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Abstract

Background: Carbon-13 (13C) analysis is a commonly used method for estimating reaction rates in biochemical
networks. The choice of carbon labeling pattern is an important consideration when designing these experiments.
We present a novel Monte Carlo algorithm for finding the optimal substrate input label for a particular
experimental objective (flux or flux ratio). Unlike previous work, this method does not require assumption of the
flux distribution beforehand.

Results: Using a large E. coli isotopomer model, different commercially available substrate labeling patterns were
tested computationally for their ability to determine reaction fluxes. The choice of optimal labeled substrate was
found to be dependent upon the desired experimental objective. Many commercially available labels are predicted
to be outperformed by complex labeling patterns. Based on Monte Carlo Sampling, the dimensionality of
experimental data was found to be considerably less than anticipated, suggesting that effectiveness of 13C
experiments for determining reaction fluxes across a large-scale metabolic network is less than previously believed.

Conclusions: While 13C analysis is a useful tool in systems biology, high redundancy in measurements limits the
information that can be obtained from each experiment. It is however possible to compute potential limitations
before an experiment is run and predict whether, and to what degree, the rate of each reaction can be resolved.

Background
In vivo metabolic reaction flux data provides insight into
the dynamic function of the cell [1-3]. One widely-used
experimental method for measuring in vivo reaction
fluxes is steady-state substrate 13C isotope labeling [4-6].
An overview of the general 13C methods is described in
Figure 1. Isotopomers, or isomers created from inserting
labeled isotopes (often 13C) at different positions in a
molecule, provide a unique way to track the progress of
carbon through a metabolic network. By measuring the
enrichment for 13C in metabolite pools after growing on
a 13C labeled substrate, inferences about the internal
flux state can be made. The approach can be summar-
ized as a data fitting problem between simulated and
experimentally measured 13C labeled metabolite concen-
trations. An isotopomer model, describing the positional
transfer of carbon atoms for all or a subset of reactions

in the network, is used to simulate data (Figure 1a). For
a specified carbon input label, an isotopomer model
enables the calculation of an isotopomer distribution
vector (IDV) corresponding to a particular simulated
steady-state flux distribution (Figure 1b). Mass spectro-
metry (MS) experiments on 13C-labeled metabolites (e.g.
macromolecules) generate fractional 13C enrichments
from fragmented macromolecules, forming a mass dis-
tribution vector (MDV) (Figure 1c). The error between
the measured MDV and the MDV corresponding to the
simulated IDV summarizes how well the presumed flux
distribution fits the 13C experiment. The flux distribu-
tion v that minimizes this error can be computed by sol-
ving a non-linear optimization problem. Simulating 13C
enrichment given a flux distribution is computationally
inexpensive; however, the inverse problem of calculating
the flux distribution that best fits a 13C experiment is
both of greater interest and significantly more computa-
tionally difficult (Figure 1d). A review of these methods
and associated challenges can be found in [6-8].
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There are several distinct sources of variability in a
13C experiment that limit the confidence with which
particular reactions can be determined. First, due to
experimental accuracy limitations and biological varia-
bility, uncertainty arises in the experimentally measured
MDV. Second, due to alternate pathways present in
metabolic networks, the mass balance equations under-
lying a metabolic steady-state are significantly under-
determined [9]. While the full network flux distribution
may not be resolved at high confidence by a given
experiment, certain labeling patterns may resolve fluxes
through certain pathways with greater confidence than
other labeling patterns, as has previously been shown
[4,10].
For a given n-carbon compound, there are 2n possible

13C labeling states (as well as mixtures), and the choice
of label is known to affect the ability to determine reac-
tions fluxes [10]. As 13C methods are based upon com-
putational modeling of isotopomer distributions, it is
possible to computationally optimize the choice of

substrate labeling pattern to enhance the information
gained from an experiment. There are two primary
motivations that drive such an endeavor. First, 13C
experiments are expensive, so choosing the best experi-
ment a priori is desirable. Second, we can assess the
capability of the steady-state 13C labeling approach
towards determining reaction fluxes in an unbiased
manner. The issue of optimization of 13C labeling
experiments has been addressed in the literature
[4,10,11]. However, the use of flux sampling for optimal
isotopomer experiment prediction has not been
explored previously, and this approach presents several
unique advantages over previous methods.
We describe a Monte Carlo sampling-based method

for choosing the optimal substrate label, based upon the
Constraint-Based Reconstruction and Analysis (COBRA)
computational platform [12,13]. COBRA methods use
manually-curated biochemical network reconstructions
of known reaction stoichiometries and measurable nutri-
ent uptake and secretion rates to define feasible ranges
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Figure 1 Isotopomer Overview. a) definition of the network, including carbon fates b) isotopomer balance equations - solving these equations
yields the Isotopomer Distribution Vector (IDV) c) experimental data are compared to computed Mass Distribution Vectors (MDV) yielding
experimental fit. d) two types of possible computations - the forward computation uses a flux distribution as input to compute the MDV, while
the inverse problem attempts to find the flux distribution that minimizes the experimental discrepancy.
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for internal reaction fluxes. Many of these reconstruc-
tions have been generated [14] and the procedure is
well-established [13,15]. These models can be used for
methods such as computing growth rates [16,17], pre-
dicting the effects of gene knockouts [16,18,19], predict-
ing the endpoint of adaptive evolutions [20], and
designing strains for industrial production [21,22]. A
review of these methods can be found here [12,13,23].
Monte Carlo sampling of constraint-based metabolic
models can be used to generate sets of biochemically
feasible flux distributions that obey measured uptake
and secretion rate constraints [24]. IDVs generated from
these flux distributions in an isotopomer model can
then be compared against simulated 13C data to evaluate
the ability of the experiment to determine reaction
fluxes. Monte Carlo sampling takes advantage of the
speed with which IDVs can be simulated from putative
flux distributions, making this approach suitable for
large-scale analysis of in silico experiments.
A Monte Carlo sampling approach was implemented

using a newly developed isotopomer model to evaluate
the efficiency of different carbon labeling patterns
toward determining reaction fluxes in E. coli. The
dimensionality of simulated 13C data was calculated
using singular value decomposition (SVD) for different
substrate labeling patterns and compared to the number
of undetermined dimensions in the network. 13C experi-
ments were performed for three substrate labeling pat-
terns to validate the prior theoretical analysis. The
methods developed represent a flexible computational
analysis that can be applied to various biological systems
and experimental setups to estimate, a priori, the effi-
ciency of isotopomer experiments in determining reac-
tion fluxes.

Results and Discussion
Expanded Isotopomer Model
An isotopomer model was constructed in two phases.
First, a central metabolic isotopomer model that
accounts for 85 reactions including glycolysis, the TCA
cycle, the pentose phosphate pathway, oxidative phos-
phorylation, pyruvate metabolism, and anaplerotic reac-
tions was derived from the iJR904 E. coli reconstruction
[16]. This initial model was equivalent in reaction con-
tent to commonly used isotopomer models for E. coli
[25,26].
An expanded model was then constructed that

includes both central and biosynthetic pathways. The
iMC1010 metabolic network [19] was evaluated to
determine which reactions can sustain non-zero fluxes
during growth on glucose, acetate, or lactate when only
certain by-products are allowed to be secreted (acetate,
formate, D-lactate, pyruvate, succinate, glycerol, CO2,
and ethanol). Blocked reactions, which must have zero

net flux at steady state, were subsequently omitted from
consideration. Groups of reactions that could be merged
together without affecting model results (e.g. linear
pathways) were combined in order to reduce the num-
ber of variables. Large sets of biosynthesis reactions that
produce phospholipids, nucleotides, co-factors were also
combined, since there no experimental measurements
existed for these high-carbon metabolites. However, by-
products resulting from high-carbon metabolite produc-
tion (e.g. CO2, formate, succinate, fumarate, and pyru-
vate) that could enter back into the metabolic network
were tracked. Of the original 932 reactions in the com-
plete metabolic iMC1010 network, nearly a third were
represented in the biosynthetic isotopomer model, either
individually or as grouped reactions.
The final isotopomer model accounts for a total of

313 irreversible reactions, including 278 which track
carbon. Inclusion of these additional pathways is likely
important for accurate assessment of the flux-resolving
power of 13C experiments both within and beyond cen-
tral metabolism [7]. A complete listing of the reactions
and metabolites in the biosynthetic network can be
found in the Additional File 1.

Monte Carlo Sampling Approach
To compute possible flux distributions of the E. coli
model, the network was sampled using a Markov Chain,
Monte Carlo (MCMC) sampling algorithm (see Meth-
ods). The steady-state mass balance and uptake rate
constraints for the metabolic network create a convex
hyperspace that contains all biochemically feasible
steady-state flux distributions [27]. Monte Carlo sam-
pling generates a set of flux distributions that are spread
uniformly throughout the feasible space. The inclusion
of 13C experimental data reduces the feasible space in
which the true flux state must lie by requiring that the
IDV calculated from the putative flux distribution must
match the experimental data within error. While the
space of feasible flux distributions depends only on reac-
tion stoichiometry, the space of resulting simulated
IDVs differs depending on the input substrate labeling
pattern. Hence, different labeling patterns can have dif-
fering abilities to resolve each reaction flux.
Here, we used Monte Carlo sampling of flux distribu-

tions to analyze the degree to which reaction fluxes can
be determined by steady-state 13C labeling experiments
in terms of several possible experimental objectives. For
example, one possible experimental objective is to deter-
mine whether a particular reaction has a flux above or
below a specified value. For this objective, a well-
designed labeling pattern would be one in which flux
distributions that have an objective reaction flux greater
than the specified value can be easily distinguished from
flux distributions with an objective reaction flux less
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than the specified value. As seen in Figure 2, a hypothe-
tical experiment 1 produces measurement distributions
which overlap whereas experiment 2 shows greater
separation. If one were interested in differentiating
between the two partitions, experiment 2 would be
much preferable. This method allows for the scoring of
any label for any given experimental objective without
first knowing the true cellular flux distribution v.

Generating and Evaluating 13C Experimental Hypotheses
An experimental hypothesis is defined as a partition of
the sampled flux distribution set. While many possible
hypotheses could be considered, two rational hypotheses
were studied. The first case attempts to elucidate

whether a reaction has high or low flux (hi-lo). The
solution space is partitioned into all points with vj
>threshold versus vj <threshold. A different hypothesis
is generated for each reaction j. The threshold was cho-
sen to be the median of all vj so that half of all points
would be in each of the two partitions. The second set
of hypotheses tested consisted of biologically relevant
flux ratios. For each point the ratio of two reactions, vi/
vj, was determined to be above or below some threshold
that formed a partition.
Intuitively, a hypothesis score should be high if the

isotopomer distributions coming from one partition are
distinguishable from distributions in the other partition.
While there are several ways of doing this, we chose a
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Figure 2 Method Overview. a) The space of flux distributions is partitioned in two parts corresponding to ‘high’ flux versus ‘low’ flux. A uniform
random sample is drawn from the space and is also partitioned into partition 1 and partition 2. b) For each point in the space the distribution
of experimental measurements is simulated. Hypothetical experiment 1 and experiment 2 with different glucose label mixtures produce different
measurement distributions. The distributions from experiment 2 are more separated, indicating parameters of experiment 2 are more conducive
for differentiating between the high and low partition.
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heuristic metric based on a Z-score, which is commonly
used to determine the difference between two samples.
A Z-score was calculated for each fragment (element) of
the calculated MDV for each simulated flux distribution:

Zi =
|x̄hi − x̄lo|√
s2
hi + s2

lo + σ 2

where x̄hi and x̄lo are the average fragment enrich-
ments for the upper and lower partitions, respectively,
s2
hi and s2

lo are the variances of fragment enrichments

for the upper and lower partitions, respectively, and the
a is a constant equal to 0.014. a is on the order of mag-
nitude of the uncertainty in measurements. This slight
modification to the standard Z-score puts a lower
bound on the expected experimental variation. The Z-
score of each fragment is added together to give the Z-
score of the experiment.

Z =
∑

i∈fragment

Zi

Using this approach, candidate flux states were
sampled uniformly and experimental hypotheses tested.
Z-scores were calculated for the hi-lo hypothesis corre-
sponding to 1) individual reactions 2) reaction ratios
and 3) two ‘random’ reactions or ratios. Random
hypotheses were tested to estimate the level of noise

associated with the set of flux distributions. Raw and
normalized Z-scores are given in the Additional File 1.
Z-scores varied from the level of noise to a maximum of
>20-fold the level of noise.
To illustrate the differences in label-dependent reac-

tion resolving capacity, two sets of Z-scores correspond-
ing to [1-13C] glucose and [6-13C] glucose are plotted in
Figure 3. Lighter colors indicate higher Z-scores and
ease of measurement. In this case, [6-13C] glucose scores
higher at measuring the pentose phosphate pathway and
most of lower glycolysis, whereas [1-13C] glucose glu-
cose scores much higher at measuring the glyoxylate
shunt. The results suggest that there is no single label
that yields a high score for all experimental objectives.
For example, the exchange of formate (EX_for) could be
easiest measured with a [1,2-13C] glucose; however, this
labeling pattern is bested by [1-13C] glucose for the
measurement of reaction formyltetrahydrofolate defor-
mylase (FTHFD) (Figure 4). This non-universality of
labels is in line with expectations, as it has been pre-
viously shown that the choice of labels can affect the
flux resolution. For many reactions, the best experiment
that could be performed involves hypothetical (non-
commercially available) labels. One example is the ratio
of phosphofructokinase (PFK) flux to fructose bispho-
sphate aldolase (FBA) flux. The best label for determin-
ing this ratio is [1,2,3-13C] glucose (Z = 28.0), which
gives a much higher Z-score than the best commercially

50+Z-score: 0Scale: Linear;

ba

Figure 3 Simulated Z-Scores. Two possible glucose label patterns show different strengths in evaluating different parts of the network. Brighter
colors indicate more easily determined fluxes. a) [1-13C] glucose Z-scores illustrates flux determinability with 100% [1-13C] glucose. b) [6-13C]
glucose Z-scores shows the same network evaluated with [6-13C] glucose. It is observed, for example, that [6-13C] glucose is predicted to
elucidate the pentose phosphate pathway more easily, while [1-13C] glucose better elucidates the glyoxylate shunt.
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available label, [1,2-13C] glucose (Z = 18.5). Thus, there
may be motivation to synthesize compounds with more
complex labeling patterns than commonly used. Addi-
tionally, there are certain reactions which are predicted
to be difficult to measure with any labeling pattern. For
example, the Z-scores for each possible labeled glucose
substrate for the reaction pyruvate oxidase (POX) all lie
within the level of noise, as determined by the compari-
son with random hi-lo experiment Z-scores.
In addition to label-specific reaction flux elucidation

properties, 13C experiments show a clear pathway bias
regardless of labeling pattern. The maximum Z-score of
all labeling patterns was found for each reaction, giving
a metric for the maximum potential for reaction flux
determination using 13C-labeled glucose (Figure 5A).
Then, the fraction of reactions that had a maximum
potential at least twice the noise level was found for

each subsystem (Figure 5b). Reactions that were stoi-
chiometrically fixed by the measured constraints on
acetate, glucose, D-lactate, oxygen, growth rate, and
ATP maintenance were also categorized by subsystem.
Stoichiometrically fixed (i.e. constraint-determined)
reactions have a confidence interval of zero, and thus
are label-independent and receive no additional knowl-
edge from 13C experiments. It was found that histidine,
valine, leucine, and isoleucine metabolism fluxes are
completely identified solely based on the flux con-
straints. On the other hand, prior constraints fix none
of the fluxes in central carbon metabolic systems such
as glycolysis, citric acid cycle, pentose phosphate path-
way, and anaplerotic reactions; however, fluxes in these
pathways are all predicted to be identifiable with a 13C
experiment using optimal labeling patterns for each
reaction. This result is expected as these identifiable

EX_nh4 24.0 18.3 24.0 16.3 13.1 13.4 11.5 13.4 12.1 9.7 11.0 9.7 22.5 8.9 16.7 0.6 0.9 0.5 0.4 0.4 0.3 0.4 0.4 0.3 0.3 0.3 0.8 0.2 0.6
EX_for 27.2 15.1 21.5 21.9 9.4 21.5 9.4 21.5 18.5 10.4 22.9 3.6 4.4 6.0 27.2 0.4 0.7 0.7 0.2 0.7 0.2 0.7 0.6 0.3 0.7 0 0 0.1 0.9

CS 54.4 44.0 38.7 54.4 43.9 28.4 15.4 28.4 22.8 39.7 36.9 12.1 20.6 43.1 47.9 0.7 0.7 0.9 0.7 0.5 0.2 0.5 0.4 0.7 0.6 0.2 0.3 0.7 0.8
EDA 29.3 28.6 16.7 20.1 23.3 19.6 5.4 19.6 16.1 21.5 12.2 21.4 18.4 11.2 29.3 0.9 0.5 0.6 0.7 0.6 0.1 0.6 0.4 0.6 0.3 0.6 0.5 0.3 0.9

FTHFD 30.8 12.2 13.2 21.7 9.3 30.8 5.0 30.8 25.4 16.6 9.9 2.6 8.6 5.5 16.0 0.3 0.3 0.6 0.2 0.9 0.1 0.9 0.7 0.4 0.2 0 0.2 0.1 0.4
GLYK 13.0 2.4 9.6 10.0 1.8 10.0 1.0 10.0 8.1 1.4 13.0 0.9 1.2 1.0 11.2 0 0.5 0.5 0 0.5 0 0.5 0.4 0 0.8 0 0 0 0.6
MALS 47.7 36.3 21.4 34.5 17.8 36.6 21.6 36.6 32.0 23.6 17.6 8.6 10.3 7.1 47.7 0.7 0.4 0.7 0.3 0.7 0.4 0.7 0.6 0.4 0.3 0.1 0.1 0.1 0.9
PGI 68.1 59.8 44.0 52.4 68.1 34.1 11.4 34.1 24.8 45.4 32.7 13.6 31.9 60.5 54.0 0.8 0.6 0.7 1 0.5 0.1 0.5 0.3 0.6 0.4 0.2 0.4 0.8 0.7
PGK 61.2 52.8 34.9 41.8 61.2 32.5 8.5 32.5 24.1 39.4 25.4 15.3 30.3 49.3 47.2 0.8 0.5 0.6 0.9 0.5 0.1 0.5 0.3 0.6 0.4 0.2 0.4 0.8 0.7
POX 3.4 3.0 2.6 2.8 2.1 2.2 2.5 2.2 1.8 2.2 2.3 1.5 0.8 1.8 3.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PFL 22.8 13.3 17.2 21.3 7.2 21.4 7.8 21.4 18.3 9.9 18.5 4.1 3.9 2.6 22.8 0.4 0.6 0.8 0.2 0.8 0.2 0.8 0.7 0.3 0.7 0 0 0 0.9
PPC 58.8 41.6 35.1 39.8 22.7 49.3 21.9 49.3 41.9 24.8 30.7 9.5 12.7 8.6 58.8 0.7 0.5 0.6 0.3 0.8 0.3 0.8 0.7 0.4 0.5 0.1 0.2 0.1 0.9
rFUM 55.0 40.6 40.6 55.0 33.6 35.0 18.2 35.0 29.4 35.4 41.2 11.2 16.1 32.5 52.2 0.7 0.7 0.9 0.6 0.6 0.3 0.6 0.5 0.6 0.7 0.1 0.2 0.5 0.9

PFK / FBP 28.0 28.0 7.6 12.2 9.2 7.3 4.6 7.3 6.0 4.5 10.3 4.7 4.3 2.6 18.5 0.9 0.2 0.3 0.2 0.1 0.1 0.1 0.1 0 0.3 0.1 0 0 0.5
GAPD / G6PDH2r 69.1 60.3 43.7 52.1 69.1 34.6 11.0 34.6 25.3 45.7 32.5 13.8 32.6 60.6 54.3 0.8 0.6 0.7 1 0.5 0.1 0.5 0.3 0.6 0.4 0.2 0.4 0.8 0.7

PYK / PPS 25.1 19.6 17.8 24.6 17.3 17.1 10.1 17.1 15.3 16.7 16.0 5.7 6.5 17.9 25.1 0.7 0.6 0.9 0.6 0.6 0.3 0.6 0.5 0.5 0.5 0.1 0.1 0.6 0.9
PPC / PPCK 11.1 10.8 4.1 7.5 4.1 7.4 5.6 7.4 6.4 6.2 3.4 1.8 2.0 2.2 11.1 0.7 0.1 0.4 0.1 0.4 0.2 0.4 0.3 0.3 0 0 0 0 0.7
rFUM / ENO 50.7 37.2 39.0 50.0 28.0 35.6 17.7 35.6 29.8 30.3 39.0 11.5 14.5 26.2 50.7 0.7 0.7 0.9 0.5 0.6 0.3 0.6 0.5 0.5 0.7 0.2 0.2 0.5 0.9

rACONT 54.4 44.0 38.7 54.4 43.9 28.4 15.4 28.4 22.8 39.7 36.9 12.1 20.6 43.1 47.9 0.7 0.7 0.9 0.7 0.5 0.2 0.5 0.4 0.7 0.6 0.2 0.3 0.7 0.8
PDH / rFUM 20.7 11.5 17.0 20.7 8.1 16.2 5.2 16.2 13.6 9.8 19.7 3.6 3.7 6.7 19.0 0.4 0.7 0.8 0.2 0.6 0.1 0.6 0.5 0.3 0.8 0 0 0.2 0.8

MALS / rACONT 44.3 35.6 18.9 28.1 20.5 34.8 19.1 34.8 30.3 19.8 14.2 7.8 11.4 6.6 44.3 0.7 0.4 0.6 0.4 0.7 0.4 0.7 0.6 0.4 0.2 0.1 0.2 0.1 0.9
GLUDy / GLUSy 2.1 1.4 1.4 2.1 1.2 1.8 0.6 1.8 1.5 1.6 1.0 1.4 0.9 1.1 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LDHD / PDH 7.9 6.2 7.9 4.8 6.0 5.6 1.5 5.6 4.5 5.3 4.8 2.5 3.7 5.5 7.5 0.4 0.6 0.2 0.4 0.3 0 0.3 0.2 0.3 0.2 0 0.1 0.3 0.5
PYK / PDH 20.9 15.0 14.9 20.6 12.0 16.4 7.6 16.4 14.1 11.3 16.3 4.6 5.1 11.1 20.9 0.6 0.6 0.8 0.4 0.6 0.2 0.6 0.5 0.4 0.6 0.1 0.1 0.4 0.8

FRD2 / SUCD1i 3.8 3.2 2.7 3.4 1.4 3.4 2.0 3.4 3.1 2.2 2.3 0.9 1.5 1.6 3.8 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0.2
random1 3.1 3.0 2.6 1.7 2.2 2.5 1.0 2.5 2.0 1.5 1.8 1.4 1.0 1.3 3.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
random2 2.5 1.8 2.5 1.6 1.3 2.1 1.3 2.1 2.0 0.9 1.3 1.5 2.1 1.4 2.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 4 Computational Evaluation of Glucose. Potential glucose labels are evaluated based on both absolute Z-scores and Z-scores
normalized with respect to the labeling pattern with the highest score. Glucose labels are listed on top including hypothetical labeling patterns
(e.g. [1,2,3-13C]) and commercially available labels (e.g. [1-13C]). [U-13C] = uniform labeled and [12C] = unlabeled. Reaction and reaction ratio
hypotheses are listed on the left. The ‘random’ hypotheses, as described in the methods, shows the level of noise.
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pathways are the typical pathways being studied using
13C analysis. Other pathways, such as cysteine, threo-
nine, and lysine metabolism, are completely identifiable
through a combination of prior stoichiometric con-
straints combined with well-chosen 13C experiments.
However, many of the remaining subsystems have a
fraction of reactions that cannot be determined using
any 13C-labeling pattern of glucose. In particular, no
additional information can be obtained from 13C-labeled
glucose experiments about certain biosynthetic path-
ways, nucleotide salvage pathways, reductive citric acid
cycle reactions, and certain alternate pathways periph-
eral to glycolysis, such as an alternate pathways from
DHAP to D-lactate. Measuring metabolites other than
amino acids may give more information on these path-
ways. Note that in this discussion of identifiability, the
Z-score metric indicates that an experiment can signifi-
cantly reduce the confidence interval of a particular
reaction but does not specifically predict the value of
the confidence interval. Confidence intervals are directly
calculated for experimental data sets in a later section
and compared to the Z-scores for the same labeling
patterns.

Dimensionality of Isotopomer Data
The Monte Carlo sampling approach enables the deter-
mination of the dimensionality of simulated 13C experi-
ments for a particular substrate labeling pattern. The
dimensionality gives an indication of the degree to
which a particular substrate labeling pattern can specify

the free dimensions inherent in a network structure,
given a set experimental error. In an extreme case, if all
the data falls on one point (zero dimensions), no addi-
tional information is given from the data. Similarly, a
dimensionality of one indicates that the data can specify
one degree of freedom. Singular value decomposition
(SVD) is a data reduction technique that allows the esti-
mation of data dimensionality (Figure 6a). A data matrix
M of size (nfragments x npoints), consisting of all sample
points generated from Monte Carlo Sampling, is decom-
posed into M = U · Σ · V T where U and V are ortho-
normal bases and Σ is a diagonal matrix containing
singular values in descending order. The singular values
are effectively weightings that describe the information
content of the corresponding vectors in U and V
towards reconstructing the full matrix M. A partial
reconstruction of M is possible by taking only a subset
of the singular values greater than some threshold.
These thresholds have a direct interpretation as the
uncertainty with which a data point can be measured.
For example, a threshold cutoff of 0.01 indicates that
the remaining uncertainty of the data falls within 0.01
or 1% error in the measurement of isotope enrichment.
To determine the dimensionality of the isotopomer

data, SVD was performed on 13C fragments derived
from uniformly sampled flux distribution sets for several
glucose labels. The results are summarized in Figure 6b.
Globally, the choice of glucose labels affects the dimen-
sionality of the resulting isotopomer data set. At the 1%
(0.01) threshold, the label with the highest
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Figure 6 Data Dimensionality with SVD. The linear dimensionality of experimental data space is measured with Singular Value Decomposition.
a) The E. coli model has 313 reactions and 139 degrees of freedom. The isotopomer fragments were computed for a random sample of flux
distributions and plotted in the 186 dimensional space of simulated measurements. The upper bound on the number of degrees of freedom in
this space was determined by singular value decomposition on the samples. The number of singular values was counted until the magnitude of
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dimensionality was hypothetical [1,2,5-13C] glucose with
73 dimensions. The three labels for which experimental
data was measured in the subsequent section, [1-13C]
glucose, [6-13C] glucose, and 20% [U-13C] glucose, had
dimensions 53, 53 and 35, respectively, at this cutoff.
These values are all significantly lower than the best
label, and, in particular, the uniform labeled experiment
only produces half of the dimensionality as the optimal
experiment. This result is significant. While 139 dimen-
sions (the number of undetermined dimensions for the
model used) are required to specify a unique flux vector,
the dimensionality of the 13C data for each label is sig-
nificantly lower. The best labeling experiment specifies
just over half (73/139 = 0.52) the degrees of freedom
required, and 20% [U-13C] glucose only specifies about
one fourth of the possible degrees of freedom (0.26). It
is worth noting that SVD is a linear operation used to
approximate properties of a non-linear system and the
true degrees of freedom may be even lower than
reported. SVD serves as a useful upper bound on the
dimensionality of data for non-linear systems, but the
difference between SVD dimensionality and true dimen-
sionality may grow to be unacceptable for large systems.
For the system studied here, SVD was found to be of
practical use.

Experimental Validation
In order to assess the agreement of computationally pre-
dicted flux elucidation capacity with experimental data,
we took fluxomic measurements for three labeling pat-
terns in E. coli. Flux distributions that best explain each
set of 13C data were calculated using a non-linear opti-
mization problem:

min
v

Error(v)

subject to :
vmin < v < vmax

S · v = 0

The function Error(v) is a score of how well a given
flux distribution fits the experimental data. It is defined
as:

Error(v) =
∑

i∈ fragments

(fragmenti(v) − measuredi)
2

σ 2

where measured i is the measured fractional enrich-
ment of fragment i, fragment i(v) is the computed frac-
tional enrichment of fragment i as a function of the flux
distribution v, and a = 0:014 is the standard deviation
of the fragments as calculated from experimental
replicates.
Reaction flux confidence ranges were then computed

for all reactions using all three sets of 13C data and all

combinations thereof. Confidence intervals for reaction
rates were computed by maximizing and minimizing the
value of each reaction in turn subject to a slightly
relaxed score.

min
α

/ max
α

cT
i · N · α

subject to :
vmin ≤ N · α ≤ vmax

Error (N · α) ≤ Errormax

where ci = (0, 0, ...0, 1, 0...0) is a vector of all zeros
with a 1 in position i, and Errormax was set based on the
confidence value. Because different data sets provide dif-
ferent levels of consistency, Errormax was chosen to be
30 units greater than the minimum error found.
These intervals were compared with Z-scores calcu-

lated through Monte Carlo methods to assess the ability
of the Z-scores to predict the size of experimental reac-
tion ranges in a label-specific manner (Figure 7a). The
Z-scores were found to be correlated with the relative
flux ranges in a statistically significant manner (Stu-
dent’s T-test, p <8.6 × 10-34). A receiver operating char-
acteristic (ROC) curve suggests that the Z-scores can
identify with both sensitivity and specificity the reactions
that can be elucidated in a label-specific manner, with
better performance predicting ranges that are restricted
more by data (Figure 7b). These findings indicate that
the Z-score is indeed a useful predictor of the degree a
flux range will be constrained by a particular 13C experi-
ment and provide experimental support for the compu-
tational approach taken.
The number of reactions elucidated at particular con-

fidence intervals was then found (Figure 8). Using differ-
ent labels provides different levels of reaction confidence
(Additional File 1). Including no 13C data generates the
largest flux ranges (lower black line), while adding 13C
data reduces the ranges and shifts the curve left. With
almost no exception, including one experiment yields
larger confidence intervals than any combination of two
carbon sources which in turn is a larger range than
including all three sets. Of the single experiment curves,
the 20% [U-13C] glucose curve provides notably worse
ranges than the other two experiments, consistent with
the finding that 20% [U-13C] substrate provides data
with the smallest number of dimensions.
At a reaction confidence of 1 mmol · gDW-1·h-1 (a

relatively non-stringent cutoff), 85 reactions are specified
simply from uptake rate data without any 13C data. Per-
forming the least informative 13C experiment, using 20%
[U-13C] substrate, yields 105 reactions that meet the
confidence criterion, whereas the combination of all
three 13C experiments yields 125 reactions that meet the
criterion. In other words, performing all three experi-
ments will increase the number of elucidated reactions
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by 40 reactions or about 50%. As the model used con-
tains 278 carbon-tracking reactions and reaction groups,
the increase in knowledge at 1 mmol · gDW-1·h-1 confi-
dence from 85 to 125 reactions from using 13C data
indicates that a large gap in the knowledge remains. It
seems apparent that other methods must be developed
to obtain flux information at the genome scale from sin-
gle experiments, as would ultimately be desirable. How-
ever, as noted in the above section, the majority of
reactions that are elucidated by 13C-labeled glucose
experiments lie in central metabolic pathways, which
tend to be both of high interest and not-specifiable by
constraints alone.

Conclusions
We introduce a new framework for calculating the
uncertainty inherent to 13C experiments using Monte
Carlo Sampling. This allows us to predict the success of
experiments before performing them. The method used
here 1) does not require experimental identification of
the ‘real’ flux state a priori [10] and 2) reports scores
for the resolution capability for each reaction as
opposed to Boolean identification calls [11]. This frame-
work reveals several key findings:

• The choice of input label is important, as different
labels perform better than others. In particular, the
commonly-used 20% mixture of uniform label + 80%
natural label was shown computationally and experi-
mentally to resolve significantly fewer reaction fluxes

than either [1-13C] glucose or [6-13C] glucose. Thus,
the amount of information likely to be obtained by a
13C experiment can be predicted in a reaction-speci-
fic manner before having to carry out an experiment.
• There is no universally best label. The best label
depends on the experimental objective. Certain reac-
tions are more precisely measured with some labels
than others, and no label is best at elucidating all
reactions. Certain hypothetical 13C labels of glucose,
for example [1,2,3-13C] glucose and [1,2,5-13C] glu-
cose, are predicted to perform better than commer-
cially available single labels for many reactions.
• The 13C data dimensionality is less than antici-
pated. Whereas each 13C experiment can measure
186 pieces of information at a time, there is a high
degree of interdependence. We measured the true
data dimensionality to be between 35 and 50 dimen-
sions for commercially available labels and as high
as 73 for exotic labels. This high data redundancy
can partially explain why 13C experiments yield
many reaction rates with high uncertainties.

This study suggests limitations of steady-state 13C ana-
lysis using solely amino acids due to the lower than
expected dimensionality of the isotopomer data. How-
ever, steady-state 13C analysis is clearly still useful eluci-
dating reaction fluxes in E. coli metabolism. Notably, as
the study was conducted using only protein-derived
amino acids, it would be of immediate interest to deter-
mine the additional benefit of measuring other classes

C1 C6 CU none C1 C6 CU C1 C6 CU
EX_for 21.5 6.0 9.4 19.5 11.5 13.5 19.2 0.41 0.31 0.02
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POX 2.2 1.8 2.5 13.0 12.4 12.1 12.2 0.05 0.07 0.06
PFL 21.4 2.6 7.8 19.7 14.4 13.6 12.6 0.27 0.31 0.36
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of labeled metabolites, as well as the benefit of more
recently developed experimental techniques such as
multi-substrate [10] and dynamic flux labeling [28,29]
experiments. Monte Carlo methods are generic and thus
are well suited to be adapted to the experimental setup
of interest. Additionally, Monte Carlo methods are
amenable to biasing the sampling space based on known
data to improve results; however, this is expected to
incur a corresponding cost in convergence time. Possi-
ble sources of error in the current method include
unwanted bias in the sampled flux space, possible inade-
quacy of the Z-score as a statistical metric over more
sophisticated tests such as the Kolmogorov-Smirnov
test, and inadequacy of the distribution median as a
threshold for use in hi-lo hypotheses. Conducting
Monte Carlo isotopomer analysis on new systems will
become more accessible with the availability of the open
source COBRA Toolbox v2.0 for MATLAB, which
includes the algorithms presented here [30].

Methods
Isotopomer Network Description
The isotopomer network was derived from the iMC1010
E. coli reconstruction [19]. The content is reported in
the Additional File 1. There are a total of 313 irreversi-
ble reactions including 278 that track carbon. All carbon

tracking reactions are broken into elementary forward
and reverse reactions.
First, a central metabolic isotopomer model was gen-

erated that includes a total of 85 reactions, including a
biomass production reaction, which drains the precursor
metabolites used to make biomass, and 14 system
boundary exchange fluxes (for glucose, oxygen, phos-
phate, NO2, NO3, acetate, CO2, ethanol, formate, fuma-
rate, glycerol, D-lactate, pyruvate, and succinate). The
biomass composition is based on one that was reported
previously [16,31] and used in the biosynthetic isotopo-
mer model (see details below), but where the biomass
components are replaced by the amount of ATP,
NADH, NADPH, and central metabolic precursors
needed to synthesize the biomass components (Addi-
tional File 1). The remaining 70 reactions participate in
glycolysis, TCA cycle, pentose phosphate pathway, oxi-
dative phosphorylation, pyruvate metabolism, and ana-
plerotic metabolism. The central metabolic isotopomer
model includes linear mass balance equations for 67
metabolites. Carbon atoms are tracked through 46
metabolites in the core metabolic network. Changes to
the central metabolic reactions include assigning fuma-
rate reductase to utilize menaquinone and demethylme-
naquinone rather than ubiquinone and adding a
phosphate transport reaction coupled to proton
symport.
Aside from the central metabolic reactions contained

in the central isotopomer model, the biosynthetic model
also includes a number of other catabolic and anabolic
reactions. The fluxes were calculated with an additional
constraint that flux through formyltetrahydrofolate
deformylase (which removes the C1 unit from 10-for-
myltetrahydrofolate) was less than or equal to the mea-
sured formate secretion flux. When higher flux through
this reaction was allowed the minimum error improved
by only 0.3%, but the flux through this reaction was
high (around half the glucose uptake rate). To adjust
this aberrant behavior, the optimal flux distributions
and confidence intervals were calculated with this addi-
tional constraint on the formyltetrahydrofolate deformy-
lase flux. The resulting biosynthetic isotopomer model
includes 189 metabolites (126 of which have tracked
carbon atoms), 313 irreversible metabolic reactions (63
of which are reversible and involve tracked carbon
atoms), and 8,612 isotopomer variables (which is equal
to the number of non-linear isotopomer mass balance
constraints). The model also includes a biomass reaction
and 19 system boundary exchange reactions. The bio-
mass reaction was altered to include amino acids,
nucleotides, co-factors, and macromolecules rather than
their precursor metabolites. In addition, the biosynthetic
model balances intracellular protons as well as water
molecules similar to iJR904 [16].
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Monte Carlo Sampling
With traditional MCMC, a point is selected within the
space which is then iteratively moved around. At each
step, a random direction is chosen and the next point is
chosen uniformly along this line. The set of points that
this algorithm visits will converge to a uniformly distrib-
uted set. Two modifications were made: 1) Artificial
Centering [32] - Because these biological spaces tend to
be elongated in one direction, it is often beneficial to
choose directions along the “long” direction rather than
uniformly. This can be done by choosing the direction
based on previously visited points. At each step, the
direction is chosen by drawing a vector from the center
of the previous points to one of the previous points cho-
sen at random. 2) In place sampling - Instead of moving
just one point throughout the space, many points are
moved simultaneously. In this way, no “history” is kept,
only the updated position of all the points. This method
is described in greater detail in other literature [33,34].

Computing the Isotopomer Distribution
Each flux distribution and glucose input results in a
unique isotopomer distribution. The cumomer method
[35] and the elementary metabolite unit (EMU) method
[36] were implemented in Matlab and utilized in calcu-
lating isotopomer distributions. These methods involve
solving several linear systems of equations to compute
different groups of isotopomers. For numerical reasons,
a routine is introduced which checks whether all parts
of the network are still connected at every step. Discon-
nected components can occur when fluxes to and from
the component are zero, making it impossible to com-
pute a unique isotopomer distribution within this sub-
network as many isotopomers satisfy the balance
equations. By removing these components first, the
other metabolites can be solved in a numerically stable
fashion. The resulting isotopomers for the amino acids
for each flux distribution are transformed to a mass dis-
tribution. This way, each experiment is abstracted to a
(number of distributions) × (number of fragments)
matrix.

Sample Preparation and 13C Measurement
Culture labeling
Prior to labeling, single colonies of E. coli K12 MG1655
were selected from stock plates and inoculated directly
into 250 ml M9 medium in 500 Erlenmeyer flasks aera-
ted by stirring at 1000 rpm. Cells were grown overnight,
harvested, washed twice with water and used to inocu-
late 50 ml flasks containing 25 ml medium with 2 g/L
13C-labeled D-glucose, with initial OD600 0.005-0.01.
Glucose was supplied as either 100% [1-13C]-labeled,
100% [6-13C]-labeled, or a mixture of 20% uniformly [U-

13C]-labeled with 80% natural glucose (which is ran-
domly 1% 13C). Cells were grown to mid-log phase, cor-
responding to OD600 of 0.6. 3 ml of each culture was
harvested by centrifugation at 4°C. The media was aspi-
rated and analyzed with HPLC to determine the remain-
ing glucose concentration. Cell pellets were placed at
-80°C prior to further analysis.
Derivatization and GC-MS analysis
Cells were resuspended in 0.1 ml 6 M HCl and trans-
ferred to glass vials. Protein was digested into amino
acids under a nitrogen atmosphere for 18 hr at 105°C in
an Eldex H/D Work Station. Digested samples were
dried to remove residual HCl, resuspended with 75 μl
each of tetrahydrofuran and N-tert-butyldimethylsilyl-N-
methyltrifluoroacetamide (Aldrich), and incubated for 1
hr at 80°C to derivatize amino acids. Samples were fil-
tered through 0.2 μm PVDF filters and injected into a
Shimadzu QP2010 Plus GC-MS (0.5 μl with 1:50 split
ratio). GC injection temperature was 250°C and the GC
oven temperature was initially 130°C for 4 min, rising to
230°C at 4°C/min and to 280°C at 20°C/min with a final
hold at this temperature for 2 min. GC flow rate with
helium carrier gas was 50 cm/s. The GC column used
was a 15 m × 0.25 mm × 0.25 m SHRXI-5ms (Shi-
madzu). GC-MS interface temperature was 300 degrees
with 70 eV ionization voltage. The mass spectrometer
was set to scan an m/z range of 50 to 600.
Processing of GC-MS data
Mass data were retrieved from the GC-MS for frag-
ments of 14 derivatized amino acids: cysteine and tryp-
tophan were degraded during amino acid hydrolysis;
asparagine and glutamine were converted respectively to
aspartate and glutamate; arginine was not stable to the
derivatization procedure. For each fragment, these data
comprised mass intensities for the base isotopomer
(without any heavy isotopes, M+0), and isotopomers
with increasing unit mass (up to M+6) relative to that
of M+0. These mass distributions were normalized by
dividing by the sum of M+0 to M+6, and corrected for
naturally-occurring heavy isotopes of the elements H, N,
O, Si, S, and (in moieties from the derivatizing reagent)
C, using matrix-based probabilistic methods as
described [37,38] implemented in Microsoft Excel. Data
were also corrected for carry-over of unlabeled inocu-
lum [37].

Computing Reaction Rates from 13C Data
Reaction rates were computed from 13C data as
described in the Results. In calculating the best fit flux
values from experimental data, a small variation was
introduced to reduce the number of variables and
remove constraints. Let N be a basis for the null space
of S. Then all valid fluxes can be written as:
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v = N · α
min

α
Error N · α

subject to :
vmin < N · α < vmax

This reduced the number of variables from |v| = 335
to |a| = 139. Optimization was performed with the
Tomlab/SNOPT package. This method is an iterative
local optimization and is therefore not guaranteed to
find the optimal solution. To address the issue of local
minima, the procedure was run with many randomly
generated starting points and the lowest minimum was
taken.

Code and Equipment
The code was written in the MATLAB environment and
the COBRA toolbox. Linear Programming was done
with the Tomlab/CPLEX package and nonlinear optimi-
zation with the TOMLAB/SNOPT interface. The EMU
and cumomer method were written in native Matlab
but generated in Perl. Computations were performed on
a Dell Studio XPS desktops (2.6 Ghz core i7 with 9-12
GB ram) and a custom Rocks cluster (100 dual Xeon
5500 series nodes).

Additional material

Additional file 1: Z-scores, confidence intervals, and isotopomer
model. This file contains the absolute and relative Z-scores for individual
reactions across all glucose labeling patterns tested, confidence intervals
calculated using experimental 13C tracing data, and details of the model
that was used in calculations.
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