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Construction and validation 
of a prognostic model for lung 
adenocarcinoma based 
on endoplasmic reticulum 
stress‑related genes
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Lung adenocarcinoma (LUAD) is one of the most universal types of cancer all over the world and 
its morbidity continues to rise year by year. Growing evidence has demonstrated that endoplasmic 
reticulum stress is highly activated in cancer cells and plays a key role in regulating the fate of cancer 
cells. However, the role and mechanism of endoplasmic reticulum stress in lung adenocarcinoma 
genesis and development remains unclear. In this research, we developed a prognostic model to 
predict the overall survival of patients with LUAD utilizing endoplasmic reticulum stress-related 
genes and screened out potential small molecular compounds, which could assist the clinician in 
making accurate decisions and better treat LUAD patients. Firstly, we downloaded 419 endoplasmic 
reticulum stress-related genes (ERSRGs) from Molecular Signatures Database (MSigDB). Secondly, 
we obtained information about the transcriptome profiling and corresponding clinical data of 59 
normal samples and 535 lung adenocarcinoma samples from The Cancer Genome Atlas (TCGA) 
database. Next, we used the DESeq2 package to identify differentially expressed genes related to 
endoplasmic reticulum stress. We performed univariate Cox, least absolute shrinkage and selection 
operator (LASSO), and multivariate Cox regression analysis to establish a prognostic model for LUAD 
patients based on ERSRGs. Then, we carried out univariate and multivariate independent prognostic 
analysis of endoplasmic reticulum stress-related gene (ERSRG) score and some clinical traits of 
lung adenocarcinoma. Additionally, we developed a clinically applicable nomogram for predicting 
survival for LUAD patients over one, three, and five years. Moreover, we carried out a drug sensitivity 
analysis to identify novel small molecule compounds for LUAD treatment. Finally, we examined the 
tumor microenvironment (TME) and immune cell infiltrating analysis to explore the interactions 
between immune and cancer cells. 142 differentially expressed ERSRGs were identified by using the 
DESeq2 package. A prognostic model was built based on 7 differentially expressed ERSRGs after 
performing univariate Cox regression, LASSO regression, and multivariate Cox regression analysis. 
According to the results of univariate and multivariate independent prognostic analysis, we found 
ERSRG score can be used as an independent prognostic maker. Using the Kaplan–Meier curves, we 
found low-risk patients had higher survival probability than high-risk patients in both training set 
and test set. A nomogram was drawn to predict 1-, 3-, and 5-year survival probability. The calibration 
curves explained good performance of the model for the prediction of survival. Phenformin, OSU-
03012, GSK-650394 and KIN001-135 were identified as the drugs most likely to provide important 
information to clinicians about the treatment of LUAD patients. A prognostic prediction model was 
established based on 7 differentially expressed ERSRGs (PDX1, IGFBP1, DDIT4, PPP1R3G, CFTR, 
DERL3 and NUPR1), which could effectively predict the prognosis of LUAD patients and give a 
reference for clinical doctors to help LUAD patients to make better treatment tactics. Based on the 4 
small molecule compounds (Phenformin, OSU-03012, GSK-650394 and KIN001-135) we discovered, 
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targeting endoplasmic reticulum stress-related genes may also be a therapeutic approach for LUAD 
patients.

Lung cancer is one of the most common malignant tumors in China and even in the world1. According to the 
statistics of the World Health Organization (WHO), the number of new lung cancer patients worldwide in 2020 
alone was 2,206,771, accounting for 11.4% of the new cancer patients, ranking second, deaths were 1,796,144, 
or 18% of cancer deaths, ranking first2. Lung adenocarcinoma, a form of non-small cell lung cancer, is the most 
common pathological type of lung cancer in humans3. Epidemiological studies have reported that adenocarci-
noma accounts for approximately 40% of lung cancer cases. Adenocarcinoma is also the most common type of 
lung cancer among non-smokers, with a high incidence in women and younger patients4. Existing treatment 
methods for lung adenocarcinoma, such as surgical treatment, radiotherapy, and chemotherapy, could hardly 
meet the survival expectation of patients with advanced lung adenocarcinoma5. However, the average 5-year 
survival rate for patients with lung adenocarcinoma is 15%1.Therefore, it is an urgent need to establish new 
molecular biomarkers and prognostic models to further improve the effectiveness of treatment strategies for 
patients with LUAD patients.

Endoplasmic reticulum stress is the stress response to the accumulation of a large number of unfolded pro-
teins in the endoplasmic reticulum6. Endoplasmic reticulum stress is associated with tumor development and 
progression via pro-tumorigenic and anti-tumorigenic effects7. Recent evidence indicates that endoplasmic 
reticulum stress has been observed during the development of various tumors, such as breast and lung cancer8. 
Studies show that inhibition of ER stress response led to enhanced survival of the LUAD cells9. These findings 
have confirmed the importance of endoplasmic reticulum stress in LUAD and suggest that differentially expressed 
endoplasmic reticulum stress-related genes may serve as prognostic markers for LUAD. To our knowledge, there 
is no prognosis model of differentially expressed endoplasmic reticulum stress-related genes in LUAD that has 
been established to predict the prognosis of LUAD patients. Therefore, a novel prognostic model with ERSRGs 
for predicting survival in LUAD is highly needed.

In this study, using the differentially expressed ERSRGs in LUAD, we developed a 7-ERSRGs signature with 
univariate Cox regression, LASSO regression and multivariate Cox regression analysis in the TCGA database 
and validated the prognostic model in the GEO database. The immune landscape in LUAD and the potential 
effects of endoplasmic reticulum stress immunotherapy were explored by tumor microenvironment analysis and 
immune cell infiltration analysis. Finally, several small-molecule compounds were screened for their potential 
to be used in LUAD therapy.

Methods
Data acquisition.  We obtained 419 endoplasmic reticulum stress-related genes from Molecular Signa-
tures Database (MSigDB, http://​www.​gsea-​msigdb.​org/​gsea/​msigdb/, accessed on 15th December 2021). Next, 
we downloaded the transcriptome profiling data and corresponding clinical data of 59 normal samples and 
535 LUAD samples from The Cancer Genome Atlas (TCGA) database (https://​portal.​gdc.​cancer.​gov/, accessed 
on 6th January 2022). Moreover, the microarray and corresponding clinical data of 442 LUAD samples were 
obtained from the Gene Expression Omnibus GSE72094 dataset with GPL15048 platform (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/, accessed on 6th January 2022).

Identification of differentially expressed endoplasmic reticulum stress‑related genes.  The 
DESeq2 package was utilized to calculate differential gene expression of ERSRGs in 59 normal samples and 535 
LUAD samples. We set false discovery rate (FDR) < 0.05 and|log2 (FC), fold change in log2|> 0.585 as cutoff cri-
teria to obtain differentially expressed ERSRGs. The volcano plots of 142 differentially expressed ERSRGs were 
constructed using the OmicStudio tools (http://​www.​omics​tudio.​cn/​tool). Networks of protein–protein interac-
tions (PPIs) were created by using the STRING database (http://​string-​db.​org). Top 10 hub genes identified by 
analyzing protein–protein interaction networks using Cytohubba, a plug-in for Cytoscape. Venn diagrams of top 
10 hub genes in two algorithms (MCC and EPC) were constructed using TBtools software.

GO and KEGG functional enrichment analyses.  Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) biological process enrichment of differentially expressed ERSRGs was carried 
out by R statistical software containing packages of “clusterProfiler”, “org.Hs.eg.db”, “enrichplot”, “ggplot2” and 
“GOplot”. GO results covered cellular component (CC), biological process (BP), and molecular function (MF).

Identification of prognostic gene signatures.  A training set of 535 LUAD samples was taken from the 
TCGA cohort. We used the survival package (http://​bioco​nduct​or.​org/​packa​ges/​survi​val/) in R4.1.2 to perform 
a univariate Cox regression analysis on ERSRGs from a training set to examine the association between gene 
expression levels and patients’ survival. A hazard ratio (HR) and p-value were calculated for each ERSRG. A 
further analysis of the ERSRGs with p < 0.05 was undertaken. The number of ERSRGs was further reduced and 
the degree of collinearity between ERSRGs was eliminated using LASSO Cox regression analysis. Eventually, 
based on the results of univariate Cox regression analysis, we analyzed the data using multivariate Cox regres-
sion analysis.

Construction and validation of a prognostic model.  The ERSRG score of all samples in the train set 
were calculated according to the following equation based on the results of multivariate Cox regression analysis.

http://www.gsea-msigdb.org/gsea/msigdb/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.omicstudio.cn/tool
http://string-db.org
http://bioconductor.org/packages/survival/
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Coefn represents the risk coefficient of ERSRGs obtained from multivariate Cox regression analysis, Xn rep-
resents the expression of corresponding ERSRGs. Simultaneously, we divided all the LUAD patients in the train 
set into high-risk (ERSRG score > median value) group and low-risk group (ERSRG score < median value) based 
on the median risk score. Kaplan–Meier survival plots were obtained using the R package “survival”. ROC curves 
were generated using the “timeROC” package to test the model’s prognostic accuracy. The test set was made up 
of samples from the GEO database. Using the same formula used for the train set, we calculated risk scores for 
patients in the GEO cohort. To investigate whether ERSRG score in LUAD patients could be an independent 
prognostic factor, we performed univariate and multivariate Cox regression analyses in the train set and test set. 
Age, gender, stage, Covariates included age, gender, stage, T, M, N, and ERSRG score. We considered p < 0.05 to 
be statistically significant.

The construction of nomogram and calibration curves.  We created a nomogram and calibration 
plots in R using the "rms" package. The nomograms were calculated to predict 1, 3, and 5-year survival rates for 
LUAD patients. The calibration curves visualized the differences between actual 1, 3, and 5-year survival rates 
and predicted overall survival.

Drug sensitive analysis.  Based on Genomics of Drug Sensitivity in Cancer (GDSC, https://​www.​cance​
rrxge​ne.​org/), the difference in drug sensitivity between high-risk and low-risk groups in LUAD was predicted 
using the “pRRophetic” package in R version (4.1.2). In order to make comparisons, we used half of the maxi-
mum inhibitory concentration (IC50). Small molecule compounds with p value < 0.05 were selected. We then 
visualized two-dimensional drug conformations on the PubChem website (https://​pubch​em.​ncbi.​nlm.​nih.​gov/).

Tumor microenvironment analysis.  The ImmuneScore and StromalScore of each LUAD patient were 
calculated using “estimate package”. A higher ImmuneScore or StromalScore indicates that more immune cells 
or stroma were expelled within tumor microenvironment (TME)10. Kaplan–Meier curves were plotted using 
the R survival package to predict the survival difference between low- and high-risk groups of LUAD patients.

Immune cell infiltration analysis between high‑risk group and low‑risk group.  We performed 
CIBERSORT to study the tumor immune microenvironment of LUAD patients. CIBERSORT is a method for 
identifying 22 immune-related cell subsets, including naive and memory B cells, 7 types of T cells, myeloid cells, 
NK cells, and plasma cells11. The difference in immune cells between high-risk and low-risk groups was visual-
ized using a bar plot. For the following analysis of differential immune infiltration levels between high-risk and 
low-risk groups, only samples with a CIBERSORT p of 0.05 were considered12.

Statistical analyses.  R version 4.1.2 was used to perform all statistical analyses. The significance level for 
statistical analysis was set to p < 0.05.

Results
Identification of differential gene expression of ERSRGs.  The overall workflow of this study was 
shown in Fig. 1. We first obtained the expression profiles containing 59 normal samples and 535 LUAD samples 
from TCGA database and gathered 419 endoplasmic reticulum stress-related genes from Molecular Signatures 
Database (MSigDB). 142 differentially expressed ERSRGs were screened out between the normal samples and 
tumor samples with FDR < 0.05 and |log2 (FC), fold change in log2|> 0.585 (Supplementary Table 1). The vol-
cano plot demonstrated that 24 ERSRGs were significantly downregulated, while 43 ERSRGs were upregulated 
in LUAD patients (Fig. 2A). Most differentially expressed ERSRGs were enriched in tumor samples according to 
the heatmap (Fig. 2B). These differentially expressed ERSRGs interacted with each other forming an expressed 
endoplasmic reticulum stress network as measured by STRING (Fig. 2C). Top 10 hub genes were identified by 
maximal clique centrality (MCC) method (Fig. 2D) and edge percolated component (EPC) method (Fig. 2E) 
based on the results of PPIs. The Venn diagram showed that 9 of top 10 hub genes screened by MCC method and 
EPC method were the same (Fig. 2F).

Enrichment analysis of ERSRGs.  141 differentially expressed ERSRGs were highly enriched in endo-
plasmic reticulum stress, topologically incorrect protein, unfolded protein, ERAD pathway and intrinsic apop-
totic signaling pathway in response to endoplasmic reticulum stress in the aspect of biological process (BP). In 
the context of cellular components (CC), these genes were more prevalent in endoplasmic reticulum lumen, 
endoplasmic reticulum protein—containing complex, endoplasmic reticulum chaperone complex, protein ser-
ine/threonine phosphatase complex and phosphatase complex. In terms of molecular functions (MF), these 
genes were more prevalent in protein phosphatase binding, phosphatase binding, phosphatase regulator activity, 
protein phosphatase regulator activity, protein disulfide isomerase activity (Supplementary Fig. 4A). Moreover, 
analysis of KEGG revealed that the differentially expressed ERSRGs were mainly involved in signaling path-
ways such as endoplasmic reticulum stress, ERAD pathway, intrinsic apoptotic signaling pathway in response to 
endoplasmic reticulum stress (Supplementary Fig. 4B). In summary, these data suggest that these ERSRGs are 
involved in other biological processes as well as endoplasmic reticulum stress.

Risk score = Coef1 × X1 + Coef2 × X2 + · · · + Coefn × Xn

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://pubchem.ncbi.nlm.nih.gov/
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Construction of a prognostic ERSRG signature of LUAD in the train set.  In order to construct 
the ERSRG prognostic model, we first analyzed all ERSRGs in LUAD using univariate Cox regression analysis. 
During the screening process, 18 ERSRGs were identified, comprising nine potentially risky genes and nine 
potentially protective genes (Fig. 3A). On the basis of the univariate Cox regression, we then performed LASSO 
regression analysis (Fig. 3B,C). Finally, we performed multivariate Cox regression analysis and screened out 7 ER 
stress-related genes including 3 potential risk genes and 4 potential protective gene (Fig. 3D).

Next, we tested if the expression of these 7 ERSRGs was correlated with the prognosis of LUAD patients. 
We found that the high expression of DDIT4 (p < 0.001), PDX1 (p = 0.044), PPP1R3G (p < 0.001) had a worse 
prognosis (Supplementary Figs. 5, 6). Next, we will examine whether the ERSRG signature can be used to predict 
overall survival (OS) of LUAD. For each LUAD patient, the following formula was used to calculate the ERSRG 
score: risk score = 0.101362 × IGFBP1 + 0.197865 × DDIT4 + (− 0.127129) × DERL3 + 0.175840 × PPP1R3G + (− 0.1
14585) × CFTR + (− 0.176282) × NUPR1 + 0.055218 × PDX1. LUAD patients were first categorized into “high risk” 
(n = 245) and “low risk” (n = 245) groups according to the median value of ERSRG score (Fig. 4A). A higher score 
was associated with a worse prognosis in LUAD patients (Fig. 4C). The heatmap in Fig. 4D shows the differences 
between groups in expression levels of the 7 ERSRGs. Additionally, the survival curves indicated that patients in 
the low-risk group had a significantly higher probability of survival than the high-risk group (p < 0.05) (Fig. 4B). 
The area under the curve (AUC) for 1-, 3-, and 5-year OS were 0.711, 0.692, and 0.676, respectively (Fig. 4E). 
These findings suggested that ERSRG signatures in our model may be of benefit to the prognosis prediction of 
patients with LUAD.

Validation of the risk score of ER stress‑related gene signature in a GEO test set.  The prognos-
tic and predictive role of an ERSRG signature was further validated using two more GEO cohorts as a test set, 
which were calculated using the same formula as the train set. The LUAD patients in the test set were classified as 
high-risk group (n = 157) and low-risk group (n = 229) based on the median value (Fig. 5A), and a higher ERSRG 
score predicted a poorer outcome for the patients (Fig. 5C). Visualizing the different expression levels of the 7 
ERSRGs in the test groups was achieved with a heatmap (Fig. 5D). As in the train set, high-risk groups in the test 
set had a worse prognosis than low-risk groups (p < 0.05) (Fig. 5B). The area under the curve (AUC) for 1-, 3-, 
and 5-year OS were 0.639, 0.636, and 0.653, respectively (Fig. 5E).

Independent prognostic indicator of the prognostic risk model.  We conducted independent prog-
nosis analyses in the train set and test set to confirm that ERSRG score can be used as an independent predictor 
for LUAD patients’ survival. Univariate Cox and multivariate Cox regression analysis of the train set shows that 
the ERSRG score was meaningful in predicting OS of LUAD patients (Fig. 6A,B). ERSRG score also served as 
an independent predictor of LUAD patients’ survival in the test set (Fig. 6C,D). Furthermore, we also explored 
the relationship between clinical characteristics and risk scores. Results indicated that the risk score level was 
significantly higher in the male subgroup and M1 subtype compare with the female group and M0 subtype, 
respectively (Supplementary Figs. 7A, B). In the pathologic N-stage subgroup, risk score levels were increased 

Figure 1.   The workflow of our study.
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Figure 2.   Differentially expressed endoplasmic reticulum stress-related genes (ERSRGs). (A) Volcano plot 
revealed 142 differentially expressed ERSRGs between normal samples and LUAD samples. (B) The heatmap 
displays the expression levels of 142 differentially expressed ERSRGs in normal and LUAD samples. (C) 
Protein–protein interaction (PPI) network of 142 differentially expressed ERSRGs. (D) Top 10 hub genes were 
identified by maximal clique centrality (MCC) method. (E) Top 10 hub genes were identified by edge percolated 
component (EPC) method. (F) The Venn diagram showed that 9 of top 10 hub genes screened by MCC method 
and EPC method were the same.
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considerably in the N1 and N2 subtypes relative to the N0 subtype (Supplementary Fig. 7C). In the pathologic 
stage subgroup, risk score levels were statistically significant between Stage1 and other subtypes (Stage2 subtype, 
Stage3 subtype, Stage4 subtype) (Supplementary Fig. 7D). In the pathologic T-stage subgroup, risk score levels 
were increased considerably in the T1, T2 and T3 subtypes relative to the T0 subtype (Supplementary Fig. 7E). 
The results of these studies indicated that our model was capable of predicting prognosis and serving as a bio-
marker in addition to conventional clinical classification.

Construction of nomogram and calibration curves.  To provide clinicians with a more quantita-
tive way of predicting the prognosis of LUAD patients, we developed a nomogram with a number of variables, 
including age, gender, stage, T, M, N and risk score (Fig. 7A). The nomogram was used to estimate survival prob-
abilities for 1, 3, and 5 years. Moreover, we constructed calibration curves, which confirmed that the predicted 
and actual survival rates matched with 1, 3, and 5 years (Figs. 7B–D). These findings indicate that the nomogram 
with the ERSRG scores can accurately predict the OS of LUAD patients.

Results of drug sensitivity.  To further explore the potential applications of our prognostic model in 
LUAD therapy, we evaluated differences in chemotherapy sensitivity between the low-risk and high-risk groups 
by analyzing their IC50s. Patients in the high-risk group responded better to OSU-03012 (Fig. 8D), GSK-650394 
(Fig.  8G), whereas patients in the low-risk group responded better to Phenformin (Fig.  8A), KIN001-135 
(Fig.  8J). We also visualized the 2D conformation of these four compounds with the greatest differences in 
sensitivity between the high-risk and low-risk groups (Fig. 8B,E,H,K). The study showed that the model may be 
used as a predictor of drug sensitivity for the treatment of LUAD. The sensitivity of Phenformin and KIN001-
135 were positively correlated with their risk scores (Fig. 8C,L). The sensitivity of OSU-03012 and GSK-650394 
were negatively correlated with their risk scores (Fig. 8F,I). These findings revealed that the 4 small molecular 
compounds we screened may be good anticancer drugs to treat LUAD patients.

Tumor microenvironment and immune cell infiltration analysis.  In our study, we evaluated the 
relationship between our prognostic model and immune status of patients with LUAD. The ImmuneScore 

Figure 3.   Identification of ERSRGs in LUAD. (A) Univariate cox analysis identified 18 prognostic genes. 
(B) Optimal parameter (lambda) screening in the LASSO model. (C) The coefficients of each lambda were 
determined. (D) 7 ERSRGs were identified using multivariate Cox regression analysis.
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and StromalScore were significantly higher in the low-risk group than in the high-risk group (Supplementary 
Fig. 1A, B). The Kaplan–Meier curves revealed that LUAD patients who had a high stromal and immune score 
had a lower chance of survival (Supplementary Fig. 1C, D). The barplot and heatmap were used to illustrate the 
percentage of each type of immune cell between the high-risk and low-risk groups (Supplementary Fig. 2A, 
B). Analysis of immune cell infiltration showed a significant difference between the high- and low-risk groups 
in terms of the types of infiltrating cells (Supplementary Fig. 2C). LUAD patients in the high-risk group had a 
higher level of NK cells resting, Macrophages M0, and Macrophages M1 compared with the low-risk group. 
Based on the tight relation between immunological features and LUAD prognosis, we investigated the impact 
of the risk score model on immune cell infiltration. Macrophages M0, Macrophages M1, NK cells resting, and T 
cells CD4 memory activated were positively related to the risk score, while B cells naïve, Dendritic cells resting, 
Mast cells resting, Monocytes, T cells CD4 memory resting were negatively related to risk score (Supplementary 
Fig. 3A-I). These findings suggested that our prognostic model was closely related to immunity, which could 
guide treating LUAD patients.

Correlation of immune cells proportion with seven‑ERSRG expression.  In this study, we further 
confirmed the correlation between seven-ERSRG expression and immune cells in LUAD samples. The results 
showed that lots kinds of immune cells were correlated with the expression of seven-ERSRG (Supplementary 
Figs. 8–14). Among them, the expression of each ERSRG was correlated with Monocytes, which indicated that 
Monocytes might play a crucial role in LUAD. According to the above results, we can conclude that the levels of 
seven-ERSRG expression affected immune activity.

Discussion
Lung adenocarcinoma (LUAD) is associated with significant morbidity and mortality13. There has been an 
increase in the incidence of lung adenocarcinoma in recent years, and despite using a variety of treatment 
methods, the mortality rate remains high14. Moreover, LUAD has a poor prognosis and inadequate screening 
methods, which result in a low clinical cure rate15. Therefore, a novel biomarker must be developed to predict 
the prognosis of LUAD and provide treatment targets.

The endoplasmic reticulum capacity to handle protein biogenesis is overtaxed, resulting in an accumulation 
of improperly folded proteins in this compartment and a situation called endoplasmic reticulum stress16. Stress 
in the endoplasmic reticulum triggers an adaptive response called the unfolded protein response (UPR). As long 
as ER stress persists, UPR triggers cell death17,18. Research showed that abnormal activation of the endoplasmic 
reticulum stress sensor and its downstream signaling pathways has emerged as an important factor in tumor 

Figure 4.   Construction of a prognostic model based on 7 ERSRGs in the training set. (A) Risk score plot. (B) 
Curves of Kaplan–Meier survival for high-risk and low-risk patients. (C) The survival status of each LUAD 
patients. (D) Heatmap of 7 model ERSRGs. (E) ROC curves for prognostic model.
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Figure 5.   Validation of a prognostic model based on 7 ERSRGs in the test set. (A) Risk score plot. (B) Curves 
of Kaplan–Meier survival for high-risk and low-risk patients. (C) The survival status of each LUAD patients. (D) 
Heatmap of 7 model ERSRGs. (E) ROC curves for the prognostic model.

Figure 6.   Independent prognosis analysis in the training set and test set. Univariate (A) and multivariate (B) 
independent prognosis analysis in the train set. Univariate (C) and multivariate (D) independent prognosis 
analysis in the test set.
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growth and metastasis, as well as response to chemotherapy, targeted therapies and immunotherapy19. Therefore, 
it is of great significance to study ERSRGs in LUAD.

Herein, we identified a new prognostic model for LUAD patients based on the 7-ERSRGs signature and 
explored the potential therapeutic small molecule compounds. The endoplasmic reticulum stress-related model 
comprises seven ERSRGs, including PDX1, IGFBP1, DDIT4, PPP1R3G, CFTR, DERL3 and NUPR1. Research-
ers have found that model genes are closely associated with both carcinogenesis and anti-tumor therapy10. 
Pancreatic and duodenal homeobox 1 (PDX1) shifts from a tumor-suppressive to an oncogenic function after 
tumor transformation20. Interestingly, subsets of malignant cells lose PDX1 expression during the epithelial-to-
mesenchymal transition (EMT), and PDX1 loss is associated with poor prognoses20. In our study, PDX1 tends 
to play a carcinogenic role, which may be due to the transformation of lung adenocarcinoma. A study found 
that insulin-like growth factor binding protein 1 (IGFBP1) accelerated hematogenous metastasis and led to poor 
survival in gastric cancer21. In vitro studies have suggested that DNA damage-inducible transcript 4 (DDIT4) 
could be a tumor suppressor or an oncogene in cancer, depending on the context22,23. The presence of protein 
phosphatase 1 regulatory subunit 3G (PPP1R3G) correlates with poor prognosis and immune infiltration in 
LUAD24. In murine and human intestinal cancers, the Cystic Fibrosis Transmembrane conductance Regulator 
(CFTR) acts as a tumor suppressor gene25. In gastric cancer, Derlin 3 (DERL3) acts as a tumor suppressor26. 
Nuclear protein‑1 (NUPR1) plays a role in promoting the proliferation of cancer cells by influencing cell cycle 
progression27. Generally speaking, since these 7 ERSRGs are critical to the development of tumors and are also 
involved in the development of treatment resistance, they have great potential as therapeutic targets or biomark-
ers in LUAD clinics.

Figure 7.   Nomogram and calibration curves. Nomogram (A) and calibration curves (B–D) of LUAD patients 
for predicting OS at 1 year, 3 years, and 5 years.
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Figure 8.   Drug sensitive analysis. Boxplots of (A) Phenformin, (D) OSU-03012, (G) GSK-650394, (J) KIN001-
135. (B, E, H, K) The 2D conformations of the 4 compounds. (C, F, I, L) The correlation of the 4 compounds 
between risk score and drug sensitivity.
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According to the correlation results between seven-ERSRG expression and risk score, we found that Mono-
cytes were the only immune cells that correlated with the expression of seven-ERSRG. Monocytes can bridge 
innate and adaptive immune responses and can affect the tumor microenvironment through various mechanisms 
that induce immune tolerance, angiogenesis, and increased dissemination of tumor cells. Yet monocytes can also 
give rise to antitumor effectors and activate antigen-presenting cells28. Previous studies showed that Monocytes 
play a key role in many pathological conditions and the outcome of diseases can be improved by controlling the 
numbers and functions of Monocytes29. The above results were consistent with our results, which suggested that 
Monocytes might provide a novel insight for treating patients with LUAD.

Based on the constructed model, we screened four potential drugs for the treatment of LUAD, including 
Phenformin, OSU-03012, GSK-650394, and KIN001-135. Researchers have found that phenformin inhibits cell 
proliferation and tumor growth more strongly than metformin in vitro and in vivo in various tumor types (e.g., 
breast, lung, glioblastoma, colon, melanoma, and prostate cancer)30. OSU-03012 is a novel celecoxib derivative 
that induces apoptosis in a variety of cancer cells without inhibiting cyclooxygenase-231. A previous study found 
that GSK-650394 inhibited Influenza virus replication in cell models32. Moreover, we evaluated risk scores and 
the effectiveness of anticancer medications in our study, providing a fresh perspective on treating tumors and 
dealing with drug resistance33,34.

In conclusion, a new prognostic model is presented for ERSRGs in LUAD based on our study. This model 
was an independent predictor of OS in the train and test set, providing insight into how to predict prognosis for 
LUAD patients. However, there are some limitations in this study. On the one hand, we just derived the research 
data from the TCGA and GEO public databases. On the other hand, the function of the 7 ERSRGs has not been 
verified with biological experiments. A larger number of prospective real-world studies is needed to confirm 
its clinical efficacy. It is of great interest to target the 7-ERSRGs or small molecule compounds that are outlined 
above as possible components of combination therapies.

Conclusion
A novel ERSRG signature for LUAD prognostic prediction was identified in the present study. Targeting ERSRGs 
might be a possible therapeutic approach for LUAD based on the small molecule compounds discovered in our 
study.

Data availability
All data and R script in this study are available from the corresponding author upon reasonable request. Publicly 
available datasets were analyzed in this study, these can be found in The Cancer Genome Atlas (https://​portal.​
gdc.​cancer.​gov/) and Molecular Signatures Database (http://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp).
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