figures 3, 4 show a couple of examples of motion
hysteresis of the tumors in the coronal view (BEV = 0°) and are
compensated for by identifying the matched tumor volume using
the appropriate inhalation or exhalation TR-4DMRI library.

Verification of 2D BEV Cine With Tumor
Volume Projections for IMRT and
VMAT Treatments
Table 3 shows the average and standard deviation of COM
difference (ΔCOM) and Dice similarity of projected tumor
volume between the identified and ground truth for IMRT
with six fixed beam angles and for VMAT with rotating beam
angles (1.5° interval at 4 Hz and 0.75° interval at 8 Hz). Figure 5
shows the Dice similarity index in VMAT as a function of beam
angle for predictions using the 4- and 8-Hz waveform data.
DISCUSSION

Based on the previous 2D BEV cine approach for MR-guided
IMRT (8), we have demonstrated the following three
improvements of the approach in this simulation study: (1) the
computation latency has been minimized by applying the
June 2022 | Volume 12 | Article 898771
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prediction method in parallel with the 2D cine scan to identify a
motion-matched tumor volume without searching from scratch,
(2) respiratory-induced tumor motion hysteresis has been
explicitely compensated for using the predicted motion to find
a match in either inhalation or exhalation libraries depending on
the motion direction, and (3) the feasibility of the 2D BEV cine
approach to MR-guided VMAT has been tested. In the following,
the advantages and limitations of the new 2D BEV cine approach
will be discussed in depth.
Frontiers in Oncology | www.frontiersin.org 5
Minimizing Computation Latency Using
Just-in-Time Tumor Motion Prediction
The so-called just-in-time tumor motion prediction has been
studied to combat the system latency in respiratory-gated or
tumor-tracking radiotherapy, as it can predict several tens or
hundreds of milliseconds (ms) ahead of time, allowing the
system to start to act before an event occurs. In this study, the
predictive strategy is applied to remove the computation latency
in the 2D–3D library matching (8) for tumor volume projection.
TABLE 1 | Prediction accuracy with matching uncertainties based on 4Hz motion waveforms.

Patient Diaphragm motion
(mm)

4DMRI libraries AR accuracy (mm)b LSTM accuracy (mm)b

Inhale
phases

Exhale
phases

Prediction Matched Prediction Matched

AVGa STD t (s) AVGa STD AVGa STD t (s) AVGa STD

1 15.8 89 122 0.24 0.20 0.44 0.30 0.20 0.42 0.28 1.47 0.47 0.32
2 12.9 97 118 0.26 0.20 0.44 0.31 0.17 0.59 0.55 1.46 0.62 0.58
3 20.7 108 110 0.44 0.36 0.44 0.47 0.36 0.88 0.70 1.50 0.93 0.70
4 14.4 108 111 0.45 0.32 0.44 0.48 0.35 0.61 0.39 1.49 0.64 0.38
5 9.6 101 117 0.25 0.19 0.44 0.31 0.18 0.24 0.21 1.45 0.27 0.21
6 15.8 114 102 0.33 0.28 0.44 0.47 0.49 0.64 0.61 1.47 0.65 0.63
7 11.6 95 122 0.42 0.24 0.44 0.42 0.26 0.75 0.48 1.45 0.78 0.51
8 29.1 92 125 0.47 0.49 0.44 0.63 0.49 0.81 1.34 1.45 0.97 1.24
AVG 16.2 100.5 115.9 0.36 0.29 0.44 0.42 0.31 0.62 0.57 1.47 0.67 0.57
STD 6.2 8.8 7.7 0.10 0.10 0.00 0.11 0.13 0.21 0.35 0.02 0.23 0.32
June 2022 | Volume 12 |
 Article 89
The AR (autoregression) and LSTM (long short-term memory) prediction accuracy and performance, diaphragm motion, two TR-4DMRI libraries in the inhalation and exhalation, and the
library matching errors are provided. The AR method provides more accurate prediction results using less time than that of the LSTM method.
ap-value <0.02 for both prediction and matched accuracy between AR and LSTM.
bNo significant difference between prediction and matched accuracy using either AR or LSTM.
A

B

FIGURE 2 | Prediction accuracy of the AR (autoregressive) modeling and the LSTM (long short-term memory) neural network as a function of the time points ahead
of training datasets (the 30s of the waveform) using motion waveforms at 4 Hz (A: 10 predicted timepoints in 2,500 ms) and at 8 Hz (B: 10 predicted timepoints in
1,250 ms). The mean differences increase slightly due to the matching errors.
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A

B

FIGURE 3 | Illustration of motion hysteresis of a posterior peripheral tumor (patient 2, with 20 breathing cycles in 40 s) during mid-inhalation (A) and mid-exhalation
(B) with a similar diaphragm displacement at the zero-gantry angle (BEV = 0°). The isocenter (red cross) position is shown inside the in-plane tumor BEV contour
(orange) and the projected volumetric tumor contour (white). Both the in-plane and projected tumor contour shapes and the centers of mass (COMs) are different
between inhalation and exhalation. By selectively using either the inhalation or exhalation TR-4DMRI library based on the motion direction, the respiratory hysteresis
effect is compensated.
TABLE 2 | Prediction accuracy with matching uncertainties based on 8-Hz motion waveforms.

Patient Tumor motion and volume AR accuracy (mm)b LSTM accuracy (mm)b

SI (mm) AP (mm) LR (mm) Vol (cc) Prediction Matched Prediction Matched

AVGa STD t (s) AVGa STD AVGa STD t (s) AVGa STD

1 3.6 6.7 2.1 5.2 0.03 0.03 0.52 0.05 0.06 0.14 0.12 1.87 0.19 0.13
2 9.1 8.0 5.2 16.2 0.05 0.04 0.51 0.06 0.05 0.20 0.17 1.85 0.22 0.16
3 6.6 5.5 8.9 8.8 0.08 0.06 0.50 0.10 0.07 0.15 0.12 1.93 0.19 0.13
4 3.7 4.5 4.1 25.1 0.06 0.05 0.51 0.07 0.06 0.17 0.13 1.89 0.20 0.14
5 3.5 2.1 2.1 3.5 0.04 0.04 0.51 0.06 0.04 0.11 0.09 1.90 0.13 0.10
6 6.0 8.9 9.9 10.0 0.10 0.09 0.50 0.14 0.11 0.17 0.14 1.93 0.20 0.14
7 8.1 8.4 6.5 64.1 0.05 0.04 0.50 0.07 0.05 0.15 0.12 1.92 0.16 0.11
8 5.2 2.7 5.3 1.2 0.06 0.07 0.44 0.09 0.11 0.30 0.45 1.89 0.37 0.51
AVG 5.7 5.9 5.5 16.8 0.06 0.05 0.50 0.08 0.07 0.18 0.17 1.90 0.21 0.18
STD 2.1 2.6 2.9 20.6 0.02 0.02 0.03 0.03 0.03 0.06 0.11 0.03 0.07 0.14
Frontiers in O
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The AR (autoregression) and LSTM (long short-term memory) prediction accuracy and performance, tumor motion, location, and volume, and the library matching errors are provided. The
AR method provides more accurate prediction results using less time than that of the LSTM method.
ap-value <0.001 in both prediction and matched accuracy between AR and LSTM.
bNo significant difference between prediction and matched accuracy using either AR or LSTM.
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As the prediction can be started in parallel with the next BEV 2D
cine acquisition, the predicted tumor position in the next cine
frame should be available and ready to project tumor volume
contour onto the 2D BEV cine image. Therefore, the
Frontiers in Oncology | www.frontiersin.org 7
computation latency can be reduced or eliminated if the
prediction can be completed within 125 or 250 ms for 8- or 4-
Hz cine acquisition, respectively.
A

B

FIGURE 4 | Illustration of 2D BEV (beam angle = 0°) difference of in-plane tumor contours (orange) between mid-inhalation (A) and mid-exhalation (B) (patient 7,
with 17 breathing cycles in 40 s), while projected tumor volume contours (white) are similar in the multi-cycle TR-4DMRI images for this patient. The diaphragm
positions are similar in all cases. Due to respiratory hysteresis, including the AP motion, the in-plane tumor contours (orange) are distinctively different between
inhalation and exhalation. In contrast, tumor volume projections may not be affected by a through-plane (AP) motion, presenting a stable projected tumor contour.
This predictive strategy distinguishes hysteresis-caused tumor volume differences via selectively using either the inhalation or exhalation TR-4DMRI library based on
the respiratory direction, while the previous method distinguishes them via searching for a match with the highest Dice similarity index (8).
TABLE 3 | The accuracy of the center of mass (ΔCOM) and shape (Dice similarity index) of the projected tumor volume onto the 2D BEV cine images.

Patient 4-Hz motion waveforms* 8-Hz motion waveforms*

IMRT VMAT IMRT VMAT

ΔCOMa (mm) 2Db Dice 3DcDice ΔCOMa (mm) 2Db Dice 3DcDice ΔCOMa (mm) 2Db Dice 3DcDice ΔCOMa (mm) 2Db Dice 3DcDice

1 0.25 0.98 0.99 0.25 0.98 0.99 0.06 1.00 1.00 0.06 1.00 1.00
2 0.31 0.97 0.98 0.31 0.97 0.98 0.07 1.00 1.00 0.07 1.00 1.00
3 0.64 0.88 0.93 0.64 0.88 0.93 0.17 0.98 0.98 0.17 0.98 0.99
4 0.47 0.94 0.96 0.47 0.94 0.96 0.11 0.99 0.99 0.11 0.99 1.00
5 0.25 0.98 0.99 0.25 0.98 0.99 0.06 0.99 0.99 0.06 0.99 1.00
6 0.42 0.96 0.97 0.42 0.95 0.97 0.12 0.99 0.99 0.12 0.99 1.00
7 0.40 0.97 0.98 0.40 0.97 0.98 0.07 1.00 1.00 0.07 1.00 1.00
8 0.40 0.93 0.95 0.40 0.93 0.95 0.10 0.99 0.99 0.10 0.99 0.99
AVG 0.39 0.95 0.97 0.39 0.95 0.97 0.10 0.99 1.00 0.10 0.99 1.00
STD 0.13 0.03 0.02 0.13 0.03 0.02 0.04 0.01 0.00 0.04 0.01 0.00
Jun
e 2022 | Volum
e 12 | Articl
At both frequencies of the waveforms for both IMRT and VMAT, a sub-mm accuracy in COM and a greater than 0.95 Dice on average are achieved using the predictive strategy.
Additionally, as the prediction accuracy is higher at 8 Hz than at 4 Hz, the accuracy of tumor volume projection is also higher, suggesting the benefit of scanning 2D BEV cine at the highest
possible frequency.
ap-value <0.0001 for ΔCOM comparison between 4- and 8-Hz motion waveform.
b2D Dice refers to the 2D tumor contour on the 2D BEV cine image. p-value < 0.005 for 2D Dice comparison between 4- and 8-Hz motion waveform.
c3D Dice refers to the tumor volume projection on the 2D BEV cine image. p-value <0.01 for 3D Dice comparison between 4- and 8-Hz motion waveform.
*No significant difference between ΔCOM, 2D Dice and 3D Dice in both frequencies of motion waveform.
e 898771
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Interestingly, the prediction accuracy and speed of the AR
modeling method outperform the deep-learning-based LSTM
neural network method, in both accuracy and performance. As
the learning process is progressively reoccurring along with the
moving training dataset, the LSTM has to relearn every time in
the current algorithm. Therefore, the AR results will be used as
the focus of the discussion. As shown in Tables 1, 2, the current
AR computation times for prediction are 400 and 500 ms for 4-
and 8-Hz training datasets, respectively. The computation time
must be reduced to within 125–250 ms to remove the
computation latency, and performance enhancement is
achievable by optimizing the prediction code, using a more
powerful computer, and/or employing parallel computing
techniques, including the graphics processing unit
(GPU) technique.

On average, the prediction accuracy is higher for the time
point that is closer to the training dataset, as illustrated by the
predictions of the next 125 ms (8 Hz) and 250 ms (4 Hz), as
shown in Tables 1, 2. The higher the 2D cine frame rate, the
higher the accuracy of prediction would be, and therefore the
more accurate the tumor volume projection. Therefore, it is
recommended to apply the highest cine frame rate, as long as
the cine image quality is sufficient for tumor visualization. In
this study, as the b-spline interpolation was applied to the
waveform extracted from TR-4DMRI (2Hz), the waveforms are
“smoother” than the actual, which contains random noise.
However, even if a 2% random error was added to the
interpolated motion waveform, the prediction error should
still be at the sub-mm level. A random library matching error
was present due to the limited motion interval in the TR-
4DMRI library, and on average, the prediction results remain
roughly the same (Figure 2).
Frontiers in Oncology | www.frontiersin.org 8
Compensating for the Tumor Motion
Hysteresis by Separating Inhalation
and Exhalation
It is well known that respiratory-induced tumormotion is direction-
dependent, meaning the path for inhalation is different from that of
exhalation, namely, motion hysteresis (21, 24). Therefore, when
identifying an image with a matching diaphragm or tumor
displacement in the SI direction, the motion direction should be
considered, in addition to amplitude. In this study, we split the TR-
4DMRI library into inhalation and exhalation libraries and applied
motion direction first to select the correct library and then found a
match with the motion amplitude. Therefore, the hysteresis effect
will be accounted for.

Using the current three-series TR-4DMRI, the number of
images seems sufficient to have a small-enough motion interval
in both inhalation and exhalation libraries, as the uncertainty
from slight mismatching does not add too much error on average
(Figure 2). However, for individual prediction, the finer interval
should be helpful to identify a precise diaphragm or tumor
position. The library sizes can be easily increased by acquiring
more 40-s TR-4DMRI series as additional acquisitions. The 40-s
limit is due to the MR scanner memory capacity. Therefore, the
number of MR images in the exhalation and inhalation libraries
can be increased substantially within a couple of minutes of TR-
4DMIR acquisition.

The motion hysteresis has some variation, meaning the
inhalation and exhalation path may not be very reproducible,
as part of breathing irregularities. Therefore, there is an
uncertainty in identifying a tumor volume from the libraries,
either through previous 2D–3D library matching (8) or through
current inhalation/exhalation library assignment.
A

B

FIGURE 5 | The Dice similarity index of the projected tumor contours on the 2D BEV cine images between the predicted and the ground truth of the tumor volume
as a function of beam angle (0°–360°). A constant gantry rotation is assumed for the two plots (Dice value display: 0.4–1.0). At both frequencies, the Dice index of
patient 3 (yellow) shows the most variations among the eight patients. From 4 Hz (A) to 8 Hz (B) the average Dice index increases from 0.97 ± 0.02 to 1.00 ± 0.00
(Table 3) as the prediction accuracy increases, as shown in Tables 1, 2.
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Advantages and Limitations of Using BEV
2D Cine for MRgRT Treatments
It is a commonly accepted concept in image-guided
radiotherapy that BEV imaging is the most useful guidance
because it directly verifies if the radiation beam is targeting a
mobile tumor and if beam-to-tumor conformality is acceptable
by comparing the projected tumor volume in the planning BEV
image and the verification BEV image. In a conventional Linac,
an MV electronic portal imaging device (EPID) is used to take
the BEV portal image, while in an MR-integrated Linac, a 2D
BEV cine image can be acquired by changing the MR imaging
orientation to be perpendicular to the radiation beam. Aside
from other differences, the 2D BEV cine image provides a slice
image, while the EPID produces a radiographic projection
image. Therefore, the through-plane tumor motion will affect
the MR cine image, and projecting the tumor volume onto the
BEV cine becomes necessary. To retrieve tumor volumetric
information, we proposed to identify the matched tumor
volume in TR-4DMRI libraries via either previous 2D–3D
library matching (8) or the predictive strategy to identify the
motion-matched and hysteresis-compensated tumor volume
for volume projection onto the 2D BEV cine image. Although
both approaches work, the current approach has the advantage
of no computational latency.

In this study, verification of the predicted tumor volume
projection against the ground truth illustrates the accuracy of the
improved 2D BEV cine strategy. A sub-mm accuracy in
prediction and tumor COM has been achieved, while the
contour shape similarity of the projected tumor volume is as
high as >0.95 against the ground truth. Therefore, the 2D BEV
cine with projected tumor volume is sufficiently accurate and
reliable and can be viewed in real time as soon as the 2D BEV
cine is acquired without computational latency. The current
predictive code needs to be optimized on its performance to
reduce the computation time from 400 ms to within 250 ms for
4 Hz, including using parallel computing techniques, such as
GPU technology.

In this predictive strategy, a high correlation between the
diaphragm and tumor motions was assumed, which is often true
for a lung or liver tumor that is located near the diaphragm (25–27).
If a tumor is away from the diaphragm, its motion amplitude should
be only a fraction of that of the diaphragm. Therefore, the tumor
volume can be found with an acceptable tolerance when the
diaphragm position has a precise match. As the diaphragm is a
large object, uncertainties in its position determination are present
(28). The sub-mm COM accuracy results have validated the
assumption and method of segmenting the diaphragm used in
this study. Clinically, if a tumor volume is sufficiently large, the
tumor motion trajectory waveform can be directly measured using
the same image processing tool on TR-4DMRI images. Clinically,
the tumor trajectory from the 2D BEV cine can be also used as the
motion of the day (Figure 1). Therefore, the error from the
imperfect diaphragm–tumor correlation is eliminated, and more
accurate identification and projection of tumor volume can
be achieved.
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Breathing irregularities have been observed and investigated
during radiotherapy treatment in comparison with the motion
assessment at the simulation (29, 30). Therefore, the TR-4DMRI
library may need more images under some “abnormal” breathing
conditions, including slightly deeper breathing. Therefore, the
TR-4DMRI library represents more possible variations, ensuring
the finding of a motion-matched and hysteresis-compensated
tumor volume for projection onto the 2D BEV cine image.

Currently, the 2D BEV cine approach with projected tumor
volume has only been tested for motion monitoring of peripheral
lung cancer; it remains a challenge for centrally located lung
tumor, liver, and pancreatic cancer, for which the image contrast
between tumor and surrounding normal tissue may not be as
clear, making the automatic tumor delineation difficult, even for
MR imaging with high soft-tissue contrast. Therefore, further
investigation is needed to assess the feasibility of other
disease sites.
CONCLUSION

This study has demonstrated an improved 2D BEV cine
approach for MR-guided IMRT with minimal computation
latency, ability to compensating for respiratory hysteresis, and
the feasibility for MR-guided VMAT. The predictive method can
achieve sub-mm accuracy to determine the diaphragm position,
tumor position, and tumor projection for the next frame of the
2D BEV cine image. The AR algorithm outperforms the LSTM
algorithm in the next-frame motion prediction at both 4- and 8-
Hz 2D BEV cine frame rates. The potential respiratory hysteresis
effect on tumor shape between inhalation and exhalation is
accounted for by checking motion direction and using
corresponding TR-4DMRI libraries. This approach allows real-
time assessment of beam-to-tumor conformality for respiratory
gating or tracking during IMRT or VMAT treatments. With
further clinical testing, this 2D BEV cine approach has strong
potential to serve as optimal personalized imaging guidance in
current MR-guided IMRT or future VMAT treatments.
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