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Hepatocellular carcinoma (HCC) has a poor prognosis due to the rapid disease
progression and early metastasis. The metabolism program determines the proliferation
and metastasis of HCC; however, the metabolic approach to treat HCC remains
uncovered. Here, by analyzing the liver cell single-cell sequencing data from HCC
patients and healthy individuals, we found that 6-phosphogluconolactonase (PGLS),
a cytosolic enzyme in the oxidative phase of the pentose phosphate pathway (PPP),
expressing cells are associated with undifferentiated HCC subtypes. The Cancer
Genome Atlas database showed that high PGLS expression was correlated with the
poor prognosis in HCC patients. Knockdown or pharmaceutical inhibition of PGLS
impaired the proliferation, migration, and invasion capacities of HCC cell lines, Hep3b
and Huh7. Mechanistically, PGLS inhibition repressed the PPP, resulting in increased
reactive oxygen species level that decreased proliferation and metastasis and increased
apoptosis in HCC cells. Overall, our study showed that PGLS is a potential therapeutic
target for HCC treatment through impacting the metabolic program in HCC cells.

Keywords: hepatocellular carcinoma, 6-phosphogluconolactonase, metabolic reprogramming, pentose
phosphate pathway, ROS

INTRODUCTION

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide
(Jiang et al., 2000; Imamura et al., 2003; Ye et al., 2016; Yang et al., 2019). HCC usually occurs in
patients with chronic liver diseases related to viral infection (chronic hepatitis B and C viruses),
alcoholism (alcohol and aflatoxin), and liver metabolic disorders (diabetes and non-alcoholic
steatohepatitis) (Ganne-Carrie and Nahon, 2019; Kanwal and Singal, 2019). Hepatectomy and liver
transplantation are the two main treatments for HCC currently, but the HCC recurrence rate is high
because of the easy metastasis of liver cancer cells (Clavien et al., 2012; Sapisochin and Bruix, 2017;
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Yoshida et al., 2019). Hence, limited cognition hinders clinical
treatment of HCC. In order to seek effective clinical treatment
for HCC, more knowledge about HCC is necessary.

HCC requires metabolic reprogramming for continuous
growth and rapid proliferation (Cancer Genome Atlas Research
Network, 2017; Tian et al., 2019). Hepatocytes mainly produce
ATP through oxidative phosphorylation (OXPHOS), whereas
HCC cells produce ATP through anaerobic glycolysis, instead
of OXPHOS (Feng et al., 2020). The pentose phosphate
pathway (PPP) is a metabolic pathway parallel to glycolysis
(Jiang et al., 2014; Patra and Hay, 2014; Wu et al., 2018).
The PPP pathway consumes intermediate glucose 6-phosphate
(G6P) through the oxidized and non-oxidized branches to
produce fructose 6-phosphate and glyceraldehyde 3-phosphate
(Ma et al., 2020). The PPP pathway metabolites, ribose 5-
phosphate (R5P) and NADPH, are mainly produced by rate-
limiting enzymes glucose-6-phosphate dehydrogenase (G6PD)
and 6-phosphogluconolactonase (PGLS), which are essential for
the survival of HCC cells and the synthesis of fatty acids (Gao
et al., 2019; Jing et al., 2019; Li M. et al., 2019; Ghergurovich
et al., 2020). Emerging evidence has demonstrated that G6PD is
involved in the occurrence of HCC, but the role of PGLS in HCC
remains unclear. PGLS, a hydrolase, specifically catalyzes the
hydrolysis of 6-phosphogluconolactone to 6-phosphogluconic
acid (Beutler et al., 1985).

In our study, by analyzing the liver single-cell RNA sequencing
data from HCC patients or healthy individuals, we found
that PGLS was highly expressed in undifferentiated HCC
cells, and down-regulation of PGLS in vitro could inhibit the
proliferation, migration, and invasion of HCC cells. In addition,
PGLS has a new tumor-promoting effect in HCC by activating
the PPP pathway.

MATERIALS AND METHODS

Patients and Tissue Samples
A total of six pathologically diagnosed HCC tissues and matched
tumor-adjacent tissues were obtained from patients at the
Third Affiliated Hospital of Sun Yat-sen University. The use of
clinical samples was approved by the ethics committee of the
Third Affiliated Hospital of Sun Yat-sen University, and written
informed consents were obtained from all enrolled patients. All
patients did not receive preoperative therapies.

Cell Culture and Transfection
HCC cell lines (Hep3b, Huh7) were purchased from the Cell
Bank of Type Culture Collection of Chinese Academy of Sciences
(Shanghai, China). All cells were maintained in a six-well plate
in RPMI-1640 medium (Corning, 10-040) supplemented with
10% fetal bovine serum (FBS) (Hyclone, SH30084), 100 µg/mL
streptomycin/penicillin (Hyclone, SV30010) in a humidified
37◦C incubator with 5% CO2. The PGLS siRNA (siPGLS) was
designed and obtained from Gene Pharma (Guangzhou, China).
The transfection assay was carried out using Lipofectamine
2000 (Invitrogen, 11668030) following the protocols. The culture

media was supplemented with 6-aminonicotinamide (6-ANA)
(10 µM, Target-mol, T7545) 48 h.

Quantitative Real-Time Polymerase
Chain Reaction
Total RNA was extracted from HCC cell lines or clinical samples
using a TRIZOL reagent (Magen, R4801-02) according to the
manufacturer’s instructions. Quantitative real-time polymerase
chain reaction (PCR) was performed using SYBR Green PCR kit
protocol (Bio-Rad, 1725150). PCR primer sequences are listed in
Supplementary Table 1.

Western Blot Analysis
The same number of cells from each population to be analyzed
was sorted into phosphate-buffered saline (PBS) with 2%
FBS. The cells were washed with PBS and lysed by RIPA.
Equal amounts of protein extracts were fractionated by 12.5%
sodium dodecyl sulfate–polyacrylamide gel electrophoresis and
transferred to a polyvinylidene fluoride membrane (IPVH00010,
Merck Millipore). After blocking with 5% non-fat milk
in Tris-buffered saline with Tween-20 (TBST, pH 7.6) for
1 h at room temperature, the membranes were incubated
with primary antibodies including anti-PGLS (rabbit, 1:1,000,
GTX120327, Genetex), anti-CK18 (rabbit, 1:1,000, 10830-1-
AP, Proteintech), and anti–β-actin (rabbit, 1:1,000, 4970s, Cell
Signaling Technology) overnight at 4◦C and then incubated
with secondary antibodies (rabbit, 1:10,000, W401B, Promega)
for 1 h at room temperature, which was detected by digital
imaging with a charge-coupled device camera system (Odyssey
Fc). The images shown are representative of images from at least
three experiments.

Flow Cytometry
For apoptosis, the cells were fixed, permeabilized, and stained
by Tunel Detection kit (C1086, Beyotime) according to
manufacturer’s instructions. For reactive oxygen species (ROS)
activity analysis, the cells were stained by 5 µM DCFDA (D6883,
Sigma). Cell sorting and analysis were performed using an
Attune NxT analyzer (Thermo Fisher Scientific) or InFlux Cell
Sorter (BD Biosciences). Data analysis was performed using
FlowJo software.

Metabolic State Analysis
PGLShigh and PGLSlow cells were sorted and then lysed;
intracellular NADP+/NADPH ratio was measured using the
NADP+/NADPH Assay Kit (KA1663, Abnova) according to the
manufacturer’s instructions.

Cell Proliferation Assay
HCC in vitro proliferation was measured by calcein-AM/PI kit
(C2015S, Beyotime) according to the manufacturer’s instructions.

Transwell Assay
Hep3b and Huh7 cells were added into the upper chambers
of Matrigel-uncoated (cell migration) or coated (cell invasion)
Transwells (ET BIOFIL, Guangzhou, TCS004024). The lower
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chambers were added medium with 10% FBS, and the upper
chambers were serum-free medium. After 24 h culture, the
migrated or invaded cells (on the bottom of the filters) were
fixed using 4% paraformaldehyde (Mei Lun, China, MA0192)
and stained with 0.5% crystal violet for 1 h. The number of
migrated or invaded HCCs was counted under a light microscope
by randomly selecting five fields.

Colony Formation Assay
A total of 5 × 104 Hep3b and Huh7 cells were plated into six-
well plates. Colonies were fixed with 4% paraformaldehyde and
stained with crystal violet (Beyotime, Shanghai, C0121-100ML
for 30 min at room temperature. The visible colonies were
counted manually.

Wound-Healing Assay
A total of 5 × 104 Hep3b and Huh7 cells were seeded into six-
well plates and grown to 80% cell abundance. Then, a single
layer wound was created using a pipette tip, and we took
images (Olympus, BX51). Imaging was repeated at the same
location and further analyzed by ImageJ software. All assays were
conducted three times.

scRNA-Seq Data Processing
Raw genomic data have been deposited in the Gene Expression
Omnibus database with accession number GSE149614. The
scRNA-seq data are available from the corresponding author
upon reasonable request; 28,687 non-tumor liver cells and 34,414
primary tumor cells from 10 HCC patients were included.
Normalization, dimensionality reduction, and clustering were
performed with the Seurat 3.2.3 R package (Butler et al., 2018) on
RStudio. Cells were filtered to have > 500 and < 5,000 detected
genes and < 5% of total UMIs mapping to the mitochondrial
genome. Data set normalization was performed by dividing
the UMI counts per genes by the total UMI counts in the
corresponding cells and log-transforming, and following the
results, scaling and centering. Cells underwent dimensionality
reduction with the uniform manifold approximation and
projection method (UMAP). HCC-like clusters were selected by
HCC markers including GPC3, CD24, and MDK (Tsuchiya et al.,
2015; Lu et al., 2018; Yu et al., 2018). Feature plots were generated
by the Seurat function feature plot. Pseudotime trajectory
was analyzed by monocle2 on basis of the Seurat clustering
(Subramanian et al., 2005; Qiu et al., 2017). Signature genes of
each cluster were obtained using the Seurat function FindMarkers
with “wilcox” test. Venn plots were generated by Venn Diagram
R packages. Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis and plots were performed using cluster Profiler and
ggplot2 R package. Gene lists were preranked by the fold change
values of the differential expression analysis using Seurat. Gene
sets were obtained from Gene Ontology database as indicated.
Heatmap was generated by the pheatmap R package.

Statistical Analyses
Data are expressed as means ± standard deviation (SD). All
experiments were analyzed by Student t-test, and differences

were considered statistically significant if p < 0.05. Differences
were considered statistically significant if p < 0.05, ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

RESULTS

6-Phosphogluconolactonase Was
Specifically Highly Expressed in Human
Hepatocellular Carcinoma Samples
From the Gene Expression Omnibus database, we downloaded
scRNA-seq data of non-tumor and HCC patient liver cells.
In total, 28 clusters were shown after UMAP dimensionality
reduction (Figures 1A,B). We found that clusters 8, 13, 16,
and 17 were specifically presented in patient samples, labeled
by HCC markers (GPC3, CD24, and MDK) (Figures 1C,D).
Then we extracted these four clusters for pseudotime trajectory
analysis, which showed that cluster 0 was the most primitive
(Figures 1E,F). Venn plot presented the overlapped marker genes
among the new four clusters (Figure 1G). The specifically high
expression genes, in cluster 0, were used for KEGG enrichment
analysis. It showed that several top pathways were associated
with carbon metabolism (Figure 1H). Next, we found the
expression of PGLS in carbon metabolism was the highest
(Figure 1I). Consistent with this, the UMAP plot and violin
plot showed specific high expression level of PGLS in new
cluster 0 (Figures 1J,K). Similar rising level could be observed
in human HCC samples from the results of IHC staining and
The Cancer Genome Atlas (TCGA) (Figures 1L–N). Compared
with the survival probability of the high PGLS expression
group, the low PGLS expression group showed a longer survival
period (Figure 1O). PGLS transcripts were profoundly higher
in human HCC samples by quantitative PCR. Similar rising
levels could be observed in the HCC markers GPC3, CD24, and
MDK (Figure 1P).

6-Phosphogluconolactonase Pathway
Led to Significant Activation of Pentose
Phosphate Pathway in Hepatocellular
Carcinoma
HCC cells from human liver cancer tissues were sorted by the
expression level of PGLS for further exploring the difference
between these two groups. PGLS was also highly expressed
in PGLShigh cells (Figure 2A), with a higher expression
level of CK18, which was used for HCC diagnosis in clinic
(Figures 2B,C). PGLShigh cells presented a higher transcription
level of GPC3, CD24, and MDK (Figure 2D). It also showed
a lower NADP+/NADPH ratio, which was associated with the
reduction of ROS production and apoptosis (Figures 2E–I),
we next used scRNA-seq data to investigate the role of PGLS
in HCC; we found that the expression of apoptosis-related
genes was negative correlated with the expression of PGLS
(Figure 2J). Furthermore, this kind of apoptosis occurs because
of the activation of ROS relative signaling pathways (metabolism
of xenobiotics by cytochrome P450, chemical carcinogenesis–
ROS) (Figure 2K).
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FIGURE 1 | PGLS was specifically highly expressed in human HCC samples. (A) The UMAP dimensionality reduction results of scRNA-seq data from non-tumor
and HCC patients. (B) The frequency of cells in each cluster. (C) Four more clusters presented in HCC samples. (D) These four cell clusters were labeled by HCC
markers (GPC3, CD24, and MDK). (E) Four clusters specifically presented in HCC samples. (F) The pseudotime trajectory analysis was done for the above four
clusters, which showed that cluster 0 was the most primitive. (G) The overlapped marker genes among the new four clusters. (H) KEGG enrichment using the
specifically high expression genes in new cluster 0. (I) High expression genes in new cluster 0, in carbon metabolism. (J) The expression of PGLS in the UMAP plot.
(K) The expression of PGLS in the violin plot. (L) The expressions of PGLS in normal and HCC samples were detected by IHC staining. (M) The quantitative results
of IHC staining in normal and HCC samples. (N) PGLS mRNA expressions between HCC tissue (n = 369) and non-tumor liver tissue (n = 160) of TCGA and GTE
database. (O) The survival curve for the HCC patients. (P) The differential expressed marker genes between non-tumor and HCC samples. Data show individual
values and mean ± SD. m, n, and p, unpaired two-tailed Student t-tests, assessed statistical significance, **p < 0.01, ***p < 0.001.
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FIGURE 2 | PGLS pathway led to significant activation of PPP in HCC. (A) The representative FACS plot of PGLShigh and PGLSlow HCC cells. (B,C) Western blot of
the PGLS and CK18 in PGLShigh and PGLSlow cells from human HCC patients. β-Actin is a loading control. (D) The relative expression of HCC marker genes in
PGLShigh and PGLSlow cells (n = 3 replicates). (E) Glycometabolism diagram. (F) The NADP+/NADPH ratio in PGLShigh and PGLSlow cells (n = 5 replicates). (G) The
percentage of ROS in PGLShigh and PGLSlow cells (n = 5 replicates). (H) The representative FACS plot of PGLShigh and PGLSlow cells for apoptosis analysis. (I) The
apoptosis rate of PGLShigh and PGLSlow cells. (J) The expression profile of genes associated with apoptosis pathway between PGLShigh and PGLSlow cells.
(K) KEGG analysis of PGLShigh and PGLSlow cells. Data show individual values and mean ± SD. (C,D,F,G,I) Unpaired two-tailed Student t-tests, assessed statistical
significance, *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3 | PGLS regulated the proliferation and apoptosis of HCC. (A) Transfection with the three siRNAs could effectively knock down the expression of PGLS on
Huh7. (B) Quantitative analysis of Western blot in (A). (C) The NADP+/NADPH ratio on Huh7. (D) The percentage of ROS on Huh7. (E) The apoptosis rate on Huh7.
(F) Fluorescence micrographs of Huh7 after staining with calcein-AM, PI, and DAPI. (G) Proliferation curve of Huh7 transfected by siRNA-1, siRNA-2, and siRNA-3.
(H) Representative field of CFUs, formed by Huh7 treated with siRNA-1, siRNA-2, and siRNA-3. (I) CFU number per field on Huh7. Data show individual values and
mean ± SD. (B–E,G,I) Unpaired two-tailed Student t-tests, assessed statistical significance, ***p < 0.001.

6-Phosphogluconolactonase Regulated
the Proliferation and Apoptosis of
Hepatocellular Carcinoma
To investigate the effects of the rate-limiting enzymes of PGLS
in HCC cell lines, Huh7 and Hep3b cells were transfected with
siRNA-1, siRNA-2, or siRNA-3. We found that all three siRNAs
could reduce the expression level of PGLS in Huh7 cell lines as
compared to control groups (Figures 3A,B). Similar results could
be observed in Hep3b cell lines (Supplementary Figures 1A,B).
In addition, we found that the treatment of siRNA-1, siRNA-2,
and siRNA-3 increased the NADP+/NADPH ratio in HCC cell
lines (Figure 3C and Supplementary Figure 1C). Meanwhile,
ROS and apoptosis rate in the three knockdown (KD) groups
were also significantly higher as compared to the control
group (Figures 3D,E and Supplementary Figures 1D,E). After
transfection by siRNA-1, siRNA-2, and siRNA-3, both HCC cell
lines presented a slower proliferation rate at all six time points
(Figures 3F,G and Supplementary Figures 1F,G). Consistent
with this, Huh7 and Hep3b cells showed a significantly
smaller size and fewer numbers of CFUs (colony-forming

units) as compared to the control group (Figures 3H,I and
Supplementary Figures 1H,I).

6-Phosphogluconolactonase Regulated
the Migration and Invasion of
Hepatocellular Carcinoma
In the migration assay, the two cell lines presented significantly
fewer clones per field in the three KD groups as compared to the
control group (Figures 4A,B and Supplementary Figures 2A,B).
To analyze the effects of siRNA-1, siRNA-2, and siRNA-3 on
HCC cell invasion, chamber invasion assay was performed on
Hep3b and Huh7 cells. Significantly fewer cell clones were shown
in the three siRNA groups, in both Hep3b and Huh7 cells
(Figures 4C,D and Supplementary Figures 2C,D).

To further confirm that PGLS could regulate the migration
of HCC. Wound-healing assay was performed, and the area
covered by treated Huh7 cells was calculated by ImageJ.
Nearly the same area was occupied at 0 h among four
groups, and less migration length was shown in all three
KD groups at 24 h as compared to the control group
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FIGURE 4 | PGLS regulated the migration and invasion of HCC. (A) Representative images of CFUs in migration assay. (B) CFU clone number per field on Huh7 in
migration assay. Invaded cells from five representative fields were counted. (C,D) The number of invasive cells significantly decreased after the treatment of these
three siRNAs, respectively (n = 5). (E) Wound healing in Huh7 cells treated with siRNA-1,siRNA-2, and siRNA-3. The lines indicated the edge of wound at 0 and
24 h. (F) Migration rate was analyzed and expressed as the area of cells migrating from the original wounds. Data show individual values and mean ± SD. (B,D,F)
Unpaired two-tailed Student t-tests, assessed statistical significance, ***p < 0.001.

at the same time point (Figures 4E,F). Similar inhibitory
effects were also observed in Hep3b cells (Supplementary
Figures 2E,F).

Pentose Phosphate Pathway Inhibitor
6-Aminonicotinamide Functionally
Attenuated Hepatocellular Carcinoma
Migration and Invasion
6-ANA is a PPP inhibitor (Street et al., 1997; Arbe et al.,
2020; Cheng et al., 2020). When Hep3b and Huh7 were
cultured with a 10 µM 6-ANA concentration, we found that the
NADP+/NADPH ratios increased significantly (Figure 5A and

Supplementary Figure 3A), and the level of ROS and apoptosis
rate were also increased in both HCC cell lines as compared to the
control group (Figures 5B,C and Supplementary Figures 3B,C).
Then we analyzed the effect of 6-ANA on Hep3b and Huh7 cell
on proliferation. Similar to previous results, 6-ANA significantly
suppressed cell proliferation in 10 µM concentration (Figure 5D
and Supplementary Figure 3D). Subsequently the CFU results
showed 6-ANA could also effectively reduce the size and
number of CFUs in the treated group (Figures 5E,F and
Supplementary Figures 3E,F). To test the effects of 6-ANA
on HCC cell line migration, we did both chamber assay and
wound-healing assay. The results showed that 6-ANA could
reduce the clone number and migration area of Hep3b and Huh7
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FIGURE 5 | PPP pathway inhibitor 6-ANA functionally attenuated HCC migration and invasion. (A) The NADP+/NADPH ratio increased in the 6-ANA treated groups
(n = 3). (B,C) The percentage of ROS and annexin V–positive cells increased as compared to the control group (n = 3). (D) The extent of cell proliferation was
significantly reduced in the 6-ANA–treated group. (E,F) 6-ANA effectively suppressed the size and number of CFUs (n = 3). (G,H) Representative photographs
showing the HCC cell lines that had passed through the well bottom to the lower surface of the membrane. The cells from five representative fields were counted.
(I,J) Representative photographs showed the invasive cells that had passed through Matrigel to the lower surface of the membrane. Invaded cells from five
representative fields were counted. (K,L) Migration rate was analyzed and expressed as the area of cells migrating from the original wounds. Data show individual
values and mean ± SD. (A–D,F,H,J,L) Unpaired two-tailed Student t-tests, assessed statistical significance, **p < 0.01, ***p < 0.001.

cells (Figures 5G,H,K,L and Supplementary Figures 3G,H,K,L).
The number of invasive cells was also markedly decreased
after the treatment of 6-ANA (Figures 5I,J and Supplementary
Figures 3I,J). Overall, our data showed that PGLS was essential
for the development of HCC.

DISCUSSION

In this study, by analyzing the liver single-cell sequencing data
of HCC patients and healthy people, we were surprised to find
an undifferentiated HCC population with high PGLS-specific
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expression. In the selected cells with high PGLS expression
in human liver cancer tissues, we found the PPP pathway
activated, and ROS production and HCC apoptosis reduced.
PGLS inhibition inhibited the metabolic reprogramming of HCC
cell lines. For the purpose of clinical transformation, we used
6-ANA to inhibit the PPP and inhibit the proliferation, clonal
formation, migration, and invasion of HCC cell lines.

More and more evidences show that metabolism-related genes
(HK2, FBP1, and PKM2) are very important for the occurrence
and the development of HCC, and these genes promote the
growth of HCCs by promoting the transcription of oncogenes
(Chen et al., 2017; DeWaal et al., 2018; Li Q. et al., 2019; Hou et al.,
2020). Our project analyzed the single-cell sequencing technology
data of HCC patients and found that carbon metabolism played
an important role in the differentiation of HCCs, and PGLS
was the most obvious change among the genes that differ in
carbon metabolism. Previous reports have shown that PGLS has
a significant correlation with the occurrence of breast cancer, but
its relationship with HCC has not been reported (Sivaraksa and
Lowe, 2008), whereas Huh7 and Hep3b cell lines that knock down
PGLS have decreased proliferation and metastasis and increased
apoptosis in HCC cells. Thus, inhibiting PGLS in HCCs could be
a novel strategy to inhibit HCC proliferation.

Metabolic reprogramming has been recognized as a hallmark
of HCC (Kowalik et al., 2017; Jin and Zhou, 2019). Although
metabolism-related drugs are currently approved as molecular
targeting agents for HCC, their effect on life expectancy is
generally limited (Rudalska et al., 2014). In this study, for the
first time, we found that the specific high expression of PGLS
in HCC activates the PPP pathway and reduces cell apoptosis
induced by oxidative stress injury. In hepatocytes, low levels of
PGLS lead to low activity of the PPP pathway. At this point,
cells mainly rely on oxidative phosphorylation and glycolysis
for energy. However, the rapid proliferation of HCCs requires
activation of the PPP pathway to generate large amounts of R5P
and NADPH, which are vital for the survival and proliferation
of HCCs. R5P is the cornerstone for nucleic acid synthesis
(Andriotis and Smith, 2019). NADPH is essential for anabolic
reactions and redox equilibrium. This shift in metabolic patterns
is critical for HCC growth.

CONCLUSION

Finally, HCC patients with high PGLS expression have a poor
prognosis. Interestingly, ROS levels and NADP+/NADPH levels
were significantly reduced when we knocked down PGLS in
Huh7 and Hep3b cell lines. Therefore, inhibition of PGLS

can promote the recovery of the PPP metabolic profile of
HCC, which may be a new way to regulate the metabolic
reprogramming of HCC. Taken together, our data suggest that
inhibition of PGLS may provide a novel strategy to achieve
effective inhibition of HCC cells.
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