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Abstract

Genome wide association studies (GWAS) have identified several genomic loci with candi-

date modifiers of cystic fibrosis (CF) lung disease, but only a small proportion of the

expected genetic contribution is accounted for at these loci. We leveraged expression data

from CF cohorts, and Genotype-Tissue Expression (GTEx) reference data sets from multi-

ple human tissues to generate predictive models, which were used to impute transcriptional

regulation from genetic variance in our GWAS population. The imputed gene expression

was tested for association with CF lung disease severity. By comparing and combining

results from alternative approaches, we identified 379 candidate modifier genes. We delved

into 52 modifier candidates that showed consensus between approaches, and 28 of them

were near known GWAS loci. A number of these genes are implicated in the pathophysiol-

ogy of CF lung disease (e.g., immunity, infection, inflammation, HLA pathways, glycosyla-

tion, and mucociliary clearance) and the CFTR protein biology (e.g., cytoskeleton,

microtubule, mitochondrial function, lipid metabolism, endoplasmic reticulum/Golgi, and ubi-

quitination). Gene set enrichment results are consistent with current knowledge of CF lung

disease pathogenesis. HLA Class II genes on chr6, and CEP72, EXOC3, and TPPP near

the GWAS peak on chr5 are most consistently associated with CF lung disease severity

across the tissues tested. The results help to prioritize genes in the GWAS regions, predict

direction of gene expression regulation, and identify new candidate modifiers throughout the

genome for potential therapeutic development.
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Introduction

The International Cystic Fibrosis Gene Modifier Consortium identified 5 genome-wide signif-

icant genetic loci associated with cystic fibrosis (OMIM: 219700) lung disease severity through

GWAS of 6,365 CF patients, with a chr16 locus also showing significance in some analyses [1,

2]. The GWAS signals point to genes in regions that may play a role in CF lung disease patho-

genesis. Heritability studies of twins and siblings estimated that at least 50% of lung disease

variability is attributable to non-CFTR genetic modifiers [3]. The effect sizes of the identified

loci as extrapolated from the beta-coefficients range from 2.5% - 4.6% predicted forced expira-

tory volume in one second (FEV1) [1], with a combined potential effect size to explain< 25%

FEV1 variation. Therefore, a large proportion of genetic influences on CF lung disease severity

remain undetected, in part reflecting limited statistical power of GWAS due to multiple test

penalties over millions of single nucleotide polymorphisms (SNPs).

The most common scenario explaining genetic association to phenotype is through the

effects of variants on gene expression [4, 5]. Studies of genetic regulation of gene expression, i.
e., expression Quantitative Trait Loci (eQTL), are effective strategies and “next steps” for post-

GWAS investigations to understand genetic susceptibility/modification of diseases [6, 7]. The

availability of reference data sets for more than 40 human tissues by the Genotype-Tissue

Expression (GTEx) consortium [5] has greatly facilitated post-GWAS research. In a survey of

44 human tissues, the GTEx consortium found that most genetic regulation of gene expression

is common across multiple tissues, acting through cis-SNPs at promoter and enhancer sites

[5]. Also using the entire set of 44 GTEx tissues, as opposed to limiting analyses to 9 pilot tis-

sues, increased the number of trait-associated variants by 5-fold for 18 complex traits [8]. In

other words, genetic regulation of gene expression, or eQTL, can be informative regardless of

tissue origin of the training data set [8], and can help overcome technical deficiencies, such as

small sample sizes of certain tissue data, and potential biological limitations such as unsampled

developmental stage and environmental and pathogenic masking of gene expression through

reverse causality.

The study of eQTLs requires gene expression and genetic variation data from the same indi-

viduals, typically testing one gene-SNP pair at a time. A recent extension of eQTL analysis is

the use of machine learning and predictive modeling techniques to associate multiple genetic

variants, to predict gene expression [9, 10]. The PrediXcan [9] and Transcriptome-Wide Asso-

ciation Studies (TWAS) [10] methods utilize small training data sets (with both genotype and

expression data from the same individuals), to build predictive models, where genotypes from

several cis-SNPs are used to predict the portion of genetic regulation of expression for each

gene. Once built, these models, regardless of tissue origin, can be used to impute gene expres-

sion from large GWAS studies where only genotype data are available. The implicit assump-

tion of these approaches is that genetic regulation of gene expression is largely preserved

among human population as shown by cross cohort heritability correlation [9, 10], and that

eQTLs will be conserved across different tissues for most of cis-eQTLs [8, 9]. The resultant

(imputed) gene expression can then be analyzed for association to disease phenotypes to pin-

point the genetic regulation that is relevant to the disease process. These methods can improve

statistical power through interrogating SNPs associated with gene expression regulation only,

thus reducing multiple test burdens. The predictive models can also suggest the direction of

gene expression regulation relating to phenotype, informing the mechanism by which SNPs

affect the phenotype. In addition, by interrogating multiple cis-SNPs at the same time, no sin-

gle SNP is required to be significant, which can uncover combinatorial effects not identified

otherwise [10].
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code GSE60690). Gene expression data from CF

nasal mucosal epithelial RNAseq samples are

uploaded to dbGaP for controlled access for

researchers who meet the criteria for access to

confidential data (https://view.ncbi.nlm.nih.gov/

dbgap-controlled). Data dictionaries and variable

summaries are available on the dbGaP FTP site

(https://ftp.ncbi.nlm.nih.gov/dbgap/studies/

phs002254/phs002254.v1.p1/). The public

summary-level phenotype data may be browsed at

the dbGaP study report page (http://www.ncbi.nlm.

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=

phs002254.v1.p1). The summary GWAS data from

CF Gene Modifier Consortium studies and

summary results of phenotype trait association

testing are publicly available at GitHub (https://

github.com/danghunccf/CF-GWAS-

dataMiningPaper).
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Here we report the use of PrediXcan and TWAS methods to mine the CF GWAS data for

genetic regulation of gene expression associated with CF lung disease severity. We use a com-

bination of our own CF training data sets [11, 12] and reference GTEx data sets of multiple

human tissues [4, 5] to generate a list of genes with evidence of association with CF lung dis-

ease severity. Leveraging the strengths of diverse approaches [9, 10], and querying multiple tis-

sues produced 379 potential modifier candidates. From this list, 52 consensus genes met the

statistical cutoff from both approaches, and 28 of these were within 1 mega-base (Mb) of sig-

nificant GWAS loci. We sought indirect validation of some of these candidate CF lung disease

modifier genes by examining their known functions in literature and annotation databases,

and we highlight potential relevance of some of the findings to CF biology. These genes are

candidates for further experimental validation.

Methods

The overall workflow of the study is outlined in Fig 1. The cohort study design, and demo-

graphic and clinical characteristics of the CF patients used in this study have been previously

described [1]. Briefly, 5 cohorts (total 6,365 CF patients) with>90% European ancestry from

US, Canada, and France were recruited by the International Cystic Fibrosis Gene Modifier

Consortium, and their genome-wide genetic variance were assayed using different genotyping

platforms over several years. GWAS was performed as a meta-analysis of cohort/platform

combinations, using the standardized quantitative lung function score, or KNoRMA (Kulich

normal residual mortality adjusted) mean FEV1 percentile, as phenotype trait [1, 3]. The pres-

ent study also utilized gene expression data previously interrogated for association to several

CF disease phenotypes, including expression data from Affymetrix exon microarrays of 753

EBV-transformed lymphoblastoid cell lines (LCLs) from CF patients [11] and RNA-sequenc-

ing from nasal mucosal epithelial biopsies from 132 CF patients [12]. These gene expression

data provided training data to build predictive models using the PredictDB_Pipeline (used by

PrediXcan from Im lab) for GTEx v7 release. Models for LCL gene expression available from

PredictDB repository (http://predictdb.org/ from Im lab), were compared to our CF LCL mod-

els to assess the quality of our predictive models. Full details of genetic and transcriptomic

datasets utilized in the modeling, and the modeling procedures are described in S1 Methods in

S4 File. Additionally, GTEx models from 48 human tissues and a large data set from Depres-

sion Genes and Networks (DGN) whole blood [13] were downloaded from the PredictDB

(PrediXcan) data repository [9], and TWAS [10].

Imputed SNP genotypes from the CF GWAS cohorts [14] were used as input for PrediXcan

model training [9]. Compared to the imputation reported in the GWAS studies [1], the

updated version here utilized a more recent release of 1000 genomes project Phase3 (v5a) hap-

lotype data and 101 CF whole genome sequencing data as reference panels, which improved

coverages at HLA and CFTR regions [14].

To test for association with CF lung disease severity, the quantitative score (KNoRMA)

used in the prior GWAS studies was used as a standardized CF lung phenotype trait [1–3], and

the imputed gene expression from each tissue was modeled as response variable to KNoRMA

in a linear model, with sex and 4 genotype principle components (PCs) as covariates. Associa-

tion testing of imputed gene expression, using the PrediXcan platform [9], from the CF LCLs

and CF nasal epithelial biopsies, 48 GTEx tissues, and DGN whole blood (a total of 51 human

tissues), were performed using robust regression [15, 16] based on 5,756 unrelated patients.

The analyses were done using the Bioconductor LIMMA package and the robust regression

utilized iterated re-weighted least squares by the rlm function from the R package, MASS. For

disease phenotype association testing using predictive models trained on CF nasal epithelial
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biopsy and LCL data sets, the samples used in predictive model training (122 nasal and 753

LCL samples were part of GWAS) were excluded from the association testing, resulting in

5,634 and 5,003 final sample size for nasal epithelial biopsies and LCLs, respectively.

Alternatively, summary GWAS statistics were used to test imputed gene expression associa-

tion from 48 GTEx tissues to KNoRMA using Functional Summary-based Imputation, or

FUSION software from TWAS [10]. Briefly, summary GWAS statistics for SNP associations to

CF lung disease phenotype (n = 6,365) and reference linkage-disequilibrium (LD) data from

1000 genome projects were used as input for FUSION, with TWAS predictive models from 48

GTEx v7 human tissues downloaded from FUSION website (http://gusevlab.org/projects/

fusion/). The analysis was performed according to instructions on the FUSION website.

To leverage information from all tested tissues, meta-analyses from multiple p-values were

performed. Since these tissue-specific association tests all started from the same CF GWAS

data set, meta-analysis for dependent/correlated tests were applied to both the PrediXcan and

TWAS results. We then adopted a strategy to compare results from the two independently

Fig 1. Analysis workflow overview. GWAS imputation of SNP variances in CF patients (n = 6,365) were used to impute

genetically regulated gene expression, which were then tested for CF lung disease severity using either the PrediXcan platform

(left arm), or TWAS (right arm). The association results from multiple tissues from each platform were combined through 2

different meta-analysis of multiple p-values from different tissues. GTEx: Genotype-Tissue Expression RNA-seq (n = 48

tissues); CF: LCL microarray (n = 753 samples), and nasal epithelial biopsy RNA-seq (n = 132 samples); DGN: Depression

Genes and Networks RNA-seq from whole blood (n = 922 samples); HMP: harmonic mean p-value; EBM: empirical

adaptation of Brown’s method; OMNIBUS: omnibus p-value from TWAS.

https://doi.org/10.1371/journal.pone.0239189.g001
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developed approaches. Multi-tissue tests from each result set were combined by two separate

meta-analysis methods, a simple harmonic mean p-value (HMP) [17], and a correlation

adjusted method, specifically, empirical adaptation of Brown’s method (EBM) [18] for PrediX-

can, or omnibus test [10] for TWAS. For significant modifier genes from each analysis plat-

form, a p-value < 0.01 from both the HMP, and correlation adjusted method (EBM for

PrediXcan, or omnibus for TWAS) was chosen. Consensus between the 2 result sets (with 4 p-

value < 0.01 thresholds) yielded the most robust findings, while the union of significant genes

from the 2 result sets maximized sensitivity of discovery. For comparison of numeric out-

comes, such as performance of predictive models or imputed gene expression between data

sets or tissues, the distribution of correlation R2 among multiple genes were compared to R2

values derived from null distribution using Fisher’s transformation through a modified R

script originally from the Im lab (https://gist.github.com/hakyim/a925fea01b365a8c605e).

Narrow-sense heritability (h2) of phenotype from imputed GWAS data from unrelated

patients was calculated using the GREML-LDMS method [19] from the Genome-wide Com-

plex Trait Analysis (GCTA) software [20], v1.93.0beta.

For hierarchical clustering, signed -log10p-value with sign of association beta coefficient as

indicator of expression change direction were compiled for genes significantly associated to

disease phenotype from multiple tissue data sets. Clustering heatmaps were generated using

the Bioconductor R package, ComplexHeatmap [21] (additional details provided in the S1

Methods in S4 File). Manhattan plots of GWAS data and imputed gene expression phenotype

associations were generated using the R package, qqman [22], and ggplot2 [23]. GWAS p-val-

ues of relevant SNPs were formatted as bedGraph files, and visualized on the UCSC genome

browser (http://genome.ucsc.edu/) as custom annotation tracks against appropriate reference

genomes.

Pre-ranked Gene Set Enrichment Analysis [24] against several collection of gene sets and

pathways were performed with both PrediXcan and TWAS platforms using the Bioconductor

R package fgsea [25]. The ranks were based on the -log10 of the maximal p-value between the 2

meta-analysis methods applied for each platform. In addition, candidate genes were function-

ally categorized using Gene Ontology (GO) terms [26], and Reactome annotations [27], cou-

pled with expert review of the literature.

Results

Predictive models for genetic regulation of gene expression using training

data from CF cohorts

To build predictive models of genetic regulation of gene expression with training data from

CF patients, we adapted the PredictDB_Pipeline for GTEx_v7 to work with CF genotype and

gene expression data from both LCL [11] and nasal epithelial biopsy [12] data sets. The perfor-

mance of the predictive models was evaluated by the correlations between predicted and

observed gene expression, and genes were filtered at minimal performance suggested by Pre-

dictDB. The number of imputable genes (as defined by prediction R2 > 0.01 and p-

value < 0.05), including protein-coding, lincRNA, and pseudogenes, from nasal epithelial

biopsy data set consisting of 132 training samples was 2,881; while that from 753 LCL data set

was 5,299. As shown in S1 Fig in S4 File, the predicted vs observed R2 from both data sets are

significantly higher than expected from null distribution, with the average R2 of 0.11 and 0.072

for imputable genes from nasal epithelial biopsy and LCL models, respectively, comparable to

reported models based on GTEx data sets [9]. These R2 values suggest the existence of a sub-

stantial number of genes whose expression can be partially explained by genetic variants. The

degree of R2 deviation from null between nasal epithelial biopsy (n = 132) and LCL (n = 753)
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models reflect the sample size difference between them, since sample size and quality of train-

ing data are critical factors that determine the performance of the predictive models and the

number of predictable genes [10]. Our nasal epithelial biopsy models are comparable to GTEx

RNA-seq data sets from PrediXcan, while our LCL microarray data set yielded fewer than

expected number of imputable genes (S2 Fig in S4 File).

We investigated correlations of our CF LCL model predictions with those of GTEx on the

same set of patients. The numbers of imputed genes that passed respective prediction filters

are 5,299 from CF LCL, and 3,039 from GTEx Cells_EBV-transformed_lymphocytes (i.e.

LCLs), with overlap of 1,623 genes by ENSEMBL gene_id. The correlation of the 1,623 genes

between the 2 data sets were calculated and compared to expected R2 distribution from null

(S3 Fig in S4 File). The mean R2 value among 1,623 genes is 0.51, i.e. the two imputed gene

expression data sets are highly correlated, suggesting similar genetic regulation of gene expres-

sion in the same cell type in independent training data sets. Also as reported, there is signifi-

cant cross predictability of the models between different tissues [9], and the correlation

between imputed gene expression from CF LCLs, and GTEx lung tissue, among 2,552 genes

predicted in both data sets, are also significantly above null, with mean R2 of 0.40 (S3 Fig in S4

File).

Association of genetically regulated gene expression to CF lung disease

severity

Association testing of imputed gene expression from a total of 51 tissues (2 CF, 48 GTEx, and

DGN whole blood) were performed using robust regression against the quantitative lung func-

tion score, KNoRMA, and results from all tissues were used in meta-analysis as described in

methods (Fig 1). The meta-analyses resulted in 245 candidate modifier genes from PrediXcan

by consistent p-value < 0.01 from 2 meta-analyses (HMP.PrediXcan, EBM.PrediXcan) and

186 candidate genes utilizing GWAS summary statistics and TWAS/FUSION meta-analyses

(HMP.TWAS, OMNIBUS.TWAS), giving a combined candidate list of 379 unique genes (S1

File). Using a threshold of p-value < 0.01 across all 4 meta-analyses, 52 consensus CF lung dis-

ease modifier genes were defined (Figs 2 and 3, Table 1). Several key features of these 52 con-

sensus genes are highlighted in Fig 2. First, there is a general agreement between PrediXcan

(left panel) and TWAS (right panel) in terms of direction (color) and strength (intensity) of

the association of imputed gene expression to lung disease severity. Second, more than half (28

out of 52) of the consensus genes were located within 1 Mb of the 5 autosomal GWAS signals.

Third, the direction of the predicted effect of gene expression as it relates to the lung disease

phenotype varies across genes (blue versus red) and is relatively consistent across tissues, with

rare exceptions (discussed below). Fourth, association signal is often centered around GWAS

loci and with genes imputed across many tissues, although there are exceptions. Many of these

genes have relevance to known features of CF pathogenesis (see citations in Table 1), and the

direction of imputed gene expression change reflects the direction of alleles and prediction

weights of SNPs in the predictive models. Among the 52 consensus modifier genes, the corre-

lation coefficient between average effect sizes from multiple tissues between PrediXcan and

TWAS is r = 0.83 (R2 = 0.69, S4B Fig in S4 File), while that from the maximal multi-tissue p-

values of PrediXcan and TWAS, is r = 0.68 (R2 = 0.46, S4C Fig in S4 File). As shown by the

color of the heatmaps in Fig 2, most of the consensus modifier genes are similar in change of

direction relative to KNoRMA across multiple tissues with strongest signals from chr5 and

chr6 GWAS loci, such as EXOC3, and HLA-DRB1, respectively. However, there are some

exceptions, such as TPPP and MET, where genetic regulations of expressions associate to

KNoRMA with different direction in different tissues. For example, TPPP is predicted to be
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increased in milder patients (higher KNoRMA values) from both GTEx and DGN whole

blood, while the opposite is predicted from other tissues.

As expected from published PrediXcan and TWAS applications to other diseases [76, 77],

many genes associated with CF lung disease severity are around the reported genome-wide sig-

nificant loci from GWAS (red squares in Fig 3, and Table 1A), but there are also significant

genes elsewhere (blue triangles in Fig 3, and Table 1B), including MET ~700 kb upstream of

CFTR on chr7, TAPT1 on chr4, and HEATR2 on chr7 to name a few. This provides evidence

for significant association with SNPs outside the GWAS significant loci and/or combinatorial

signals from the multiple SNPs used in predictive models. Further, the genome-wide signifi-

cant signal by fixed-effect meta-analysis p-value on chr16 (Fig 3C, S5 Fig in S4 File), which was

not reported in the GWAS publication due to multiple hypothesis testing penalty [1], was

brought to attention by gene expression imputation for CHP2 and PRKCB (Fig 3A and 3B).

Fig 2. Hierarchical clustering of genes whose imputed expression are associated with CF lung disease severity. Consensus modifier genes (n = 52) were determined

as p-value< 0.01 from all 4 meta-analyses of multiple tissue association testing described in methods, and the -log10(p-values) were clustered and represented as a

heatmap with red-grey-blue color scale. The color represents direction of predicted expression change, with red indicates “protective”, or increased expression with

increasing KNoRMA (milder lung disease), and blue, “harmful”, or increased expression with decreasing KNoRMA (more severe lung disease), and the intensity reflects

the significance (p-values) of the association. White cells in heatmap indicate missing data, where the genes were not well predicted from the relevant tissues. The

vertical color columns on the right indicate type of gene and chromosome near GWAS loci. The genes were clustered based on results from PrediXcan (left heatmap),

and the order of the genes were kept the same for TWAS (right heatmap). Key patterns of negative and positive associations to KNoRMA across multiple tissues in the

heatmap are highlighted by the dashed boxes. Arrows on top of the left heatmap identify the additional tissues over the 48 GTEx tissues common to both platforms, and

arrows in the middle of the heatmaps show the results from whole blood tissues for TPPP.

https://doi.org/10.1371/journal.pone.0239189.g002
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To globally compare GWAS association with imputed expression association, available

SNP GWAS association p-values for the cis-SNPs used as predictive variables, were retrieved

for all imputable genes of PrediXcan predictive models of all 48 GTEx tissues. Minimal SNP p-

values in predictive models of a gene were compared to the maximal association p-value

between HMP.PrediXcan and EBM.PrediXcan for the same gene to CF lung disease severity

from imputed expression (Fig 4). The correlation coefficient of the minimal GWAS -log10 p-

values with PrediXcan maximal association p-values over the> 25,000 imputable genes is

highly significant, with r = 0.19 (R2 = 0.036, Fig 4). Similarly, mean SNP GWAS p-value and

imputed expression p-value among these genes are also significantly correlated with r = 0.13

(R2 = 0.017, S6 Fig in S4 File). As indicated above, examples of significant associations from

imputed gene expression from regions where no genome-wide significant SNPs were identi-

fied from the GWAS include DESI1, HEATR2, OASL, SLITRK3, TAPT1, etc. (Fig 3, and

Table 1B).

The integration of SNP association to lung disease phenotype (GWAS) and imputed eQTL

signals can be illustrated by examining the SNPs utilized in the models to predict expression

for the chr11 locus, as shown in Fig 5 (and S7 Fig in S4 File). Combining predictive variables

(SNPs) from multiple GTEx tissue models, and among SNPs with significant GWAS p-values

of< x10-07 [top annotation track in Fig 5 (zoom-in view), S7 Fig in S4 File (full region)], only

1 SNP (among 50 in all EHF models) was used to impute EHF expression, and only 2 SNPs

(among 759 in all APIP models) were used for APIP. In contrast, 20 of the significant SNPs

were predictive for PDHX, which in turn translated into significant lung disease associations

of imputed gene expression for PDHX (Figs 2 and 3, and Table 1), but not EHF and APIP,

even though EHF and APIP are closest to the GWAS signal. Similarly, imputed eQTL data

help to point to genes regulated by SNPs at other regions (S8-S12 Figs in S4 File) and suggest

the direction of genetically regulated expression change in regard to phenotype trait (Table 1).

Gene set enrichment analyses and functional categories of candidate CF

lung disease modifier genes

Gene set (pathway) enrichment analyses (GSEA) were performed based on protein-coding

genes pre-ranked by the maximal p-value between the 2 multi-tissue meta-analyses for each

analysis platform, PrediXcan and TWAS. Since all imputed protein-coding genes of PrediXcan

(n = 16,431) and TWAS (n = 13,685) were ranked, GSEA can uncover concerted association of

gene set or pathway members with CF lung disease (S1, S2 Tables in S4 File). Apart from the

usual suspects of immune and vesicle trafficking processes and pathways reported in previous

publications, including a large number of pathways dominated by HLA genes [11, 12, 79, 80],

some highly specific, pathogenically relevant processes were also enriched, with examples of

“Interferon-gamma-mediated signaling pathway” from GO biological process, “Defective

CFTR causes cystic fibrosis” and “Antimicrobial peptides” from Reactome pathway, and

“Asthma” from KEGG pathway shown in Fig 6 (and in S1, S2 Tables in S4 File).

Alternatively, we looked for overlaps between the 379 potential candidate modifiers of CF

lung disease (described above) and CF relevant-biological categories, many of which are repre-

sented by GSEA analyses. Using GO and Reactome annotations, coupled to key functional

Fig 3. Manhattan plots of CF lung disease association p-values from gene expression imputation and GWAS. Maximal p-values between 2 meta-analyses

from imputed gene expression to KNoRMA by PrediXcan and TWAS were used in the Manhattan plots A and B respectively. The 28 consensus modifier

genes within 1 Mb of 5 autosomal GWAS signals (red squares), and those not near GWAS signals (blue triangles) are labeled. Panel C represents GWAS p-

values from the updated imputation [78] by fixed-effect meta-analysis performed according to the GWAS study [1]. The solid lines correspond to genome-

wide significant p-value of 0.01 (for imputed expression, A and B) or 1.25x10-08 (for GWAS, C), while the dashed lines represent the suggestive p-value of

0.05 (for imputed expression) or 1x10-06 (for GWAS).

https://doi.org/10.1371/journal.pone.0239189.g003
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Table 1. Consensus 52 CF lung disease modifier genes.

Gene Gene type chr p-value

(max)

Direction� CF-related

citations

A: Genes in regions of GWAS association ordered by chromosome

MUC20 protein

coding

3 8.1x10-03 Protective

(0.014;2.44)

Mucus barrier

MUC4 protein

coding

3 5.9x10-03 Protective

(0.011;2.1)

Epithelial membrane mucin; possible regulation by CFTR [28]

SDHAP1 pseudogene 3 2.3x10-04 Harmful (-0.021;-

4.1)

AC069213.1 pseudogene 3 4.9x10-03 Harmful (-0.012;-

2.06)

AC026740.1 protein

coding

5 3.1x10-04 Protective

(0.01;2.97)

AHRR protein

coding

5 3.7x10-03 Protective

(0.003;0.97)

Aryl hydrocarbon receptor [29, 30]

BRD9 protein

coding

5 1.3x10-04 Harmful (-0.002;-

3.95)

Lysine-acetylated histone binding, chromatin organization; important in small

lung cell cancers

C5orf55 protein

coding

5 4.7x10-05 Harmful (-0.02;-

3.95)

EXOC3 antisense

CCDC127 protein

coding

5 5.8x10-03 Harmful (-0.006;-

1.83)

Regulates HSP70 gene expression; HSP70 is involved in CFTR processing [31, 32]

CEP72 protein

coding

5 1.8x10-09 Protective

(0.019;5.66)

Microtubule-organizing, organelle, centrosome; required for cilia formation;

microtubules and cilia important for CF pathophysiology

[33–39]

CTD-
2083E4.5

pseudogene 5 6.3x10-03 Harmful (-0.007;-

1.8)

CTD-
2228K2.5

protein

coding

5 1.6x10-05 Harmful (-0.01;-

2.99)

EXOC3 protein

coding

5 3.5x10-06 Protective

(0.028;4.86)

Exocytosis, epithelial polarity; interaction with actin cytoskeletal remodeling and

vesicle transport machinery; components of exocyst complex required for

intracellular bacteria clearance from cells; regulates MUC5AC secretion induced

by neutrophil elastase in human airway epithelial cells

[40]

TPPP protein

coding

5 1.0x10-07 Harmful (-0.012;-

4.08)

Microtubule bundle; microtubules associated with CFTR-related pathogenic

processes (see CEP72 above)

[41–47]

ZDHHC11 protein

coding

5 9.4x10-06 Protective

(0.005;4.41)

Palmitoylation, ER, Golgi protein targeting; mediator of DNA virus response [48]

ZDHHC11B protein

coding

5 1.1x10-04 Protective

(0.003;4.13)

Palmitoylation, ER, Golgi protein targeting

AGER protein

coding

6 6.5x10-03 Harmful (-0.007;-

2.39)

Associated with pathogen load, inflammation, and hypoxia in CF [49–51]

CYP21A2 protein

coding

6 2.6x10-03 Harmful (-0.01;-

2.39)

Steroid hydroxylase, congenital adrenal hyperplasia; Cytochrome P450

superfamily; required for the synthesis of steroid hormones including cortisol and

aldosterone.

HLA-DQA1 protein

coding

6 1.0x10-04 Protective

(0.026;3.84)

Ancestral allele 8.1, CF delayed onset infection; potential CF modifier in pancreas

and liver

[52, 53]

HLA-DQA2 protein

coding

6 2.5x10-04 Harmful (-0.049;-

4.76)

Ancestral allele 8.1, CF delayed onset infection; highly conserved in contrast to

some other HLA genes

[54, 55]

HLA-DQB1 protein

coding

6 3.9x10-04 Protective

(0.04;3.48)

Ancestral allele 8.1, CF delayed onset infection; potential CF modifier in pancreas

and liver

[52, 53, 56]

HLA-DRB1 protein

coding

6 5.1x10-05 Protective

(0.024;3.61)

Ancestral allele 8.1, CF delayed onset infection; associated with allergic and T(H)-

1 like responses

[52, 56–58]

HLA-DRB6 pseudogene 6 1.1x10-05 Harmful (-0.052;-

4.67)

Ancestral allele 8.1, CF delayed onset infection

HLA-DRB9 pseudogene 6 1.8x10-03 Harmful (-0.017;-

2.77)

Ancestral allele 8.1, CF delayed onset infection

(Continued)
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Table 1. (Continued)

Gene Gene type chr p-value

(max)

Direction� CF-related

citations

PRRT1 protein

coding

6 5.3x10-04 Harmful (-0.01;-

2.39)

Post synaptic membrane

PDHX protein

coding

11 3.1x10-03 Harmful (-0.011;-

2.01)

Mitochondrial glycolysis, congenital lactic acidosis; pyruvate dehydrogenase, an

enzyme complex linking glycolysis with downstream oxidative metabolism,

represents a key location where regulation of metabolism occurs; PDHX is a key

structural component of this complex and is essential for its function; involved in

glucose metabolism so associated with oxidative responses

CHP2 protein

coding

16 1.9x10-03 Protective

(-0.002;0.74)

Cellular pH regulation, plasma membrane Na+/H+ exchangers required as an

obligatory binding partner for ion transport

PRKCB protein

coding

16 9.6x10-03 Harmful (-0.002;-

0.1)

Adaptive immunity, B cell activation; Linked to CFTR mRNA expression,

Regulation of autophagy via sensing of mitochondrial energy status

[59, 60]

B: Genes in regions of no prior association (in this cohort of subjects) ordered by chromosome

MYCL Protein

coding

1 5.0x10-03 Protective

(0.006;2.28)

Dis-regulation associated with lung and other cancers [61]

AJ239322.1 lincRNA 2 8.1x10-03 Protective

(0.007;2.74)

PLA2R1 Protein

coding

2 8.8x10-03 Harmful (-0.008;-

2.11)

Potential target in asthma [62, 63]

RP11-
496H1.2

lincRNA 3 8.0x10-03 Harmful (-0.004;-

2.43)

OSTN Protein

coding

3 9.5x10-03 Protective

(0.005;1.82)

SLITRK3 protein

coding

3 8.1x10-03 Protective

(0.002;2.32)

Synaptic membrane adhesion; involved in GABAergic synapse formation; recent

evidence of GABAergic control of mucous cell differentiation in human airway

epithelium

[64, 65]

TAPT1 protein

coding

4 8.7x10-03 Harmful

(-0.0004;-0.36)

Cilia basal body, centrosome; associated with lung function decline in smokers

DSE Protein

coding

6 9.2x10-04 Harmful (-0.006;-

1.51)

Dermatan sulfate is part of proteoglycans that are involved in many biological

processes, such as cancer, immunity, and defect can cause Ehlers-Danlos

syndrome, which may lead to hypoplasia of the lung

[66, 67]

CDSN protein

coding

6 6.1x10-04 Harmful (-0.015;-

3.75)

Cell adhesion, skin morphogenesis; epithelial cell differentiation

HLA-S pseudogene 6 5.9x10-03 Harmful (-0.019;-

2.5)

HEATR2 protein

coding

7 5.8x10-03 Protective

(0.011;2.21)

DNAAF5 (alias), motile cilia, necessary for assembly of the ciliary motile

apparatus

[68, 69]

MET protein

coding

7 7.2x10-03 Harmful (-0.006;-

0.92)

Genetic marker, CFTR mutation [70]

RP11-
56A10.1

pseudogene 8 7.4x10-03 Harmful (-0.007;-

3.16)

C9orf16 protein

coding

9 9.6x10-03 Protective

(-0.0001;0.34)

SMTNL1 protein

coding

11 8.2x10-03 Protective

(0.022;3.08)

Muscle contraction

OASL protein

coding

12 4.6x10-03 Harmful (-0.004;-

1.8)

Antiviral, inhibits RSV [71–73]

TFCP2 protein

coding

12 2.7x10-03 Harmful (-0.003;-

2.56)

Transcription factor, alpha-globin, inflammatory response

TMEM30B protein

coding

14 9.9x10-03 Harmful (-0.002;-

0.61)

Phospholipid translocation

MTFMT protein

coding

15 5.6x10-03 Harmful (-0.003;-

1.61)

Mitochondrial translation, required for mitochondrial function/oxidative

phosphorylation

(Continued)
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categories identified with CF relevance (Table 1), we classified 149 of the 379 candidate genes

into 11 functional categories (Table 2).

Table 1. (Continued)

Gene Gene type chr p-value

(max)

Direction� CF-related

citations

RP11-
491F9.8

lincRNA 16 7.5x10-03 Harmful (-0.015;-

3.25)

MYL4 protein

coding

17 8.7x10-03 Harmful (-0.005;-

2.69)

Actin filament binding, atrial fibrillation

HDHD2 protein

coding

18 3.9x10-03 Protective

(0.003;1.51)

DESI1 protein

coding

22 2.6x10-03 Harmful (-0.009;-

2.84)

Proteolysis; desumoylating isopeptidase; SUMO paralogues determine fate of

wild-type and mutant CFTR protein

[74]

TMPRSS6 Protein

coding

22 3.6x10-03 Harmful

(-0.0004;-0.36)

AKA matriptase-2, variants associated with iron refractory iron deficiency anemia [75]

�Direction defined as: Harmful (PrediXcan beta coefficient; TWAS zscore): Increased expression correlated with worse lung disease (decreased KNoRMA), or

Protective (PrediXcan beta coefficient; TWAS zscore): Increased expression correlated with milder lung disease (better KNoRMA)

https://doi.org/10.1371/journal.pone.0239189.t001

Fig 4. Correlation of imputed gene expression association from PrediXcan and minimal GWAS association p-

values. Maximal p-values between HMP and EBM meta-analyses of CF lung disease associations from imputed gene

expression (PrediXcan) for 26,750 genes from 48 GTEx tissues are plotted against minimal GWAS SNP p-values per

gene among all cis-SNPs used in predictive models. The 52 consensus modifier genes are highlighted in red squares

(near GWAS loci) and blue triangles (novel), while genes with minimal GWAS SNP p-values< x10-08 (dashed vertical

line), but not among the 52, are highlighted in black diamonds. Solid line represents linear regression.

https://doi.org/10.1371/journal.pone.0239189.g004
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Allele bias of gene expression estimation may confound interpretation of

hyper-variable genes, such as HLAs

Many HLA genes appear to be strongly regulated genetically, as reflected by variance explained

or R2 of the predictive models (S3, S4 Tables in S4 File) and HLA-dominated pathways are

highly significant in our previous gene expression association studies [11, 12]. However, since

gene expression quantification relies on mapping of RNA-seq reads to genome/transcriptome

sequences, expression levels may be biased towards the reference allele, especially for the

hypermorphic HLA genes [81, 82]. To assess influences of allele bias on gene expression quan-

tification and trait association, we compared different strategies of RNA-seq read mapping

from our nasal epithelial biopsy RNA-seq data set. In addition to the standard protocol of

mapping to the primary reference genome assembly, we also adopted an alternative mapping

strategy to include additional alternative genome assemblies as suggested [82], and incorpo-

rated common variance information (http://ccb.jhu.edu/hisat-genotype) from dbSNP v150

(S1 Methods in S4 File). As shown in S13 Fig in S4 File, the correlation and spread of expres-

sion estimates are similar for selected HLA Class II genes, between AltHapAlignR [82] and

default gene counts (S13A-S13D Fig in S4 File), and alternative mapping FPKM (Fragments

Per Kilobase per Million) and standard mapping FPKM (S13E-S13H Fig in S4 File). When the

bias-corrected alternative gene expression quantification was used in predictive model build-

ing, gene expression imputation, and trait association testing, the results were dramatically dif-

ferent for some genes, such as HLA-DQA1 and HLA-DRB1, where the direction of predicted

expression changes in regard to lung function are opposite between different mapping strate-

gies (Fig 7A). The number of genes that can be predicted by cis-SNPs among the bias-corrected

training set, compared to the standard protocol that predicted 2,881 genes (S2 File), increased

by>1,000 to 4,263 (S3 File), with only 1,379 overlap between them. These findings suggest

that allele bias associated with commonly employed gene expression estimation pipelines can

confound phenotype association testing, resulting in misinterpretation of genetic modulation

of phenotype apparently via gene expression regulation.

Discussion

We have applied gene expression imputation to mine the CF gene modifier GWAS data set

and extracted 379 potential and 52 consensus CF lung disease modifier candidates. The

Fig 5. Comparison of predictive model SNPs at chromosome 11 GWAS locus. The -log10 p-values from GWAS analysis were retrieved for cis-SNPs in viable

PrediXcan predictive models from 48 GTEx tissues for EHF, APIP, and PDHX. These p-values were formatted as bedGraph files and displayed through the UCSC

genome browser (http://genome.ucsc.edu/) as custom annotation tracks, with vertical scales set between 0 and 10. The screenshot of the genome browser shows from

top to bottom: GWAS SNP p-values, SNPs used in EHF gene expression imputation model, those for APIP, PDHX, and gene annotation from NCBI RefSeq genes.

https://doi.org/10.1371/journal.pone.0239189.g005
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imputation techniques leveraged GTEx integrative training data sets from 48 human tissues

[5], a large RNA-seq data set from whole-blood (DGN) [13], and our own CF gene expression

data sets from nasal epithelial biopsy [12] and LCL [11] samples. Twenty eight of the 52 con-

sensus genes are within 1 Mb of the 5 autosomal genome-wide significant loci [1], while 24

consensus modifier genes were not identified in GWAS. Overall, integration of GWAS with

eQTL data through gene expression imputation highlighted some candidate modifier genes

(Figs 3 and 4, red squares), and diminished potential roles of others (Fig 4, black diamonds)

around GWAS loci, as well as uncovered modifiers outside GWAS loci (Figs 3 and 4, blue tri-

angles). Disease phenotype association testing of the imputed gene expression also predicted

the direction of genetically regulated gene expression changes relative to CF lung disease sever-

ity, which provides guidance on mechanism of disease modification, and potential interven-

tion strategies. By using independently developed divergent approaches, we sought to balance

sensitivity by combining the results from multiple tissues and platforms, and robustness by

consensus of the findings between PrediXcan and TWAS. The consensus and potential CF

lung disease modifier genes were then evaluated by biological context through literature review

and gene set enrichment analyses.

Fig 6. Gene set enrichment plots. Gene set enrichment analyses (GSEA) were performed and enrichment plots were generated for selected gene sets using the

Bioconductor R package, fgsea. For each enrichment plot, the horizontal black line at the bottom represent p-value ranks of protein-coding genes with most significant

p-value rank on the left. The vertical bars represent individual genes in a gene set and their ranks. The green curves represent the cumulative enrichment score (ES), and

the red horizontal dashed lines denote minimal (often 0) and maximal scores. Listed genes represent the leading edge with increasing ES, that contribute to the overall

enrichment of the gene set. Panel A and C are GSEA results from PrediXcan platform, while B and D from TWAS. Particular gene sets shown are from GO biological

process (A), and Biosystems (C–KEGG, B, D–Reactome).

https://doi.org/10.1371/journal.pone.0239189.g006
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The usefulness of defining the relationship of SNP association to the imputed gene expres-

sion association to phenotype, deduced through independent eQTL data sets, can be illustrated

at the chr11 locus (Fig 5, S7 Fig in S4 File). Although EHF and APIP are the nearest genes to

the intergenic chr11 GWAS locus with significant lung disease association p-values, PDHX is

best predicted to be regulated by SNPs in the region based on current gene expression data.

These results do not rule out developmental and other cell/tissue-specific mechanisms not

assessed, by which EHF and APIP may modify CF lung disease process. Nevertheless, PDHX is

a critical gene in mitochondrial energy metabolism (OMIM: 245349) that should be investi-

gated further, since many additional candidate modifiers related to mitochondrial function

were also identified in this study (Table 2).

Examples at other genomic loci are also informative (S8-S12 Figs in S4 File). The strongest

GWAS signals on chr5 supported by gene expression imputation (Fig 3) contain 3 genes,

CEP72, TPPP, and EXOC3 (Figs 2 and 3, S9 Fig in S4 File, Table 1) involved in microtubule

organization and exocytosis. MUC4 and MUC20 are significant at chr3 (S8 Fig in S4 File), and

Table 2. Functional categories of significant genes (n = 149 out of 379) relevant to CF pathophysiology�.

Category Genes

Immunity/ infection/inflammation AGER, AHRR, EXOC3, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRB1,

MET, MUC20, MUC4, OASL, PRKCB, TFCP2; ADAM, AMBP, AP1S1,

ATP6V0D2, AZU1, BPIFA1, BPIFB1, BTNL2, C2, CEACAM6, CFH, DDX60,

EFNB3, FGF20, FRK, GAN, HLA-B, HLA-DQB2, HLA-DRA, IGSF5, JMJD6,

LCN2, METTL7A, MEX3C, MME, NDC1, NFAM1, NPY5R, ORMDL3,

PIK3R2, PRG2, RAC2, RORC, SLC3A2, SLFN13, SMAD4, SPG21, TFRC,

TREX1, UBE2Z, VAV3, YTHDF2, ZFP36L2, ZYX
Mucociliary clearance C5orf55, CEP72, EXOC3, HEATR2, MUC20, MUC4, SLITRK3, TAPT1,

TPPP; AK8, ARL3, CEP120, ICK, IFT74, MYO3B, NUBP1, PROM1
Glycosylation AGER, MUC20, MUC4; A4GALT, ARFGAP3, GOSR1, NOTCH4, PIGO,

PIGW, SERP1, ST3GAL6, TRAPPC2L, XXYLT1
Viral/virus HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRB1, OASL; AMBP,

ATP6V0D2, AZU1, BPIFA1, CFH, DDX39B, DDX60, EFNB3, HLA-B,

HLA-DRA, LCN2, NDC1, PIK3R2, RAC2, RPS10, SLFN13, STMN1, TFRC,

TREX1, ZYX
Mitochondria MTFMT, PDHX; BIK, DDAH2, HIGD2A, HRK, MMAA, MTFR1L, MTG1,

MYO19, NDUFAF6, NRF1, RAC2, SDHA, TARS2, TDRKH, TIMM10
ER/Golgi DSE, EXOC3, TAPT1, TMEM30B, ZDHHC11, ZDHHC11B; A4GALT,

AKR7A2, AP1S1, ARFGAP3, ARL3, BSCL2, CPD, CUX2, GOSR1, IER3IP1,

METTL7A, NOTCH4, ORMDL3, PIK3R2, SERP1, STC2, TFRC, TRAPPC2L,

XXYLT1
Ubiquitination GAN, GNA12, MEX3C, PIAS2, SMAD4, TNK2, UBE2Q2P1, UBE2Z, UFD1L
Lipid AHRR, CYP21A2, PLA2R1, TMEM30B, ZDHHC11, ZDHHC11B; A4GALT,

APOC2, BSCL2, CYP21A2, FADS3, GLTP, GNA12, JAZF1, LDLRAP1,

MED19, MMAA, NCOA3, NRF1, NRIP1, ORMDL3, OSBPL10, PIGO, PIGW,

PIK3R2, PLA2R1, PNLIPRP3, SERINC1, SOAT1, THRB, TREX1
CFTR interactome RAC2, SDHA, TARS2, YTHDF2
Transcription factors AATF, FOXP2, NCOA3, NEAT1, NRF1, NRIP1, PIAS2, RORC, SMAD4,

TFCP2, THRB
Cytoskeleton/ microtubule CEP72, MET, SMTNL1, TAPT1, TPPP; ADD3, ARL3, AUNIP, CEP120, GAN,

GAS2L3, GNA12, ICK, IFT74, MAST3, MYO19, NUBP1, PACSIN2, PDLIM3,

PIK3R2, POC5, RAC2, SMTNL1, SPATC1L, STMN1, TAPT1, TPPP, VILL,

ZYX

�Alphabetical listing for 28 (of 54) consensus genes near (bold) and outside (underlined) GWAS loci (between

TWAS and PrediXcan, Table 1); remaining genes (n = 121, alphabetically listed) are from the other 327 significant

candidate modifier genes (S1 File)

https://doi.org/10.1371/journal.pone.0239189.t002
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CYP21A2 and HLA Class II genes at chr6 (S10 Fig in S4 File). The locus on chr16 (Fig 3, S5 Fig

in S4 File) was borderline genome-wide significant that did not pass the threshold in publica-

tion of the GWAS study [1]. However, the chr16 region contains several genes relevant to CF

lung disease, including ERN2 involved in ER stress response and mucin production [83], and

the SCNN1B and SCNN1G subunits of the epithelial sodium channel (ENaC) that have been

suggested as being CF disease modifiers [84]. Over-expression of ENaC channels in SCNN1B
transgenic mice has been used as a model of CF lung disease [85], and suppression of ENaC

subunit expression is being explored as therapeutic strategies [86]. However, only CHP2 and

PRKCB in the chr16 region are consistently associated with CF lung disease by expression

imputation (Figs 2 and 3, and Table 1).

Relevance to CF pathogenesis for the candidate modifiers are partly referenced in Table 1,

and the full list of the 379 candidate genes often represent functional categories that are repre-

sented at the GWAS significant loci, for example PDHX discussed above (Table 2). Thus, both

GWAS loci and non-GWAS loci contain genes that mark functions important in the patho-

genesis of CF lung disease, such as immunity/infection/inflammation, virus/viral, and muco-

ciliary clearance; and in CFTR biology, such as cytoskeleton, microtubules, mitochondria,

lipid, ubiquitination, and ER and Golgi compartments. Several genes not in GWAS loci, e. g.

BPIFA1 [87–90], CEACAM6 [91, 92], and ORMDL3 [93–97], have been implicated directly in

CF pathogenesis. Additionally, 4 genes (RAC2, SDHA, TARS2, and YTHDF2) have been

Fig 7. Effect of allele bias on gene expression quantification and disease phenotype association in CF nasal epithelial biopsy RNA-seq data set. Comparison of

CF lung disease (KNoRMA) association t statistics between different mapping protocols among 1,379 common imputable genes by respective predictive models

among 5,634 unrelated CF patients are shown in A. HLA genes in A, are represented as red triangles, and x-axis represent standard and y-axis alternative mapping

protocols. Panels B and C show gene expression quantifications by standard (x-axis) and alternative (y-axis) protocols in the format of FPKM for HLA-DQB1, and

HLA-DRB1 genes. Each dot represents 1 sample (out of 132 total), with solid line denoting linear regression line, and dashed line representing equality.

https://doi.org/10.1371/journal.pone.0239189.g007
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reported to be part of core CFTR interactome [98], so their mechanism of disease modification

may partly be attributable to CFTR biogenesis. Another 6 genes (AGER, ELAVL2, HLA-DQB1,

JAZF1, MET, and RASSF3) have recently been identified near genetic variants associated with

lung function in COPD [99]. Interestingly, 11 genes are among the literature-curated tran-

scription factors (Table 2), which are potential targets for intervention. Among them, FOXP2
together with nucleotide binding protein, NUBP1, have been implicated in distal lung develop-

ment in mice [100, 101], and the NKX2-1/FOXP2 positive progenitor cells can be differentiated

into distal alveolar cells [102]. These functional categories are also highly represented in GSEA

analyses, with>60% of all enriched GSEA pathways representing these functional categories

(S1, S2 Tables in S4 File). Further, highly similar pathways were observed in previous gene

expression association studies [11, 12]. Taken together, these gene expression imputation

results are congruent with current concepts of the pathophysiology of CF lung disease. All evi-

dence of pathogenic relevance supports the validity of our data mining approach to uncover

new genetic modifier genes of CF lung disease severity.

Among the 379 potential (and 52 consensus) modifiers, 92 (and 10) are non-protein-coding

genes (S1 File and Table 1). There has been a rapid increase in identification of non-coding

genes in recent years, with the current human genome assembly containing 20,433 protein-

coding genes, 17,835 non-coding genes, and 15,952 pseudogenes (https://www.ncbi.nlm.nih.

gov/genome/annotation_euk/Homo_sapiens/108/#FeatureCountsStats). There is little doubt

that non-coding genes play important roles in biological functions, particularly in gene expres-

sion regulation [103–105], and evidence for their roles in CF disease processes are also emerg-

ing [106, 107]. The non-coding CF modifier genes reported here are likely under-estimated

compared to protein-coding genes, due to reference genome and gene annotations associated

with some of the gene expression data sets used in predictive model training, and general lag

of functional knowledge of non-coding transcripts [108]. These are expected to improve over

time, and new technologies and studies are required to understand mechanisms of CF disease

modification by non-coding genes.

Although our efforts uncovered hundreds of potential candidate modifier genes from the

CF GWAS data, it is likely not the whole story of genetic modification of CF lung disease sever-

ity, due to limitations of the data and necessary simplifications. The GWAS study with imputa-

tion can only effectively interrogate common variants, mostly SNPs, and gene expression

imputation is currently restricted to autosomal genes due to the complexity of X chromosome

gene expression between male and female samples, and apparent random selection of X-inacti-

vation in females [109], thus, the GWAS signal for lung function on the X-chromosome [1]

has not been interrogated. Furthermore, only cis-SNPs within 1 Mb (PrediXcan), or 0.5 Mb

(TWAS) around a gene were used in predictive models of gene expression, and the genetic reg-

ulation of gene expression was modeled as linear additive effects of potential cis-SNPs. There-

fore, modifier genes affected by rare variants were not investigated, and trans-regulation of

gene expression was not evaluated. Additionally, some cis-regulation of gene expression may

not follow linear combination (e.g. significant interaction between cis-SNPs), which would not

be accurately assessed by current predictive models. Furthermore, the number of genes whose

expression can be reliably predicted from genetic variants varied among tissues, ranging from

~2,000 to ~10,000, which in large part can be attributed to training sample sizes [10] (S2 Fig in

S4 File). With continued accumulation of tissue samples and improved data quality, e. g. from

GTEx, as well as improvement of gene expression quantification, and machine learning tech-

niques, we expect to discover more candidate modifier genes of CF lung disease, and other CF

related traits. To estimate proportion of genetic influences on CF lung disease phenotype from

GWAS and gene expression imputation, we calculated heritability (h2) from the imputed

GWAS data using the GREML-LDMS method [19] from the Genome-wide Complex Trait
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Analysis (GCTA) software [20]. The h2 of KNoRMA from GWAS imputation of ~8.3 million

SNPs among ~5,000+ unrelated CF patients, is 0.41 (SE = 0.072), while that from ~1.4 million

cis-SNPs used in combined PrediXcan predictive models from 48 GTEx tissues, is 0.33

(SE = 0.061). The difference between the h2 could potentially reflect missing imputable genes

due to small training sample sizes, trans-regulation of gene expression from distant genetic

variants, and/or other ways of affecting gene function from genetic variants.

The prevailing method of gene expression quantification used in published studies [5, 8, 10,

13] involved mapping of RNA-seq reads to the reference genome/transcriptome assembly,

which are biased towards the reference sequences or alleles [82, 110]. This bias is more pro-

nounced for hypervariable genes, such as some HLA genes, containing thousands of allotypes

among the general population. When comparing alternative mapping strategies correcting for

known variances and including multiple genome assemblies to the commonly used method

(S13 Fig in S4 File), some genes (HLA-DQA1, HLA-DRB1) can change direction of association

to CF lung disease from imputed gene expression, even though overall disease association are

correlated (Fig 7) among the commonly imputable genes, as described [81, 82]. This indicates

that reassessment of gene expression estimates based on HLA alleles in subset of samples can

alter the predictive models, and subsequent association of imputed expression to disease phe-

notype in rare instances. However, the impact of allele-bias correction may be far reaching in

that significantly more genes were imputed by SNP variants when RNA-seq reads were

mapped with bias correction from our nasal epithelial biopsy data set (S2, S3 Files). This

impact should be investigated with more data sets to understand genetic regulation of true

gene expression.

In summary, we applied the technique of gene expression imputation, leveraging availabil-

ity of CF and other eQTL data sets, to mine the CF GWAS data, and uncovered 52 consensus

modifier genes for CF lung disease, which is substantially greater than identified by GWAS

alone. Further, we identified an additional 327 potential candidate CF lung disease modifier

genes. Some modifier candidates had been supported by independent studies, and functional

annotations are consistent with our current knowledge of CF lung disease pathogenesis. These

candidate modifiers provide potential targets for intervention of disease process in CF and for

other airway diseases as well.
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