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Abstract: In this study, we demonstrate an electrically driven, polarization-controlled metadevice to
achieve tunable edge-enhanced images. The metadevice was elaborately designed by integrating
single-layer metalens with a liquid-crystal plate to control the incident polarization. By modulating
electric-driven voltages applied on the liquid-crystal plate, the metalens can provide two polarization-
dependent phase profiles (hyperbolic phase and focusing spiral phase). Therefore, the metalens can
perform two-dimensional focusing and spatial differential operation on an incident optical field,
allowing dynamic switching between the bright-field imaging and the edge-enhanced imaging.
Capitalizing on the compactness and dynamic tuning of the proposed metadevice, our scheme carves
a promising path to image processing and biomedical imaging technology.

Keywords: edge-enhanced imaging; tunable metalens; polarization control

1. Introduction

Integrated and efficient devices modulating optical information are highly desirable
for fast and reliable large-scale image processing required in various domains such as object
identification, machine vision, and artificial intelligence [1]. Optical analog computation
has received extensive attention due to the unprecedented advantages of high-speed, low-
power consumption, and parallel computing. Despite their capacity for optical information
and image processing in real-time, traditional optical analog fashions are typically of a
significantly large size [2,3]. The bulky configurations based on conventional optics hinder
their applications in integrated optics and photonics.

Optical metasurfaces, planar and lightweight optical elements consisting of artificial
and subwavelength resonators with tailored electromagnetic properties, have attracted ex-
tensive attention due to the possibility of powerful and flexible control over the amplitude,
phase, and polarization of light [4–20]. Metasurface-enabled optical analog computation
has made significant progress towards optical differential operations and edged-enhanced
imaging through elaborately designed metasurface devices (metadevices) with a conven-
tional 4f Fourier filtering system [21–29]. However, this inevitably introduces a complex
and bulky optical system, which runs counter to the compactness of metasurfaces. More-
over, as important as edge-enhanced imaging that effectively extracts the edge information
of objects, conventional bright-field imaging is able to capture the corresponding overall
morphologies [30]. Therefore, developing a tunable and miniature optical system capable
of switching between bright-field imaging and edge-enhanced imaging is highly desirable.
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An electric-driven scheme based on liquid crystals (LC) has shown great potential
to enable the dynamic polarization of meta-optics, benefiting from the flexible and fast
control of polarization and phase [31]. Herein, we demonstrate a compact polarization-
multiplexing spiral metalens integrated with a nematic liquid-crystal (NLC) plate, which
is used to control the polarization of the incident light for switching between bright-field
focusing mode and the spiral phase contrast imaging mode, as shown in Figure 1. By
precisely tuning the driven voltages, the polarization of the incident light can be switched
between right-handed circularly polarized (RCP) to left-handed circularly polarized (LCP),
which results in fast switching of the phase distributions of the LC-based metadevice. The
focusing vortex phase profile of the metadevice further introduces two-dimensional spatial
differentiation and converging operation to the incident filed [32]. Unlike the conventional
4f Fourier filtering system, the LC-based polarization-multiplexing strategy compresses
the lens imaging and edge-enhancement imaging into a single-layer metalens. Benefiting
from the significant advantages of being compact and integrated, in addition to the tun-
ability of the LC-based active meta-optics, our results may find important applications in
image processing.
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Figure 1. Schematic of the LC-based metadevice. (a) The dynamic tunable principle of the metade-
vices; (b) Schematic of the nano-pillar used in the design of the metasurface; (c) Schematic of the
LC molecule.

2. Design and Numerical Results

Figure 1a shows the schematic and operation principle of the metadevice capable
of realizing electric-driven switching between bright-field and edge-enhanced imaging.
The reconfigurable metadevice consists of elliptical TiO2 nanopillars (n = 2.48) on a SiO2
substrate (n = 1.46). Figure 1b shows the cross-section of the nano-pillar, from which one
can see the square lattice constant P = 360 nm and the height of each nanopillar h = 600 nm.
The adjustable parameters for the elliptical nanopillars are major axis Rx, minor axis Ry,
and orientation angle θ. The operation wavelength is λ = 483 nm. To manipulate the
circular-polarized state of the incidence, LC layer with ITO (indium tin oxide) thin layers
has been integrated with the metasurface to introduce different phase delay via tuning the
electric-driven voltage.

Figure 1c shows the configuration of an LC-molecule used in this work, in which the
azimuthal and polar angles are denoted as φLC and θLC, respectively. When introducing
different applied voltage on the LC layer, the equivalent refractive index of the LC layer for
y-linearly polarization (YLP) changes as the polar angle θLC of the LC molecule changes.
The axis of the LC molecule and the electric field direction x-polarized light (XLP) are
coplanar, which means the equivalent refractive index for XLP remains unchanged. Hence,
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the electric-driven LC layer will be able to introduce different phase delay to the incidence
and enables switching between RCP and LCP states.

Figure 2a,b show the simulated phase shifts of the elliptical nano-pillars as a function
of the semi-major axis and semi-minor axis under XLP and YLP incident light, respectively.
Based on 3D finite-difference time-domain (FDTD) simulations, we calculate the phase
shift of the nano-pillars. Periodic boundary conditions are applied along the x and y axes
and perfectly matched layers (PML) are applied along the z–axis at the design wavelength
483 nm. Due to the symmetry, the database of y-polarization and that of x-polarization are
mirror symmetry with respect to the diagonal line shown in Figure 2a,b. The phase spectra
are polarization-dependent. Therefore, we can independently manipulate the phase along
the different axis. For the elliptical nanopillars used in this work (shown in Figure 1), the
optical response of the nano-pillars can be described by the Jones matrix as [28]:

J(x, y) = R(−θ(x, y))

[
eiΦx(x,y) 0

0 eiΦy(x,y)

]
R(θ(x, y)) (1)

where Φx(x, y) and Φy(x, y) denote the spatial propagation phase profiles for the nano-
pillar at (x, y) under x- and y-polarized incidence along two symmetry axes, θ(x, y) de-
notes the orientational angle of the nano-pillars, and R is a 2× 2 rotation matrix which

can be expressed as R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
. For independent control of the phase

shifts of the LCP and RCP components, the metasurface has to meet the requirement that
J(x, y)|L〉 = eiϕRCP(x,y)|R〉 and J(x, y)|R〉 = eiϕLCP(x,y)|L〉, where |L〉 and |R〉. denote the
LCP and RCP lights, respectively. The Jones matrix can be derived as:

J(x, y) =

[
eiϕLCP(x,y)+eiϕRCP(x,y)

2
ieiϕLCP(x,y)−ieiϕRCP(x,y)

2
ieiϕLCP(x,y)−ieiϕRCP(x,y)

2
−eiϕLCP(x,y)−eiϕRCP(x,y)

2

]
(2)

where ϕLCP and ϕRCP denote the phase delay for LCP and RCP incident light, respec-
tively. By combining Equations (1) and (2), polarization-decoupled phase control can be
derived as:

ϕLCP = Φx − 2θ (3)

ϕRCP = Φy + 2θ − π (4)

θ(x, y) =
ϕLCP − ϕRCP

2
(5)

To utilize edge-enhanced imaging with a single lens for LCP incidence, the phase pro-
file of the metalens is a sum of the hyperbolic phase and the spiral phase (with topological
charge of L = 1):

ϕLCP(x, y) =
2π

λ

(
f −

√
x2 + y2 + f 2

)
+ L ∗ arctan

y
x

(6)

and the phase profile of the metalens for RCP incidence can be expressed as:

ϕRCP(x, y) =
2π

λ

(
f −

√
x2 + y2 + f 2

)
(7)

Based on Equations (3)–(7), the most appropriate set of parameters for nano-pillar at
the corresponding pixel position (x, y) can be selected by minimizing an error function
defined as the maximum error between the required phase and the simulated ones:

Error
(

Rx, Ry; x, y
)
= max{|eiΦx − eiϕ0(x,y)|, |eiΦy − ei(ϕ0(x,y)+π)|} (8)

where ϕ0(x, y) = ϕLCP(x,y)+ϕRCP(x,y)
2 .
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Figure 2. The library of the nano-pillars. (a,b) Phase shifts of the elliptical nano-pillars as a func-
tion of major axis Rx and minor axis Ry for x- and y-polarized incidences, respectively. (c) Phase
shift for x- and y-polarized incidences for the selected and optimal nano-pillars used in design of
the metasurface.

Using the optimized filtering method, the optimal nano-pillars can be selected from the
nano-pillar library (shown in Figure 2) for the polarization-multiplexing metalens. To satisfy
the half-wave plate conditions derived from Equations (3)–(5), the nano-pillars with a phase
shift difference of π between the x- and y-polarization can be selected, as shown in Figure 2c.
Based on the proposed strategy, we have designed the polarization-multiplexing metalens.

Figure 3a,b show the required phase profile and the simulated ones for the metalens
operating at LCP incidence (bright-field imaging mode). The corresponding phase pro-
files for RCP incidence (edge-enhance imaging) are shown in Figure 3c,d. As shown in
Figure 3c,f, we have extracted the corresponding phase profiles along the y-axis (dashed
lines shown in Figure 3) to further verify the validity of the design. It can be seen that
the optimized phase profiles offered by the selected nano-pillars agree well with the re-
quired ones. The results indicate that the multi-functional metasurface can perform the
polarization-multiplexing operation on circular-polarized incidence. Therefore, the tunable
metasurface devices can be realized by introducing different phase delay (such as π and 0)
on the specific circular-polarized incidence. In this work, the incidence is set as the RCP
state. Benefiting from birefringence and electric-driven performance of the NLC, we can
flexibly introduce different phase delays on orthogonal polarized states of the incidence by
tuning electric-driven voltages. This results in fast switching between the RCP and LCP,
allowing us to realize the electric-driven tunable metalens.
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Figure 3. The simulated phase profiles for orthogonal circular polarizations. (a,b) are the required
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profiles offered by the nano-pillars for LCP and RCP incidence, respectively; (e,f) the corresponding
phase profiles along the dashed line y = 0.

For proof of the concept, we have performed the design of the LC-based metalens
with the diameter of 25.2 µm. The NLC cell provides dynamic polarization conversion
as a tunable wave plate. The refractive index of the ordinary axis is no = 1.529 and the
extraordinary axis is ne = 1.713. The configuration of the NLC molecule (with the azimuthal
angle φLC = 90

◦
, and the polar angle θLC = 0◦) is shown in the inset of Figure 4a. If

the electric-driven voltage is applied on ITO layers sandwiching the NLC cell (shown in
Figure 1), the anisotropy axis of the NLC can be adjustable from in-plane to out-of-plane [31].
This results in a variable refractive index (equivalent refractive index n) calculated by:

n =
1√

sin2 θLC
n2

e
+ cos2 θLC

n2
o
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Figure 4. The phase retardation control of the NLC cell. (a) Theoretical and simulated phase
retardation as functions of the polar angle of LC molecules for different incidence; (b) theoretical and
simulated difference of phase retardation between x- and y-component of the transmitted light for
LCP incidence functioning as the polar angle of LC molecule.
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Therefore, we can construct a tunable wave plate using the NLC. For a given wave-
length, the phase retardation can be written as is Γ = 2π(n−no)

λ d, where d is the thickness of
the NLC layer and λ represents the designed wavelength. Based on FDTD methods, we
have calculated the phase retardation as a function of the θLC for XLP and YLP incidence in
the transmission mode. It can be observed that the simulated results show good agreement
with the theoretical ones calculated by Equation (9). Figure 4b demonstrates the calculated
phase difference between the x- and y-component of the transmitted light for the LCP
incidence. The results indicate that the transmitted light is LCP at the azimuthal angle
θLC = 0◦ (the corresponding electric-driven voltage denoted as V1) and is converted to RCP
when the setting θLC = 43.6◦ (the electric-driven voltage denoted as V2).

We further verified the performance of the LC-based metalens based on an FDTD
simulation. PML boundary conditions were applied along all the three axes for the simula-
tions with the incidence of LCP. Figure 5a,b demonstrate the longitudinal intensity profiles
(along x-z plane) at the electric-driven voltages V1 and V2, respectively. It can be seen
that solid-spot (for V1) and hollow-shaped (for V2) intensity profiles with the same focal
length have been generated. The small deviation between the simulation and the design
focal length can be explained by the discrete phase provided by the nano-pillars for the
approximation of the continuous phase distribution by Equations (6) and (7).
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Figure 5. The simulations of the LC-based metalens. (a,b) Normalized intensity distribution along
the x–z plan for electric-driven voltages V1 and V2, respectively; (c,d) the corresponding intensity
distributions on focal plane at different voltages; (e,f) the corresponding x-cut distributions of the
focal spots.

To better analyze the characteristic of the beams, Figure 5c,d extract the focal plane
intensity distributions along the dashed lines. The focal spots exhibit the electric-driven
and polarization-dependent behavior (topological charge number or the beam depends on
electric-driven voltage). The simulated results agree well with the theoretical expectation.
The results robustly confirm the electric-driven tunable focusing property and switchable
behavior of the LC-based metalens. Figure 5e,f show the corresponding x-cut intensity
distributions across the focal spots (along the white dashed line) in Figure 5c,d. The
full width at half maximum (FWHM) of the focal spots are 465 nm and 736 nm. The
results demonstrate the nearly diffraction-limited focusing and electric-driven polarization-
controlled performance of the multi-functional metalens. To the best of our knowledge,
this is the first demonstration of an electric-driven multifunctional metalens based on the
control of polarization. The LC-based metalens design strategy paves a promising way to
active meta-optics.

Based on the simulation, we extracted the point spread functions of the metalens
(electrical filed distributions denoted as E) at different electric-driven voltages V1 and V2.
For the focusing vortex phase profile (with loading voltage V2), the metalens can perform
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two-dimensional spatial differentiation and a converging operation on the incident optical
filed [32]. This results in the edge-enhanced imaging effect. For our single-lens imaging
system, the image field can be expressed by a convolution of the point spread function
E and the object field Uo. Then, we demonstrated the dynamic switching effect between
bright-field imaging and edge-enhanced imaging by using the LC-based metalens. Three
different objective images (including part of the test chart, Chinese calligraphy “Fu” which
means happiness, and the icon “TONGJI1907”, which means Tongji University found
in 1907) were selected as typical examples. Figure 6a–c reveal the bright-field imaging
property of the LC-based metalens with loading voltage V1. When switching the voltage
to V2, the LC-based metalens converts to a spiral metalens, which is able to perform two-
dimensional spatial differentiation on the objective images. Figure 6a–c show the imaging
property of the spiral metalens as expected; the simulated results show the two-dimensional
edge-enhance imaging of the objective images. Therefore, based on the designed LC-based
metalens, we have achieved an electric-driven active imaging system which shows huge
superiority compared to its conventional counterpart.
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imaging. (a–c) The bright-field images for different object with loading voltage V1. (d–f) The
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3. Conclusions

In conclusion, we have proposed an electric-driven dynamical polarization meta-
optics scheme for tunable imaging based on an LC-based polarization-controlled metalens.
We have theoretically designed an electrically driven polarization-multiplexing metalens
capable of achieving active switching between bright-field imaging and edge-enhanced
imaging via tuning the voltage applied on the LC cell. Benefiting from the quick response
of an electronic-driven liquid-crystal metasurface, the multi-functional metalens allows
us tunable imaging with a fast switching speed. Compared with conventional filtering
imaging systems, the electric-driven multi-functional metalens not only integrates the
bright-field imaging and edge-enhanced imaging functions into a single-layer metasurface,
but also compresses the imaging system into a thickness of wavelength scale. With the
advantages of being compact, integrated, and having a fast tuning speed, our designed
LC-based metalens may find important applications in fields such as image processing,
machine vision, and artificial intelligence.
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