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A gene regulation network orchestrates processes ensuring the maintenance

of cellular identity and genome integrity. Small RNAs generated by the

RNAse III DICER have emerged as central players in this network. More-

over, deletion of Dicer in mice leads to early embryonic lethality. To better

understand the underlying mechanisms leading to this phenotype, we gen-

erated Dicer-deficient mouse embryonic stem cells (mESCs). Their detailed

characterization revealed an impaired differentiation potential, and inca-

pacity to exit from the pluripotency state. We also observed a strong accu-

mulation of LINE-1 (L1s) transcripts, which was translated at protein level

and led to an increased L1s retrotransposition. Our findings reveal Dicer as

a new essential player that sustains mESCs self-renewal and genome integ-

rity by controlling L1s regulation.

Since its discovery in 2001 [1], extensive studies

revealed DICER as a key player of RNA interference

(RNAi) processes. Indeed, this RNase III protein is

essential for microRNAs (miRNAs) and small-inter-

fering RNAs (siRNAs) biogenesis [2–4]. These eukary-

otic small RNAs are central players in many

biological processes by mediating gene silencing at

transcriptional or post-transcriptional levels [5]. They

are also essential actors of early mammalian develop-

ment as key regulators of cell cycle and proliferation

[6]. Moreover, particular miRNAs are also involved in

embryonic stem cell fate regulation by promoting self-

renewal and differentiation [7–11]. The disruption of

the Dicer gene leads to early embryonic lethality at

the implantation stage, emphasizing its critical role

during mouse early development [12,13]. Besides,

RNAi pathways can act as defense mechanisms

against endogenous and exogenous factors like trans-

posable elements (TEs) and viruses [14–16]. In mam-

mals, first evidence of TEs regulation by RNAi was

reported in Dicer-depleted preimplantation mouse

embryos, where specific subclasses of TEs were up-

regulated [14]. Nevertheless, the exact mechanisms by

which RNAi players could act on TEs and the conse-

quences of this regulation during early development

remain unclear.
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To better understand the functions of Dicer during

early mammalian development, we used mouse embry-

onic stem cells (mESCs) as a model system. Derived

from the inner cell mass of mouse blastocyst, mESCs

present two substantial advantages: first, they can be

maintained in a pluripotent state or conversely be dif-

ferentiated into the three germ layers depending on the

culture conditions [17]. Thus, making them a suitable

model to study mouse embryonic developmental stages

in vitro, otherwise difficult to assess in vivo. Second,

TEs are not submitted to their major regulatory mech-

anisms at the blastocyst stage. Both, the DNA methy-

lation and the PIWI-interacting RNA (piRNA)

silencing taking place in somatic and germ cells,

respectively, are absent at this stage [18,19]—suggest-

ing the existence of alternative regulatory pathways.

Therefore, mESCs represent a relevant model to study

TEs regulation during mouse early development as

well.

Long INterspersed Element-1 (LINE-1 or L1s), long

terminal repeat (LTR), and short interspersed nuclear

element (SINE) are the three main subgroups compos-

ing the retrotransposons family, which are the major

class of TEs represented in mammalian genomes [20–
23]. L1s are the most abundant TEs in human and

mouse genomes (21% and 17%, respectively) [21,22].

They belong to the autonomous retrotransposon cate-

gory, as they code for the machinery necessary for

the RNA intermediate production, its reverse tran-

scription, and integration into a new genomic location

[24]. Although the large majority of L1s are inactive

[25], it is estimated that around 3000 full-length L1s

have maintained their ability to retrotranspose in the

mouse genome [26–28]. Active full-length L1s, via

their retrotransposition ability, can act as mutagens

by inserting into exons, or induce aberrant splicing or

exon skipping by inserting into introns [29]. There-

fore, they can deeply influence the genome, in benefi-

cial and detrimental ways [30], and need to be tightly

controlled.

In order to investigate the roles of DICER during

mouse early development, we generated new Dicer

knockout mESCs mimicking previously described

DicerCre-loxP mutants [31,32]. Their detailed characteri-

zation highlighted their inability to differentiate and

revealed for the first time their incapacity to exit from

the pluripotent state and a factual reinforcement of

their pluripotency network. Additionally, transcrip-

tome analysis of wild-type (WT) and Dicer_KO

mESCs unveiled an up-regulation of LINE-1 tran-

scripts. This increase of L1s mRNAs was translated at

the protein level and led to an augmentation of their

retrotransposition rate. Taken together, our

experiments highlight critical roles of Dicer in the reg-

ulation of the pluripotency network and the control of

LINE-1 elements in mESCs.

Materials and methods

Culture and in vitro differentiation of mESCs

E14TG2a (ATCC CRL-1821) line has been used as WT

mESCs. Cell culture and embryoid body (EB) differentia-

tion assays were performed as described in [33]. Unless

otherwise specified, mESCs were routinely cultured in

serum + LIF condition.

Generation of Dicer_KO mESCs using CRISPR/

Cas9

Dicer_KO mESCs were generated from E14TG2a mESCs

using a paired CRISPR/Cas9 strategy as described in

[34]. Specific CRISPR/Cas9 sgRNAs have been generated

using the E-CRISPR software [35] or chosen from an estab-

lished library [36] and cloned into the plasmid pX330-

U6-Chimeric_BB-CBh-hSpCas9 [37] using the BbsI restric-

tion site. mESCs were single cell sorted 48 h after trans-

fection. All the primers used for the CRISPR/Cas9 are

described in Table S1. All newly generated plasmids are

described in Table S2. All designs are based on the latest

mouse genome assembly (GRCm38/mm10) provided by

the UCSC Genome browser http://genome.ucsc.edu/.

Genomic DNA extraction and PCR

Genomic DNA was extracted from 1.106 mESCs using

Roti� Phenol/Choloroform/Isoamyl Alcohol. Each PCR

reaction has been performed using 50 ng of genomic DNA.

Genotyping PCR primers sequences are described in

Table S1.

RT-qPCR analysis

RT-qPCR analysis was performed as described in [33]. All

the primers used for the RT-qPCR assays are described in

Table S1.

Immunoblotting analysis and antibodies

Immunoblotting analysis was performed as described in

[33]. All the antibodies used for the immunoblot assays are

described in Table S3. In the case of subsequent reprobing,

polyvinylidene difluoride membranes were reactivated into

methanol, and then stripped with successive 0.2 M NaOH

washes. Finally, membranes were blocked during 1 h at

room temperature using a 5% milk solution, before reprob-

ing with a second primary antibody.
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Low molecular weight northern analysis

Low molecular weight northern analysis were performed as

described in [38] using 10 lg of total RNA extracted from

1.106 mESCs pellets using TRizol� Reagent. Membranes

were EDC cross-linked. For subsequent reprobing, mem-

branes were stripped with boiling 0.1% SDS. All the DNA

oligonucleotides complementary to miRNAs and U6 small

RNA, used for the probes generation, are listed in

Table S1.

High molecular weight northern analysis

Total cellular RNA was extracted from 1.106 mESCs pel-

lets using TRizol� Reagent. About 30 lg of total RNA

were resolved on a denaturing 1% agarose gel with 1%

formaldehyde, and capillary transferred overnight on a

positively charged nylon membrane using 20X saline

sodium citrate solution (SSC). Membrane was cross-

linked by UV radiation. Prehybridizations and hybridiza-

tions were both performed in PerfectHybTM Plus
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Hyridization Buffer at 42°C. All washes were performed

in SSC 2X, SDS 0.1%. The radiolabeled L1_probe for

the detection of full-length L1 transcripts was produced

by random-priming of a PCR product generated from

E14TG2a mESCs genomic DNA using specific primers

[39] described in Table S1.

RNA sequencing

Total cellular RNA was extracted from 1.106 mESCs pellets

using TRizol� Reagent. The quality of isolated RNA was

determined with a Bioanalyzer 2100 (Agilent, Santa Clara,

CA, USA). Up to 2 lg of polyA purified RNA was used

for the library preparation, done with the TruSeq Paired-

end stranded RNA Preparation Kit (Illumina, San Diego,

CA, USA). The library preparation and sequencing (Illu-

mina HiSeq 2000) were performed at the Functional Geno-

mics Center Zurich (FGCZ). Paired end sequencing

generated about 2 9 60 millions of reads per library. Reads

from RNA sequencing were first preprocessed by trimmo-

matic (v0.32) [40] to remove low-quality ends and adapters

using default settings. Reads were aligned to the mouse gen-

ome mm10 by STAR (v2.4.2a) [41] allowing for two mis-

matches and up to 3000 multiple-hits. FeatureCounts

(v1.4.5-p1) [42] was used to count reads for genes (Ensembl

GRCm38.78), ignoring reads on overlapping region and the

plot was generated using GGPLOT2 (v1.0.1) [43]. TETOOLKIT

(v1.5) [44] was used to count reads for repeat elements,

accounting for multiple-hit reads and RPKM were calcu-

lated by using edgeR [45]. Complete RNA sequencing data

of WT and Dicer_KO mESCs are available on the NCBI

GEO database (GEO: GSE78971 for WT and GEO:

GSE78973 for Dicer_KO).

Proliferation assay

Cells were plated in 96-well plate at a density of

15 000 cell�cm�2 and proliferation was assessed every day

during 4 days using the CellTiter-Glo� Luminescent Cell Via-

bility Assay.

Cell cycle analysis

Cell cycle analysis was performed as described in [46].

Apoptotic cell population analysis

Apoptotic cell population analysis was performed as

described in [47] (direct DNA staining in PI hypotonic

solution and subsequent analysis by FACS).

Exit from pluripotency assay

Cells were plated in six-well plate at a density of

4500 cells�cm�2 and cultured in 2i medium (N2B27 (Cellartis)

complemented with 50 U�mL�1 of penicillin and

0.05 mg�mL�1 of streptomycin) containing or not the follow-

ing inhibitors cocktail: PD032591 at 1 lM final concentration,

CHIR99021 at 3 lM final concentration, and 1000 U�mL�1 of

leukemia inhibitory factor (LIF). The alkaline phosphatase

(AP) staining was performed using the Leukocyte Alkaline

Phosphatase kit (Sigma, St. Louis, MO, USA). For the clonal

Fig. 1. Generation of Dicer_KO mESCs using the paired CRISPR/Cas9 approach. (A) CRISPR/Cas9 design. The structure of the DICER

protein is shown at the top, with the genomic regions corresponding to area from the PAZ domain to the second RNAse III domain

below. The anti-DICER antibody recognizes the 961–975 amino acids region of the PAZ domain. Three CRISPR/Cas9 single guide

RNAs (sgRNAs), targeting the Dicer gene were designed: sgRNA 1 in the exon 16, sgRNA 2 in-between exon 22 and 23, and sgRNA

3 in-between exon 23 and 24. The combination of the sgRNAs 1 and 3 deleted the region between the PAZ domain and the second

RNAse III domain (D13), and the sgRNAs 2 and 3 erased the second catalytic RNase III domain (D23). Specific genotyping primers

have been designed around each sgRNA-binding sites allowing a PCR screening of positive candidates for the deletions, used in (B).

(B) PCR on genomic DNA of WT and Dicer_KO mESCs. Deletions D23 and D13 were confirmed by the presence of DNA amplicons

of 413 bp and 492 bp, respectively. (C) Immunoblot analysis of DICER protein levels in WT and Dicer_KO mESCs. For protein

normalization, a-Tubulin (TUB) was used as a loading control. Representative blot of three independent experiments is shown. (D)

Northern blot analysis using WT and Dicer_KO mESCs total RNA extract probed with specific miR-295 and miR-16 probes. Pre-miRNA

and mature miRNAs are indicated by arrows. Samples were probed with a U6-specific probe as loading control. Representative blot

of three independent experiments is shown. (E) Immunoblot analysis of DICER, DROSHA, DGCR8, AGO2, and AGO1 protein levels in

WT and Dicer_KO mESCs. For protein normalization, a-Tubulin (TUB) was used as a loading control. Representative blot of three

independent experiments is shown. (F) Volcano plot showing the global transcriptional changes in Dicer_KO vs WT mESCs. Each

circle represents one gene. The x-axis shows the log fold change and the y-axis shows the log10 of the P-value. Differentially

expressed genes are represented by colored circles and are defined by a fold change superior to 2 and a false discovery rate inferior

to 0.01. (G) Graphical demonstration of associated biological processes of differentially expressed genes in Dicer_KO relative to WT

mESC samples. The y-axis displays the biological process categories that are identified in the analysis. The x-axis shows the

enrichment score, which is the value of �log10(P-value). Functions are listed from the most enriched to least. The top 20 biological

process categories are displayed. Pathways analysis has been performed using the Consensus PathDB-mouse database (CPDB)

[93,94].
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AP quantification, entire six-well plates used for AP staining

assays were first scanned to capture the total plate area in a

single image. Images were then processed using the ImageJ

software [48]. The number of AP-positive colonies was calcu-

lated on threshold intensity (default parameters) of inverted

regions that were user-selected (full well – identical areas
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between conditions) using the Analyze Particles tools (default

parameters).

Immunostaining

Cells were washed once with PBS1X, incubated 10 min

at 37°C with 4% paraformaldehyde solution for fixation

and then incubated 15 min on ice in a 90% methanol

solution for permeabilization. Next, cells were incubated

1 h at room temperature with the primary and sec-

ondary antibody, successively. Between incubation steps,

cells were washed once with PBS1X. Antibodies used for

the immunostaining assays are described in Table S3.

Cells were analyzed by flow cytometry using selective

gating to exclude the doublets of cells.

Retrotransposition assay

Cells were plated at a density of 20 000 cells�cm�2 per well

24 h before transfection with 0.5 lg of plasmid DNA using

Lipofectamine� 2000 reagent according to the manufac-

turer’s instructions. Antibiotic selection started 24 h after

transfection using puromycin-containing medium

(1 lg�lL�1) and maintained during the entire assay. Every

week, cells were trypsinized and replated at a density of

5500 cells�cm�2 into a new gelatin-coated six-well tissue cul-

ture plate and the remaining cells were used for subsequent

FACS analysis. In total, WT cells have been passaged six

times and Dicer_KO mESCs four times (due to their prolif-

eration defects). Cells were analyzed by FACS using selective

gating excluding doublets of cells (Fig. 5E). The gating for

EGFP-positive and EGFP-negative cells was determined by

analyzing cells transfected with: a plasmid coding EGFP

(positive control) and a puromycin-resistance gene and a

plasmid coding only a puromycin-resistance gene (negative

control), respectively (Fig. 5B). A final gate of 3.104 events

per sample was acquired.

Results

Generation and validation of Dicer_KO mESCs

We first generated two independent Dicer1 knockout

(Dicer_KO) mESC lines using the CRISPR/Cas9 tech-

nology [37,49,50]. We opted for the paired CRISPR/

Cas9 approach [34,51] and generated two independent

genomic deletion events D23 and D13 (Fig. 1A). Inde-

pendent mESC clones were isolated and genomic dele-

tions were confirmed by PCR (Fig. 1B) [34].

Immunobloting analysis validated the absence of

DICER protein in both mutant mESC lines (Fig. 1C).

The nonfunctionality of the Dicer knockouts was con-

firmed with the absence of two endogenous mature miR-

NAs: miR-16 and miR-295 (Fig. 1D) [38,52,53]. The

accumulation of miR-16 precursors (pre-miRNA) in

both Dicer_KO mESCs proved the functionality of the

microprocessor complex (DROSHA and DGCR8;

Fig. 1D). Furthermore, immunoblotting revealed no dif-

ferences in the expression of the other RNAi pathway

proteins: DROSHA, DGCR8, and AGO1, between

Dicer_KO mutants and WT mESCs (Fig. 1E) [2]. How-

ever, we observed dramatically reduced AGO2 levels in

both Dicer_KO mutants, consistent with the lack of

mature miRNAs leading to the destabilization of the

AGO2 protein [54]. Finally, the analysis of the RNA

sequencing data confirmed the loss of Dicer mRNA in

both Dicer_KO mutants and profound changes in the

transcriptome with 879 genes differentially expressed

(Fig. 1F and Table S4), involved in many biological

pathways (Fig. 1G). Most of the genes differentially

expressed were as expected up-regulated (80%), due to

the essential role of DICER in post-transcriptional gene

silencing mechanisms mediated by miRNAs (Fig. 1F

and Table S4). Taken together, these experiments

Fig. 2. Characterization of newly generated Dicer_KO mESCs. (A) Proliferation assay of WT and Dicer_KO mESCs. For each cell line, data

are shown as the fold change in the number of metabolically active cells compared to the first measurement done 24 h after the plating.

Data are represented as mean � SD (n = 3). (B) Cell cycle analysis of WT and Dicer_KO mESCs. Data are represented as mean � SD

(n = 3). (C) Apoptotic cell population analysis of WT and Dicer_KO mESCs. Data are represented as mean � SD (n = 3). (D) Visualization

of WT and Dicer_KO mESCs at Day 0 (upper panel) and at Day 10 (lower panel) of embryoid body (EB) differentiation. Scale

bar = 50 lm. (E) RT-qPCR analysis of three ectoderm markers: Pax6, Nestin, and Fgf5 mRNAs in WT and Dicer_KO mESCs. The data are

shown as the fold change compared to WT cells after normalization to the Gapdh housekeeping gene at Day 0. Data are represented as

mean � SD (n = 3). (F) RT-qPCR analysis of three endoderm markers: Dab2, Gata6 and Gata4 mRNAs in WT and Dicer_KO mESCs. The

data are shown as the fold change compared to WT cells after normalization to the Gapdh housekeeping gene at Day 0. Data are

represented as mean � SD (n = 3). (G) RT-qPCR analysis of three ectoderm markers: Fgf8, Brachyury, and Actc1 mRNAs in WT and

Dicer_KO mESCs. The data are shown as the fold change compared to WT cells after normalization to the Gapdh housekeeping gene at

Day 0. Data are represented as mean � SD (n = 3). (H) RT-qPCR analysis of pluripotency markers: Oct4 (Pou5f1), Nanog, and Sox2

mRNAs in WT and Dicer_KO mESCs before and after 10 days of EB differentiation. The data are shown as the fold change compared to

WT cells after normalization to the Gapdh housekeeping gene at Day 0. Data are represented as mean � SD (n = 3). (I) Immunoblot

analysis of OCT4, NANOG, and SOX2 protein levels in WT and Dicer_KO mESCs at Day 0 and Day 10 of EB differentiation. For protein

normalization, a-Tubulin (TUB) was used as a loading control. L = Protein Ladder. Representative blot of three independent experiments is

shown.
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validate the successful generation of two new indepen-

dentDicer knockout lines.

Next, we characterized our Dicer_KO mESCs and

evaluated their proliferation rate. After 3 days, both

Dicer mutants showed a strongly impaired prolifera-

tion (twofold) compared to WT mESCs. The prolifer-

ation defect was exacerbated after 4 days (threefold),

confirming the delay (Fig. 2A). The cell cycle distribu-

tion analysis revealed an accumulation in G1-phase in

both Dicer mutants, suggesting an impaired G1/S

transition as the direct cause of the proliferation

defect (Fig. 2B). Indeed, many miRNAs regulate the

entry and G1–S-phase transition [55], making this

observation consistent with the lack of miRNAs of

Dicer_KO mESCs. Interestingly, Dicer_KO mESCs

also showed a twofold increase of the apoptotic cells

population compared to WT (Fig. 2C). Importantly,

it has been also documented that numerous miRNAs

are involved in apoptosis regulation [56]. In conclu-

sion, newly generated Dicer_KO mESCs proliferate

much slower due to a G1-phase arrest and an

increased apoptosis rate.

Previously characterized DicerCre-loxP mutant mESCs

failed to contribute to the embryo development when

injected into WT blastocyst and could not differentiate

in vitro [31]. To understand the molecular mechanisms

leading to this differentiation defect, we first tested the

ability of our mutants to form EBs in vitro. When cul-

tured in suspension in the absence of cytokine LIF,

mESCs form cell aggregates known as EBs, differenti-

ating toward the three germ layers [17]. After 10 days

of EBs differentiation (Day 10), WT mESCs produced

fully developed EBs, while Dicer_KO mutants formed

cells aggregates without morphological evidence of dif-

ferentiation (Fig. 2D). RT-qPCR analysis performed

at Day 0 and Day 10 with specific primers for the

differentiation markers, Pax6, Nestin, Fgf5 (ectoderm;

Fig. 2E); Dab2, Gata6, Gata4 (endoderm; Fig. 2F);

and Fgf8, Brachyury, Actc1 (mesoderm; Fig. 2G),

revealed that Dicer_KO mutants failed to differentiate

to any of the three germ layers (Fig. 2E–G). Addi-

tionally, we assessed the expression of the

pluripotency markers, Oct4 (Pou5f1), Sox2, and

Nanog (OSN), at the mRNA and protein levels.

These transcription factors constitute the core of the

stem cell pluripotency network and are strongly

expressed in undifferentiated mESCs and silenced dur-

ing the differentiation process [57,58]. RT-qPCR anal-

ysis revealed a strong decrease of OSN mRNAs in

WT mESCs after 10 days of differentiation (Fig. 2H).

However, Dicer_KO mESCs presented an abundant

accumulation of those mRNAs even after 10 days of

differentiation (Fig. 2H). Immunoblotting analysis

showed similar protein levels of these transcription

factors in Dicer mutants and WT mESCs at Day 0

(Fig. 2I). More importantly, OCT4, NANOG, and

SOX2 proteins were still expressed at Day 10 in both

Dicer mutants, whereas no or very weak signals were

observed in WT mESCs (Fig. 2I). These results con-

firm that Dicer is indeed necessary for the differentia-

tion of mESCs.

Dicer is essential to exit the pluripotent state of

mESCs

For their commitment to differentiation, mESCs have

to exit self-renewal state, repress the pluripotency net-

work and initiate specific cellular lineage programs

[59]. The high expression of the pluripotency core pro-

teins observed at Day10 of EB differentiation

(Fig. 2H) pointed toward a failure of our mutants to

suppress the pluripotency network and to exit the

pluripotent state. To test this hypothesis, we per-

formed an exit from pluripotency assay [60–62]. Both
Dicer_KO and WT mESCs were cultured during

3 days in a chemically defined medium (2i medium),

containing selective GSK3b and MEK 1/2 inhibitors

and LIF, to enhance viability of mESCs and to

increase maintenance of pluripotency [63]. Subse-

quently, the cells were cultured for 4 days in a differ-

entiation-permissive medium (2i medium without

inhibitors and LIF) and afterwards, the 2i medium

was restored for three more days before AP staining

was performed (Fig. 3A). Only pluripotent stem cells

Fig. 3. Dicer is essential for mESCs to exit from the pluripotent state. (A) Schematic design of the exit from pluripotency experiment.

(B) Left panel corresponds to the visualization of WT and Dicer_KO mESCs after the alkaline phosphatase (AP) staining: full six-well

plate (scale bar = 1 cm) and magnified (scale bar = 50 lm). Representative pictures of three independent experiments are shown. Right

panel displays the clonal AP quantification from whole well pictures from three independent exit from pluripotency assays. The data

are shown as the number of AP positives colonies counted. Data are represented as mean � SD (n = 3). (C) Flow cytometry analysis

of pluripotent factors OCT4 and NANOG coexpression in WT and Dicer_KO mESCs in serum + LIF condition. Representative analysis of

three independent experiments. (D) Flow cytometry analysis of transcription factors OCT4 and NANOG in WT and Dicer_KO mESCs

in 2i condition. Representative analysis of three independent experiments. (E) Flow cytometry analysis of pluripotent factors STELLA

and SSEA-1 coexpression in WT and Dicer_KO mESCs in serum + LIF condition. Representative analysis of three independent

experiments.
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can survive and express AP in 2i medium. To account

for the strong proliferation defect of the Dicer_KO

lines, we extended the permissive culture of the origi-

nal protocol [62] from 3 to 4 days. After the exit from

pluripotency assay, WT mESCs did not form colonies

resembling embryonic stem cells and were AP negative,

indicating that these cells committed to differentiation

properly (Fig. 3B). In contrast, both Dicer mutants

formed distinct AP-positive colonies (Fig. 3B), demon-

strating for the first time that Dicer_KO mESCs were still

able to proliferate in 2i medium after 4 days in permissive

medium. The quantification of the total cell population
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Fig. 4. LINE-1 elements are strongly up-regulated in Dicer_KO mESCs. (A) Boxplot representing the log2 of Reads Per Kilobase per Million
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The data are shown as the fold change compared to WT cells after normalization to the Gapdh housekeeping gene. Data are represented as
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revealed a strong increase (20-fold) of AP-positive colo-

nies for both Dicer mutants compared to WT mESCs

(Fig. 3B). This result indicates that Dicer_KO mESCs

retained their self-renewal potential and remained undif-

ferentiated in permissive conditions. Therefore,Dicer_KO

mESCs failed to exit from the pluripotent state or pre-

sented a strong delay for their commitment.

In order to investigate the stemness status of our

mutants, we assessed the expression of pluripotency

and stem cell factors in different culture conditions

[64,65]. OCT4/NANOG coimmunostaining flow

cytometry analysis revealed that Dicer_KO mESCs

cultured in serum + LIF condition presented a signifi-

cant enrichment of cells coexpressing the pluripotent

factors compared to WT mESCs (Fig. 3C). Further-

more, Dicer_KO mESCs presented similar coexpres-

sion levels when cultured in serum + LIF or 2i

condition (Fig. 3D), thus indicating a reinforced

pluripotency network compared to WT mESCs [65,66].

Additionally, similar enrichments were observed for

the coexpression of two other pluripotent markers

STELLA and SSEA-1 (Fig. 3E) [67,68]. Altogether,

these observations reveal that Dicer depletion leads to

a strengthening of the pluripotency network.

LINE-1 elements are strongly up-regulated in

Dicer_KO mESCs

Interestingly, the analysis of the Dicer mutant tran-

scriptomes revealed a significant accumulation of two

particular TEs subclasses transcripts: L1s and LTR,

compared to their WT counterparts (Fig. 4A). These

observations are consistent with earlier reports show-

ing the accumulation of transcripts from these two

specific retrotransposon subgroups after Dicer knock-

out or knockdown during mouse early development

[14,31]. However, we observed no difference in the

expression of the SINE subclass (Fig. 4A). These

observations were confirmed in our Dicer mutants by

RT-qPCR (Fig. 4B). We focused our interest on the

L1s subclass because they are the most abundant TEs

in the mouse genome, and decided to monitor L1s in

our system at mRNA and protein levels (Fig. 4C–E)
[33]. RT-qPCR performed with primers designed in

the ORF2 (L1_ORF2; Fig. 4C and Table S1) showed

an eightfold increase of L1s mRNA accumulation in

both Dicer mutant compared to WT mESCs (Fig. 4D).

Using qPCR primers specific for each L1s subfamily

(L1_Tf, L1_Gf and L1_A; Fig. 4C and Table S1), we

were able to observe an accumulation of all L1s sub-

types in Dicer mutant mESCs compare to WT cells

(sixfold for the L1_Tf subfamily, fourfold for both,

L1_Gf and L1_A subfamilies; Fig. 4D). Additionally,

L1_ORF1 protein (derived from active murine L1s)

was also strongly up-regulated in Dicer mutant mESCs

(Fig. 4E). We concluded that in the absence of

DICER, all L1s subclasses are up-regulated at mRNA

and protein levels.

DICER restricts LINE-1 retrotransposition in

mESCs

To investigate if the increased expression of L1s could

result in an augmentation of their retrotransposition

rate, we first performed high molecular weight north-

ern blotting to monitor full-length L1s transcripts,

which constitute retrotransposition-competent interme-

diates. We observed a strong accumulation of L1s full-

length transcripts in Dicer_KO mESCs (Fig. 5A).

Next, we performed an EGFP-based retrotransposition

assay in mESCs using the L1RP-EGFP transgene [69–
72]. This construct has been previously used to track

embryonic L1s retrotransposition events in mice

in vivo [73]. The transgene is composed of a L1RP

element fused to an EGFP gene (Fig. 5B–C). The

EGFP reporter gene is expressed only if the L1RP

element completes a full retrotransposition cycle and

therefore, assessment of EGFP expression allows the

evaluation of the L1 transgene retrotranposition rate

(Fig. 5C). The proportion of GFP-positive cells

observed after the L1RP-EGFP transgene transfection

is expected to be representative of the number of

L1s retrotransposition events, and can be used to

compare L1s retrotransposition capacity between

mESC lines. As a negative control, we used the

L1JM111-EGFP transgene, a mutated version of the

L1RP-EGFP transgene, that is unable to retrotranspose

(Fig. 5B–C) [73]. We transfected both Dicer mutants and

WT mESCs with the L1RP-EGFP and the L1JM111-EGFP

constructs and measured EGFP expression after 3 and

6 weeks by FACS analysis (Fig. 5D–E). No differences

between the mESC lines were detected after 3 weeks

(Figs 5F and 6). Importantly, after 6 weeks, WT mESCs

transfected with the intact construction (pL1RP) or with

the mutated one (pL1JM111) presented similar low levels

of GFP-positive cells, indicating very low retrotransposi-

tion activity. However, both Dicer mutants transfected

with the L1RP vector showed a significant increase (two-

fold) of GFP-positive cells compared to their correspond-

ing negative control and to WT mESCs (Figs 5F and 6).

We hypothesize that the long period needed is probably

due to the high cell mortality observed after transfection

and during selection of the Dicer mutants. Moreover, the

proliferation defect limited the number of cells available

for the FACS analysis, thus leading to a possible under-

estimation of the retrotransposition events in our Dicer
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mutant cells [74,75]. Therefore, we concluded that in the

absence of Dicer, mESCs accumulate full-length L1s

transcripts and are more permissive to the L1s

retrotransposition, demonstrating that Dicer is indeed

involved in the regulation of L1s retrotransposition in

mESCs.
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Conclusion

In this study, we successfully generated and character-

ized two new independent Dicer1 knockout (Dicer_KO)

mESC lines using the CRISPR/Cas9 technology,

demonstrating the effectiveness of the paired strategy.

This approach allowed us to produce deletions resulting

in a complete ablation of the DICER protein function,

mimicking the previously generated DicerCre-loxP

mutants [31,32,76]. We further demonstrated that

Dicer_KO mESCs are unable to exit from the pluripo-

tency state and presented a factual reinforcement of the

pluripotency network. Therefore, future studies involv-

ing the role of Dicer in stem cell biology should focus on

cellular networks involved in pluripotency exit, an early

step of mESCs commitment, rather than in the later

stages of the differentiation process [62].

Interestingly, the transcriptome analysis of these

mutants revealed a strong accumulation of transcripts

from the L1 TE subclasses. We experimentally validated

their up-regulation at mRNA as well as at protein

levels. Moreover, we assessed the L1 retrotransposition

activity in our Dicer_KO and WT mESCs and observed

increased retrotransposition events in our mutant cells.

However, we did not observe a direct correlation

between L1s transcripts abundance and retrotransposi-

tion activity in our Dicer mutants, as it has been previ-

ously reported in human cell lines [77,78]. As

retrotransposition events affect only 1% of our mutant

cells population (Fig. 5F), it is unlikely that the

increased retrotransposition rate is the cause of the exit

from pluripotency failure. Nevertheless, the consequen-

tial accumulations of L1s transcripts and proteins

observed might participate in this inability. For exam-

ple, the activation of surveillance pathways or quality

control mechanisms might prevent cellular differentia-

tion in the presence of increased L1s activity, in order to

avert genome instability [79,80]. Importantly, cell sur-

vival is intrinsically linked to genome instability [81].

Therefore, the increased apoptosis rate observed in our

mutants might grant to Dicer a potential role in genome

integrity maintenance and further support this hypothe-

sis. Interestingly, possible effects of TEs overexpression

in mESCs deserve further investigations, as they would

imply that a tight monitoring of L1s (and LTR) is essen-

tial for normal mammalian development process, due to

their essential role in genome integrity. Finally, as miR-

NAs play a role in the regulation of the transcriptional

network controlling pluripotency in mESCs [7,11], it is

therefore possible that DICER is required in the exit

from pluripotency process through its role in the bio-

genesis of miRNAs.

Nevertheless, our work, together with other studies

performed in human cultured cells, indicates a role of

DICER as a player in L1s regulation [77,82,83]. How

DICER controls L1s still remains unclear and further

investigations are needed. Recently, a study performed

in human cells indicated that a particular microRNA,

miR-128, was involved in the direct regulation of L1s

transcripts [83]. Nevertheless, miR-128 is not expressed

in mESCs (data not shown) and therefore cannot

explain the regulation of L1s by DICER.

Among the other models proposed, one involves

bidirectional transcription of L1 promoters and the

potential to generate double-stranded RNA precursors.

These are suitable substrates for DICER resulting in

the production of endogenous siRNA, which can trig-

ger repression of the corresponding homologous L1s

sequences [1,84–86]. Indeed, several studies reported

the presence of active sense and antisense transcription

Fig. 5. DICER restricts LINE-1 retrotransposition in mESCs. (A) Northern blot analysis using WT and Dicer_KO mESCs total RNA extract

probed with a specific L1_probe. Full-length L1s transcripts are indicated with an arrow. Ethidium bromide staining before transfer was used

to confirm equal loading. 28S RNA is shown as a loading control. (B) Description of the different plasmids used for the L1 EGFP-based

retrotransposition assay. (C) Schematic representation of the L1 EGFP-transgene and its retrotransposition (adapted from [73]). The L1-EGFP

transgene (pL1RP) consists of a human L1RP element driven by the mouse RNA pol II promoter in addition to its endogenous 50UTR. This
element is coupled to an EGFP gene directed in the antisense orientation and interrupted by the mouse c-globin intron in the same

transcriptional orientation as the L1. Therefore, when the L1-EGFP transgene transcript is processed, the mouse c-globin intron is spliced

out and the EGFP gene can be expressed after reverse transcription and integration into the genomic DNA. In the case of retrotransposition

events, mESCs will express EGFP. In the negative control (pL1JM111), the L1RP element has been replaced by the L1JM111 element. The

L1JM111 element is a nonfunctional L1 transgene consisting in a human L1 mutated in ORF1 (*) [70], abrogating its retrotransposition

activity. (D) Retrotransposition assay experiment design and time line in mESCs. (E) Flow cytometry gating strategy for the analysis of GFP-

positive cells in (F). We first selected the mESC population and subsequently excluded the doublets in both dimensions. The data from the

first triplicate of D13 mESCs transfected with the pL1RP (week 6) plasmid were used to represent the gating strategy. The gating for EGFP-

positive and EGFP-negative cells was determined by analyzing cells transfected with: a plasmid coding EGFP and a puromycin-resistance

gene and a plasmid coding only a puromycin-resistance gene respectively described in (B). 3.104 events per samples were set as a final

gate. (F) Histograms summarizing the FACS analysis of the retrotransposition of pL1RP and the pL1JM111 transgenes in WT and Dicer_KO

mESCs at week 3 and week 6 after transfection. The data are shown as percentage of GFP-positive cells. Data are represented as

mean � SD (n = 3).
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from human and murine active L1s [77,87,88]. This

model is also supported by the ability of mESCs to

produce Dicer-dependent siRNAs [89], and the identifi-

cation of a population in mESCs of sense and anti-

sense small RNAs mapping to the 50UTR of active

L1_Tf elements [90,91]. To further explore the implica-

tion of Dicer is this regulation, it would be interesting

to monitor L1s expression between the different

mutants of the RNAi pathways. These mutants must

be generated in the same genetic background to allow

their comparison as the TEs composition differs

depending on the mouse strains [92].

In conclusion, our results explain the previously

observed impaired differentiation process of Dicer_KO

mESCs and reveal that DICER is essential for the exit

from pluripotency of mESCs and the regulation of L1

elements.
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