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Abstract
Survival and quality of life of dialysis patients are strictly dependent on the quality of the haemodialysis (HD) treatment. In this
respect, dialysate composition, includingwater purity, plays a crucial role. Amajor aim of HD is to normalize predialysis plasma
electrolyte and mineral concentrations, while minimizing wide swings in the patient’s intradialytic plasma concentrations.
Adequate sodium (Na) and water removal is critical for preventing intra- and interdialytic hypotension and pulmonary edema.
Avoiding both hyper- and hypokalaemia prevents life-threatening cardiac arrhythmias. Optimal calcium (Ca) and magnesium
(Mg) dialysate concentrations may protect the cardiovascular system and the bones, preventing extraskeletal calcifications,
severe secondary hyperparathyroidism and adynamic bone disease. Adequate bicarbonate concentration [HCO3

−] maintains a
stable pH in the body fluids for appropriate protein and membrane functioning and also protects the bones. An adequate
dialysate glucose concentration prevents severe hyperglycaemia and life-threating hypoglycaemia, which can lead to severe
cardiovascular complications and a worsening of diabetic comorbidities.
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Introduction
The dialysate composition is a key element for an effective and
safe haemodialysis (HD) since it influences the exchanges of elec-
trolytes between blood and dialysate, restores body electrolyte
concentrations and acid–base equilibrium and strongly affects
intradialytic cardiovascular stability.

The optimal dialysate should normalize predialysis plasma
electrolyte and mineral concentrations, minimize wide swings
in plasma concentrations of several substances and guarantee
adequate toxin and phosphate removal. This aim is facilitated
by longer or more frequent HD, which reduces the electrolyte
and chemical gradients between blood and dialysate. Unfortu-
nately, this approach cannot be implemented easily because of
organizational and economic problems and its impact on patient
quality of life.

Sodium
Sodium balance

Sodium (Na) crosses the dialysis membrane by diffusion and
convection. The fraction of Na transported by these twomechan-
isms is not the same, and this is a key aspect in defining intra-
dialytic Na kinetics and selecting the proper dialysate sodium
concentration [Na].

A major aim of intermittent HD is to normalize total body
water by means of ultrafiltration. In clinically stable patients,

the amount of water and Na that accumulates during the inter-

dialytic period must be removed at each HD session to obtain

zero balance. Although reaching the normal clinical dry body

weight of the patient may normalize the extracellular volume,

the amount of water and salt introduced in each individual
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patient is not uniform, leading to a variety of increases in
extracellular volume and sodium concentrations. Therefore,
considering that the interdialytic Na load and the Na/water
ratio vary from one patient to another, and even in the same
patient, the amount of Na removal should be individualized
by adjusting the dialysate [Na] during each dialysis [1]. There-
fore, this approach is unsuitable for routine clinical applica-
tion, and several attempts have been made to sort out these
difficulties.

High dialysate [Na] has been suggested to compensate for ex-
cessiveNa losses due to ultrafiltration and can prevent cardiovas-
cular instability, as a result of increased osmotic refilling of water
from the cells to the intravascular compartment, which counter-
acts the effects of intravascular emptying secondary to ultrafil-
tration. However, this may cause insufficient net Na removal,
favouring the development of refractory hypertension, intradia-
lytic hypertension, increased thirst, overhydration and risk of
pulmonary edema [2].

Conversely, a low dialysate [Na] causes a loss of Na by diffu-
sion and a decrease in plasma osmolarity that may lead to
cellular overhydration due to an osmotic fluid shift from the
extracellular to the intracellular compartment, which contri-
butes significantly to the so-called ‘disequilibrium syndrome’.
Moreover, a negative Na balance causes intradialytic cardiovas-
cular instability with hypotension due to insufficient refilling of
the intravascular compartment from the intracellular space
and ‘disequilibrium’ symptoms such as fatigue, muscle cramps,
headache and orthostatic hypotension. Paradoxically, it can
cause hypertensive crises, driven by the activation of the renin–
angiotensin system [1].

It is important to know that when there is no ultrafiltration
and the dialysate Na activity corresponds to plasma Na activity
multiplied by a Donnan factor of 0.967, the net intradialytic Na
removal is zero (‘isonatric dialysate’).

Sodium and conductivity kinetic models

The best approach to select the appropriate dialysate [Na] has
been the development of the Na kinetic model. The attainment
of a neutral Na balance during HD requires constant values of
the product of total bodywater per plasmawater [Na] to bemain-
tained at the end of HD. However, it is preferable tomaintain con-
stant values of both total body water and plasma [Na] to avoid
fluctuations of plasma water [Na]. While achieving the removal
of total body water, as reported above, is simply reaching the pre-
vious dry body weight, the achievement of the same value of
plasma [Na] at the end of each HD session is affected by several
variables, such as convective and diffusive Na flux, length of
the HD session and Na dialysance. Kinetic mathematical models
consider all these factors in determining the net Na flux and pre-
dicting plasma water [Na] at the end of HD. The variable volume
single-pool Na kinetic model allows the targeted end-dialysis
plasma water [Na] to be obtained [3]. Nevertheless, this is also
not suitable for routine clinical application, because the real-
time determination of initial plasma water [Na] and ‘effective’
Na dialysance is difficult.

Considering the linear correlation between [Na] and conduct-
ivity of saline solutions and the basic theory [4, 5] for ionic dialy-
sance determination, conductivity values can be used instead of
[Na] values. The conductivity kinetic model ismore easily applic-
able in everyday clinical practice, because no blood samples or la-
boratory test is needed to determine plasma water conductivity
and ionic dialysance used, instead of plasma water [Na] and Na
dialysance, respectively.

Sodium profiling

An Na profiling programme simplifies the Na kinetic model ap-
proach. The session starts with a higher dialysate [Na] to reduce
the decline in blood volume during ultrafiltration, followed by a
lower dialysate [Na] in the final part of the session. This restores
the patient’s normal plasma [Na] at the end of HD [6]. Unfortu-
nately, the Na balance is not usually calculated, leading to a fre-
quent positive Na balance [7].

Observational data

Interestingly, dialysate [Na] varies widely across the countries of
the Dialysis Outcomes and Practice Patterns Study (DOPPS);
moreover, no survival benefits were foundwhen using a lower di-
alysate [Na]. Similarly, matching low plasma [Na] with low di-
alysate [Na] was not related to any survival benefit. Conversely,
every 2 mEq higher dialysate [Na] coincided with an increase in
interdialytic weight gain of 0.12 kg. However, this was not asso-
ciated with a higher risk of mortality or hospitalizations [8].

Recently, Dahlmann et al. [9] showed that Namagnetic reson-
ance imaging (sodium-MRI) can detect the amount of Na stored
in the skin and the muscle and its removal during HD. Interest-
ingly, older HD patients showed increased Na and water in the
skin and the muscle compared with age-matched controls. This
coincided with low levels of vascular endothelial growth factor-C
(VEGF-C). The lower the VEGF-C levels, the higher the skin Na
content after HD. The new concept of skin andmuscle Na storage
is interesting and could have relevant clinical implications in the
near future, although these stores are separate from the osmotic
relationships of Na.

In conclusion, in order to obtain an Na zero balance in rela-
tion to the amount of water and Na accumulated during the
interdialytic period, a rate of ultrafiltration equal to the inter-
dialytic increase in body weight should be applied and the
dialysate [Na] individualized. This can best be performed only
using a conductivity kineticmodel. In any case, the Donnan fac-
tor and the gradient between patient plasma water and dialys-
ate [Na] must be considered in selecting the appropriate
dialysate [Na].

Potassium
Kinetics of potassium in haemodialysis

In patients on HD, dietary potassium (K) intake and metabolic
acidosis are the main contributors of life-threating K overload
and high plasma K concentration [K].

As for all the electrolytes, the intermittent nature of HD leads
to fluctuations in plasma [K], with frequent high predialysis plas-
ma [K] and low intra- and/or postdialysis plasma [K] values. HD
removes K from the intracellular, but even more from the extra-
cellular compartment [10]. Indeed, the major part of the K pool
(98%) is in the intracellular compartment, and only 2% of total
K is found in the extracellular fluids. The difference in K content
ismainly determined by the Na-K ATPase pump activity, but sev-
eral factors contribute to K flux between the two compartments
(acid–base balance, hormonal factors, plasma osmolality, drugs,
etc.), some of which are influenced by HD treatment.

After HD, plasma K concentration rebounds to restore the
balance between the two compartments. This shift may increase
the intradialytic cellular membrane polarization and trigger
arrhythmias [11].

Standard HD removes K mainly by diffusion (85%) and
marginally by convection (15%) [12]. Thus, the choice of
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dialysate [K] is critical for maintaining K homeostasis, since K
removal is strictly dependent on the gradient between predialy-
sis plasma and dialysate [K] (together with K dialysance and
HD time).

Observational data

Several studies have shown that both hypo- and hyperkalaemia
significantly increase the intradialytic risk for cardiac arrhyth-
mias [13–17].

The arrhythmogenic effect of low plasma [K] is amplified by a
rapid correction of metabolic acidosis, the use of a low dialysate
[Ca] and a high ultrafiltration rate [18, 19].

The importance of recognizing the high risk for life-threating
outcomes due to high predialysis plasma [K] is also supported
by an increased incidence of sudden death on the first days of
the week (at the end of the long interdialytic interval) [20, 21]
when plasma [K] is usually higher. Kovesdy et al. showed that,
in patients with high predialysis plasma [K], the use of a higher
dialysate [K] was significantly associated with increased mortal-
ity [13]. Moreover, the use of a higher dialysate [K] in patientswith
predialysis plasma [K] >5 mEq/Lwasnot associatedwith a signifi-
cant trend towards a reduction in sudden death and all-cause
mortality. In addition, there was no clear relationship between
sudden death (and all-cause mortality) and low dialysate [K] in
patients with predialysis plasma [K] <5 mEq/L.

Fixed versus variable K dialysate

When using a fixed dialysate [K], standard HD causes a rapid fall
in plasma [K] during the first hour, followed by a slower [K] de-
crease. Redaelli et al. [22] hypothesized that, during the first
hour of HD, there is an increased passive diffusion of K through
the cellmembranes, due to a chemical gradient leading to a nega-
tive polarization of the cell membranes.

A dialysate [K] profiling, with a graded decrease in the dialys-
ate [K] during the course of the HD session, was proposed to ob-
tain a smooth K removal [23]. Ideally, the plasma-to-dialysate [K]
gradient should be kept constant at around 1.5 mEq/L to achieve a
good correction of high plasma [K] while avoiding K depletion.
Importantly, the dialysate [K] modelling was found effective in
reducing the frequency of intradialytic premature ventricular
beats [23–25]. According to a secondary analysis of the Hemodi-
alysis Study (HEMO), potassium kinetics during HD can be de-
scribed using a pseudo-one-compartment model [26].

Optimal potassium dialysate prescription

Ideally, dialysate [K] should remove the interdialytic K load with-
out causing K depletion and to avoid rapid plasma [K] changes.
However, the interdialytic K load cannot be easily quantified,
also considering the confounding effects of metabolic acidosis,
oral bicarbonate supplements and K binders. These binders are
very helpful in controlling plasma [K] in the interdialytic period,
since HD patients have a gastrointestinal K excretion that is al-
most the double that of healthy subjects [27, 28] and accounts
for nearly 35% of total K excretion [29]. Very recently, two new
K binders have been proposed to facilitate this approach [30, 31].

Considering that, in HD patients, the lowest overall mortality
is observed at a predialysis plasma [K] between 4.6 and 5.3 mEq/L
[14], the ideal predialysis plasma [K] should be ∼5 mEq/L. The
total amount of K that should be removed by HD to maintain a
normal K body pool is still unknown.

The mean age of HD patients is progressively increasing. One
of the main problems of this patient population is malnutrition,
due to inadequate caloric and protein intake. We can thus as-
sume that, in the elderly, K dietary intake is also relatively low.
In these subjects, standard HDmay then cause an excessive K re-
moval, with consequent muscle mass impairment. Thanks to a
profiled dialysate [K], the HD should instead redistribute K be-
tween the intra- and extracellular compartments. In this respect,
moderate and incremental muscle exercises have been recom-
mended to avoid the risk of high plasma [K] due tomuscle cell cy-
tolysis. Physical exercise, even during HD, should be associated
with a comprehensive clinical management, enhancing the nu-
tritional status but without requiring a too restrictive diet.

Due to the progressive ageing of HD patients, dialysate [K]
modulation has become an issue of extreme clinical relevance.
In general, a dialysate [K] of <2 mEq/L should be avoided.

Calcium
Overall, Ca balance in HD patients is the result of Ca absorption
from the gut, Ca excretion by residual renal function and Ca bal-
ance during HD.

The optimal dialysate [Ca] should take into consideration
contrasting needs: favour the cardiovascular stability during
HD; avoid cardiac arrhythmias; maintain normal bone turnover
and mineralization, in order to avoid severe secondary hyper-
parathyroidism (SHPT), bone pain and fractures; and prevent car-
diovascular and soft tissue calcifications.

Before the availability of active vitamin D therapy, HD pa-
tients were often in a negative Ca balance due to an impaired in-
testinal Ca absorption [32]. A dialysate [Ca] of 1.5–1.75 mmol/L
was selected, which was higher than plasma [Ca] [33]. However,
the ingestion of large amounts of Ca can lead to Ca overload, be-
cause its passive transintestinal transfer is normal [34]. With the
use of calcitriol in a large proportion of patients, HD patients ab-
sorb a significant proportion of the Ca ingested from the diet and
also from Ca-based phosphate binders.

Today, chronic Ca overload is considered one of the main fac-
tors contributing to the high rate of vascular and valvular calcifi-
cations in HD patients. The achievement of a net zero Ca mass
balance over the HD cycle is thus required to remove the total
Ca absorbed between HD, but this is very difficult to be evaluated
clinically. During HD, Ca shifts from the plasma to the bones, and
vice versa, can take place, as well as possible deposition of Ca
(and phosphate) in the soft tissues, including vessels and cardiac
valves, making the evaluation of the Ca mass balance very
complex.

A debate is going on about the optimal dialysate [Ca] [35, 36],
either favouring the use of a low dialysate [Ca], mainly to avoid
the long-term risk of vascular and valvular calcifications, or
against low dialysate [Ca], being associated with hypotension
and cardiac arrhythmias during HD and long-term risk of SHPT.

Even a neutral Ca balance may be harmful in patients with
high-turnover bone disease, in whom bone reabsorption could
prevail over bone formation, leading to Ca deposition in soft tis-
sues. Obviously, before reducing the dialysate [Ca], reasons for a
positive Ca balance, including excessive Ca intake or high doses
of vitamin D, should be corrected [35]. The control of SHPT in pa-
tients treated with low dialysate [Ca] (1.25 mmol/L) may require
higher doses of calcitriol or paricalcitol than when treated with
higher dialysate [Ca]. In the presence of adynamic bone disease
and low serum parathyroid hormone (PTH) levels, a low dialysate
[Ca] has been shown to increase circulating PTHandbone-specific
alkaline phosphatase [37, 38]. In patients with long daily or
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nocturnal HD sessions, a low dialysate [Ca] may lead to excessive
bone mineral loss; a relatively high dialysate [Ca] may be neces-
sary to prevent osteopenia [39].

High dialysate [Ca], together with high bicarbonate, may even
further improve the haemodynamic pattern during HD session.

In patients with SHPT, a dialysate [Ca] of 1.75 mmol/L resulted
in a better control of parathyroid over-function and high-
turnover bone disease than a lower dialysate [Ca]. In comparison
with drugs that increase serum Ca and/or P (like vitamin D), the
introduction of cinacalcet, which decreases not only serum PTH
but also serum Ca and phosphate [40], requires lower dialysate
[Ca]. This avoids the patient receiving a large amount of Ca, due
to a large increase in the gradient between the dialysate and plas-
ma [Ca], which may cause Ca deposition in soft tissues, favoured
by the rapid correction of the metabolic acidosis. On the other
hand, in patients treated with cinacalcet, a high dialysate [Ca]
may allow the control of serum PTH levels with lower doses of
the calcimimetic and prevent severe hypo-[Ca]. These contrast-
ing needs should be carefully taken into consideration in select-
ing an adequate dialysate [Ca], but lower dialysate [Ca] should be
preferable in many instances, eventually in association with ac-
tive vitamin D or analogue use.

Although the control of SHPT is more effective with a high di-
alysate [Ca] (1.75 mmol/L), the over-suppression of PTH should be
avoided due to the risk of adynamic bone disease and to prevent
high plasma [Ca] and soft tissue calcifications. This is particularly
true for patients receiving oral Ca, both as supplements or phos-
phate binders, and active vitamin D, which may enhance intes-
tinal Ca absorption. The National Kidney Foundation’s Kidney
Disease Outcomes Quality Initiative (NFK-KDOQI) guidelines
recommend a dialysate [Ca] of 1.25 mmol/L as a compromise be-
tween optimization of bone health and reduction in cardiovascu-
lar risk [41]. Gotch et al. [42] suggested that all patients should
receive a 1.0 mmol/L dialysate [Ca] and developed a formula to
justify this conclusion. Recently, Di Filippo et al. [43] described a
single-pool kinetic model using a ‘nominal’ 1.5 mmol/L label di-
alysate [Ca]. In patients with predialysis [Ca] in the normal range,
an ‘ionized’ dialysate [Ca] of 1.26 mmol/L (‘nominal’ total [Ca] of
1.50 mmol/L, the difference being related to the modification in
the conductivity in order to have a personalized dialysate [Na]
for the different patients) did not cause higher plasma water
[Ca]. Given that the predicted and measured final plasma water
[Ca] were similar, it avoided the extracellular buffering of in-
creased plasma water [Ca] induced by the diffusive gradient. On
the contrary, high plasma [Ca] and extracellular buffering were
the rule when using an ionized dialysate [Ca] of 1.50 mmol/L
(‘nominal’ total [Ca] of 1.75 mmol/L). Considering that Ca depos-
its in the soft tissues are hardly removed, a dialysate [Ca] of
1.75 mmol/L is not recommended.

Accordingly, the DOPPS data showed that the use of a high di-
alysate Ca (1.75 mmol/L) has declined over time. Indeed, the pa-
tients dialysed with a dialysate [Ca] of 1.75 mmol/L who are
taking a Ca-based phosphate binder have a significantly higher
risk of cardiovascular or sudden death [44].

On the other hand, the use of a low dialysate [Ca] as well as
high serum dialysate [Ca] gradients has been associated with
an increased risk of sudden cardiac arrest [45].

In conclusion, an ‘ionized’ dialysate [Ca] of 1.25 mmol/L
should be an appropriate choice for the majority of the patients.

Magnesium
Magnesium (Mg) plasma concentration is increasingly recog-
nized as being associated with vascular ageing, especially in

diabetic patients. Free Mg represents only 1% of the total body
contents, ranging between 0.62 and 1.02 mmol/L, where 60% of
this circulates as the biologically active free cation, while the re-
maining 40% is protein bound or complexed as salts.

The selection of dialysate Mg concentration [Mg] is very chal-
lenging for the nephrologists, and the problem is further compli-
cated by the availability of Mg carbonate as a phosphate binder.
Dialysate [Mg] is a major determinant of Mg balance in HD
patients, as it crosses the HD membranes easily. The amount
of Mg eliminated depends on ultrafiltration and the gradient be-
tween plasma and dialysate-diffusible [Mg] [46]. Considering the
sieving coefficient, usually only a dialysate [Mg] of <0.5 mmol/L
will result in a diffusive elimination of Mg [47, 48]. However, a
magnesium-free dialysate is poorly tolerated because of leg
cramps [47].

In a large observational study, the baseline prescribed dialys-
ate [Mg] showed only a weak correlation with plasma [Mg],
suggesting that other factors, including Mg food intake, supple-
ments such as antacids and phosphate binders, and possibly
laxatives, may also play an important role [49].

Kyriazis et al. [50] investigated the effect of different dialysate
[Mg] and [Ca] on blood pressureduringHD. The combineduse of a
dialysate [Ca] of 1.25 mmol/L and [Mg] of 0.25 mmol/L caused a
significant drop inmean arterial pressure, due to a drop in cardiac
index not compensated by an increase in total peripheral resist-
ance. Conversely, the combination of the same dialysate [Ca]
with a higher dialysate [Mg] (0.75 mmol/L) prevented a fall in
blood pressure [49]. Intermediate values of dialysate [Mg] had
intermediate effects (50). Despite these observations, a high di-
alysate [Mg] has no favourable effects on the intradialytic cardio-
vascular stability or cardiac performances [49].

Plasma [Mg] levels up to 2 mmol/L are frequent in HD patients
and are usually asymptomatic. However, ionized and intracellu-
lar [Mg] could be more representative of the active Mg state [51].

Plasma [Mg] may have an important regulatory role in PTH
secretion [52]. The maintenance of normal-high [Mg] could be
useful in the control of SHPT, activating the calcium-sensing re-
ceptors (CaSR) and optimizing the molecular actions on vitamin
D receptors (VDR), fibroblast growth factor 23 (FGF23) and Klotho.
However, it is still unclear whether Mg supplementationmay im-
prove bone health in CKD patients. In a recent cohort study of
142 069 HD patients in Japan, an increase in serum phosphate le-
vels over 1 year was associated with a higher risk of cardiovascu-
lar mortality in patients with low serum [Mg] levels (<2.7 mg/dL),
aswell as in thosewith intermediate serum levels (2.7 to 3.0 mg/dL).
However, no significant risk was observed in patients with [Mg]
levels ≥3.1 mg/dL. Among patients with serum phosphate levels
≥6.0 mg/dL, the cardiovascular mortality risk significantly de-
creased with increasing serum [Mg] levels [53].

At present the dialysate [Mg] should be 1 mg/dL.

Bicarbonate
The maintenance of a stable pH is essential in the body fluids
since changes in hydrogen ions [H+] alter almost all protein and
membrane functions [54–58].

The daily acid production that is to be neutralized can be cal-
culated as 0.77 mmol/g of catabolized proteins [59]. The kidney
plays an important role in maintaining the acid–base balance
by excreting non-volatile acids and regenerating HCO3−.

HD cannot remove a large amount of [H+] because of their low
blood concentration. The [H+] produced is buffered by plasma
HCO3

− and other body buffers; during HD, the process of [H+] re-
moval is mainly achieved by the flux of alkaline equivalents
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from the dialysate into the blood, which replaces the buffers used
in the buffering process.

Because plasma HCO3
− is the most important buffer in the

body, the choice of bicarbonate as a dialysate buffer was a logical
choice in the old days of HD [60, 61]. At that time, the preparation
of bicarbonate dialysate was a complicated procedure because of
the precipitation of calcium and magnesium carbonate and bac-
terial contamination [60, 61].

To obviate these problems, Na acetate was introduced in the
dialysate in the 1960s [62] as a substitute for HCO3

−. However, at
high HD efficiency, acetate accumulates in the plasma and wor-
sens cardiovascular instability [63] and tolerance to HD (nausea,
headache and fatigue) [64].

In the early 1980s, newHD techniques overcame the technical
limitations of acetate HD, and bicarbonate HD was widely rein-
troduced. Dialysate HCO3

− corrects the base deficit by the diffusive
transfer of bicarbonate from the dialysate to the blood. The acid–
base balance is achieved when the bicarbonate gain compen-
sates the inter-HD [H+] production plus theHD removal of organic
anions and bicarbonates. Many factors, including blood and di-
alysate flows, dialyser type and surface area, dialysate HCO3

− con-
centration [HCO3

−] and ultrafiltration rate, may affect acidosis
correction. During bicarbonate HD, the HCO3

− gradient between
the dialysate and the plasma water and the HD efficiency deter-
mine howmuch HCO3

− is transferred into the blood; the apparent
HCO3

− distribution space (40–50% of the total body weight) deter-
mines post-HD plasma [HCO3

−].
Achieving normal plasma [HCO3

−] levels during the interdialy-
tic period with intermittent HD is virtually impossible; plasma
[HCO3

−] should be maintained as much as possible within a
physiological range. The HCO3

−
flux during HD rapidly increases

plasma [HCO3
−]; then, HCO3

− is slowly consumed by endogenous
acid production during the interdialytic interval [65].

The catabolic effect of acidosis contributes to the frequent ab-
normal proteinmetabolism andmalnutrition of HD patients [66].
Acidosis has also been identified as a mortality risk factor in HD
patients [67]. Finally, the bone buffering associated with chronic
acidosis could aggravate osteodystrophy [68].

On the other hand, acidosis over-correction (i.e. postdialysis
plasma [HCO3

−] >28 mmol/L) should be avoided, especially in pa-
tients with compromised left-ventricular function. Indeed, alkal-
osis increases Ca binding to protein and may reduce ionized [Ca]
and impair cardiac muscle contraction and arterial pressure
preservation [69].

Furthermore, pH >7.40 increases the affinity of haemoglobin
for oxygen and may cause hypoxaemia, which further impairs
cardiac function. Finally, the decrease in plasma [K] during HD
is further enhanced by alkalosis, through the shift of K from the
extracellular to the intracellular space, possibly leading to severe
cardiac arrhythmias [70].

Much evidence shows that low predialysis plasma [HCO3
−] is

an independent risk factor for morbidity and mortality [71–74].
However, the cut-off level at which the risk significantly in-
creases varies from study to study. According to the DOPPS
data [74], a plasma [HCO3

−] of >23 mmol/L was not associated
with increased mortality; this is in contrast with a previous ana-
lysis of participants in the first phase of the DOPPS study (72) and
with a US cohort of HD patients [67].

Finally, there is wide variability in predialysis plasma [HCO3
−],

and the level achieved is related inversely to protein catabolic rate
[71, 75]. The increasing age of HD patients, and an associated de-
crease in endogenous acid production because of a spontaneous,
lower protein intake, could explain the gradual increase in predialy-
sis plasma [HCO3

−] without changes in dialysate [HCO3
−] [76].

Ideally, the optimal predialysis and postdialysis plasma
[HCO3

−] should not be <24 mmol/L and not >28 mmol/L. Assuming
a postdialysis plasma [HCO3

−] of 28 mmol/L, for a bicarbonate dis-
tribution volume of 40% of body weight and a mean protein in-
take of about 1 g/kg/day, there will be a decrease in a plasma
[HCO3

−] of about 4 mmol/L in the interdialytic period, with a pre-
dialysis plasma [HCO3

−] of about 24 mmol/L at the following
session.

Most patients receiving HD are dialysed with a dialysate
containing a final [HCO3

−] of ≥35 mmol/L and have a postdialysis
plasma [HCO3

−] of 28–30 mmol/L [67] and a pre-HD plasma [HCO3
−]

of 19–22 mmol/L after the long interval between HD [71, 72, 76].
The optimal pre- and postdialysis plasma [HCO3

−] cannot be
attained using a standard procedure for all patients: the base re-
quirement varies from patient to patient, according to protein in-
take and fixed acid production, the volume of bicarbonate
distribution and HD ultrafiltration rate. In theory, with a modern
proportioning system, the dialysate [HCO3

−] can be varied over a
wide range, allowing for individualization of the dialysate
[HCO3

−] to obtain an end HD plasma [HCO3
−] of about 28 mmol/L.

A recent cohort study [74] suggested that higher dialysate
[HCO3

−] increases the hazard risk for all-cause mortality, regard-
less of the predialysis plasma [HCO3

−]. These results call into
question the safety of high dialysate [HCO3

−] (>38 mmol/L), as re-
commended by the 2000 NKF-KDOQI guidelines [77]. The risk of
aggressively increasing predialysis plasma [HCO3

−] may also in-
clude accelerating Ca phosphate precipitation in the tissues [78].

In patients with predialysis acidosis (plasma [HCO3
−] <19–

20 mmol/L), it is necessary to evaluate the protein catabolic rate
and the interdialytic weight gain [79]. An appropriate blood sam-
ple handling is alsowarranted, since processing delays can false-
ly lower [HCO3

−] [80]. In these patients, interdialytic oral Na
bicarbonate administration is preferable [81] to the increase in di-
alysate [HCO3

−], because it does not expose patients to the risk of
higher postdialysis plasma [HCO3

−].
In HD patients with predialysis [HCO3

−] values >27 mmol/L, it
is necessary to exclude a coexisting acute metabolic alkalosis
(excessive alkali administration, vomiting, nasogastric drainage,
high-volume ileostomy drainage, etc.) and eventually treat these
acute disorders [81]. A dialysate [HCO3

−] of >35 mmol/L is not de-
sirable in these patients. In the absence of acute events, themost
probable cause of predialysis alkalosis is severemalnutrition and
low endogenous acid production [81].

In summary, the ideal pre- and postdialysis plasma [HCO3
−]

should range between 24 and 28 mmol/L, although as reported
above, most patients have a pre-HD plasma [HCO3

−] of 19–22
mmol/L after the long interval between HD sessions. The dialys-
ate [HCO3

−] (or better, the total base concentration) should not
exceed 35 mmol/L.

Glucose
Years ago, concentrations of glucose up to 1800 mg/dL were used
to generate an osmotic pressure that allowed the removal of
water and Na in excess by ultrafiltration and prevented haemoly-
sis in the extracorporeal circulation with large blood volume [82].
In later years, ultrafiltration was obtained through the trans-
membrane pressure, and the dialysate glucose concentration
was drastically reduced. Many HD centres used a glucose-free di-
alysate to avoid hypertriglyceridaemia and the potential risk of
increased bacterial growth in the dialysate [83]. However, this ap-
proach exposed patients to hypoglycaemia, especially in dia-
betics treated with insulin or oral antidiabetic agents [84–89]. As
in metabolic alkalosis, insulin favours the shift of K from the
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extracellular to the intracellular space. Thus, hypoglycaemia de-
termines a less effective shift of K from plasma to the cells and
caused a greater loss of amino acids in the dialysate [84]. Conse-
quently, a higher K removal should be expected when selecting
a glucose-free dialysate [90]. Today, HD solutions are glucose-
free, isoglycaemic (100 mg/dL) or moderately hyperglycaemic
(200 mg/dL) [91]. It is unclear whether dialysate glucose concen-
trations of 100–200 mg/dLmay have a deleterious effect on trigly-
ceride metabolism [92, 93]. There are also some concerns with
using glucose dialysate concentrations of 200 mg/dL because
hyperglycaemia may be a proinflammatory stimulus [94–96].

The Food and Drug Administration (FDA) currently approves
of a dialysate containing 100 mg/dL of glucose.

Dialysate concentrations in alternative
dialysis techniques

Long nocturnal haemodialysis
Long nocturnal HD is an interesting dialysis technique for those
patientswho prefer to be free of dialysis during the day and in the
meantime have a better control of fluid retention and related
complications, such as several parameters such as phosphate
and anaemia.

This technique usually lasts 8–10 h, allowing more time for
themechanismof diffusion comparedwith standardHD, thus fa-
cilitating plasma [Na] to be reached at the end of dialysis very
close to the dialysate [Na]. In this setting, a dialysate [Na] higher
than plasma water [Na] should be avoided, because Na removal
by convection is limited in relation to the large effect of diffusion.

The longer time required for the mechanism of diffusion ap-
plies to all electrolytes, including K, with the risk of hypokal-
aemia at the end of dialysis.

Daily short haemodialysis
Daily short HD causes the opposite problem. Na is mainly re-
moved by convection, and the time for diffusion to equilibrate
Na between plasma water [Na] and dialysate [Na] is too short.
This is true for all electrolytes, and the problem is very delicate.
A too low dialysate [K] in order to enhance K removal should be
avoided because a high [K] gradient between the plasma water
and the dialysate could facilitate cardiac arrhythmias. When a
high dialysate [Na] is used for improving intradialytic cardiovas-
cular stability, the removal of Na by convection should take into
consideration the amount of Na that the patient is receiving by
diffusion, in order to avoid the risk of Na and water retention
and their related complications.

Less frequent haemodialysis
In patients receiving twice a week HD, the increase in interdialy-
tic body weight is the factor affecting the amount of Na to be re-
moved by convection. The dialysate [Na] should be selected
accordingly, also considering the plasma water [Na].

The same holds true for once a week HD. This dialysis tech-
nique is suitable only to very selected and motivated patients,
who also follow a very low protein diet (0.3–0.4 g/kg/ideal body
weight with keto-analogue supplements) [97, 98]. Considering
that, in these highly motivated patients, the sodium intake is
usually very low, the selected dialysate [Na] should often be
close to 132–130 mEq/L to avoid Na retention by diffusion and
the related complications.

Being that the ultrafiltration is usually very low due to the
high compliance of these patients, the removal of calcium (Ca)
by convection is also very low. Thus, in order to remove the
amount of Ca eventually accumulated by the patient during the
interdialytic period, the dialysate Ca concentration [Ca] could
be lower than in standard HD, avoiding in any case a negative cal-
cium balance.

Online haemodiafiltration
This HD technique uses a large amount of reinfusion fluids
(about 20 L in the predilution modality) [99] and is gaining grow-
ing popularity considering the large amount of convection that
the technique is able to provide. When coupled with high-flux
membranes, online haemodiafiltration is able to remove middle
molecules, including beta2 microglobulin, which is associated
with highermortality in HD patients [100]. Comparedwith stand-
ard HD, the dialysate composition does not need particular ad-
justment. Conversely, the reinfusion fluid composition should
take into consideration the sieving effect, causing a small reten-
tion of cations and a higher removal of anions. To avoid Na reten-
tion, the reinfusate [Na] should be about 8 mEq/L lower than the
dialysate [Na]. This technique may improve intradialytic cardio-
vascular stability, possibly due to the colder reinfusate and a less
negative Na balance [101].

Future developments
The dialysate can be used as a vehicle for the administration of
various compounds. Phosphate-enriched dialysate has been
used for short-term phosphate supplementation in certain pa-
tients [102]. Some years ago, -carnitine was administered via
dialysate to maintain tissue carnitine levels [103]. A new iron
supplement, ferric pyrophosphate citrate (Triferic®) has recently
been approved by the FDA as an iron replacement product to be

Table 1. Summary of the correct dialysate solute concentrations

Solute Correct choice

Sodium (Na) To obtain anNa zero balance in relation to the amount ofwater andNa accumulated during the interdialytic period, a rate of
ultrafiltration equal to the interdialytic increase in body weight should be applied and the dialysate [Na] needs to be
individualized. TheDonnan factor and the gradient between patient plasmawater and dialysate [Na]must be considered.

Potassium (K) HD should remove the inter-HD K load, obtaining an ideal pre-HD plasma [K] of ∼5 mEq/L at the successive HD session. In
general, a dialysate [K] of <2 mEq/L should be avoided.

Calcium (Ca) An ‘ionized’ dialysate [Ca] of 1.25 mmol/L (nominally 1.5 mmol/L) should be appropriate for the majority of the patients.
Magnesium (Mg) Considering the sieving coefficient, usually only a dialysate [Mg] of <1 mg/dL will result in a diffusive elimination of Mg; the

dialysate [Mg] should be 1 mg/dL.
Bicarbonate (HCO3) The base requirement varies from patient to patient, according to protein intake and fixed acid production, the volume of

bicarbonate distribution and HD ultrafiltration rate. The ideal pre- and post-HD plasma [HCO3] should range between
24 and 28 mmol/L. The dialysate [HCO3

−] (or better, the total base concentration) should not exceed 35 mmol/L.
Glucose Isoglycaemic HD solution (100 mg/dL).
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added to the dialysate for the maintenance of haemoglobin in
patients receiving chronic HD. It is a soluble iron salt with a mo-
lecular weight of 1313 Da.When added to theHCO3− concentrate,
it diffuses across the dialysermembrane to donate iron directly to
transferrin. Ferric pyrophosphate citrate can be administered at
each HD treatment and maintains stable haemoglobin levels
without increasing iron stores [104].

Conclusions
Table 1 andTable 2 summarize themain aims and pro and contra
of the various components of the dialysate. An adequate Na and
water removal is critical for assuring the control of body fluids,
avoiding the risk of pulmonary edema and hypertension and re-
ducing the risk of intra- and extradialysis hypotension and
cramps. Minimizing wide swings in plasma [K] is of paramount
importance for preventing the risk of life-threatening hyper-
and hypokalaemia, possibly leading to severe cardiac arrhyth-
mias. With regard to Ca and Mg (and phosphorus), the most
important aim is to guarantee the protection of the cardiovascu-
lar system and bones while avoiding extraskeletal calcifications,
controlling SHPTand reducing the risk of adynamic bone disease.
Bicarbonate concentration should also protect bones and main-
tain a stable pH in the body fluids, which is crucial for almost

all protein and membrane functions. A physiological dialysate
glucose concentration is important, particularly in diabetic
patients, to avoid the potential, severe complications of both
hyper- and hypoglycaemia.
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