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Background: The receptor for advanced glycation end products (RAGE) is a multiligand

receptor involved in a number of processes and disorders. While it is known that

RAGE-signaling can contribute to toxic liver damage and fibrosis, its role in acute

inflammatory liver injury and septic multiorgan failure is yet undefined. We examined

RAGE in lipopolysaccharide (LPS) induced acute liver injury of D-galN sensitized mice

as a classical model for tumor necrosis factor alpha (TNF-α) dependent inflammatory

organ damage.

Methods: Mice (Rage–/– and C57BL/6) were intraperitoneally injected with D-galN

(300 mg/kg) and LPS (10 µg/kg). Animals were monitored clinically, and cytokines,

damage associated molecular pattern molecules (DAMPs) as well as liver enzymes

were determined in serum. Liver histology, hepatic cytokines as well as RAGE mRNA

expression were analyzed. Cellular activation and functionality were evaluated by flow

cytometry both in bone marrow- and liver-derived cells.

Results: Genetic deficiency of RAGE significantly reduced the mortality of mice exposed

to LPS/D-galN. Hepatocyte damage markers were reduced in Rage–/– mice, and liver

histopathology was less severe. Rage–/–mice produced less pro-inflammatory cytokines

and DAMPs in serum and liver. While immune cell functions appeared normal, TNF-α

production by hepatocytes was reduced in Rage–/– mice.

Conclusions: We found that RAGE deletion attenuated the expression of

pro-inflammatory cytokines and DAMPs in hepatocytes without affecting cellular immune

functions in the LPS/D-galNmodel of murine liver injury. Our data highlight the importance

of tissue-specific RAGE-signaling also in acute inflammatory liver stress contributing to

sepsis and multiorgan failure.
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INTRODUCTION

Management of severe sepsis is still one of the major challenges in
medicine today. It is associated with high mortality rates of over
50%. In particular, preventive strategies and effective treatment
options for life-threatening multiorgan failure and acute septic
shock syndromes remain relatively scarce (1–3).

Pathogen associated molecular patterns (PAMPs) such
as lipopolysaccharides (LPS) are critically involved in the
pathogenesis of bacterial sepsis. During the early response
to infection, dysregulation and overproduction of acute-phase
cytokines correlate with morbidity and lethality in humans as
well as in animal models of sepsis. Rodents are known to be
more than 1,000-fold less sensitive to LPS compared to humans
and thus, they are often sensitized by pretreatment with the
amino sugar D-galactosamine (D-galN) (4). Injection of D-galN
together with LPS is reported to result in a sensitization of up
to 10,000-fold toward the initial stimulus. D-galN is metabolized
exclusively in the liver and causes a selective depletion of
uridine nucleotides culminating in hepatic transcriptional block
(5). However, although D-galN can severely sensitize mice to
the lethal effects of LPS, it is hardly toxic on its own (4).
Moreover, it has been shown that LPS challenge in D-galN-
sensitized mice primarily causes fulminant hepatitis and only
accounts to a secondary multiple organ dysfunction syndrome
(MODS) (6).

In the LPS/D-galN model of hepatic injury, the pro-

inflammatory cytokine tumor necrosis factor α (TNF-α) seems
to be both necessary and sufficient to mediate lethality due

to the consecutive septic shock (5, 7, 8). However, the exact
mechanisms of hepatic damage and the cause of lethality have
not been resolved at the molecular level. Although neutralization

of TNF-α or interleukin 1 β (IL-1β) did not reduce mortality in
sepsis trials (9, 10), experimental and clinical data have shown
that these proinflammatory cytokines with specific relevance
for innate immune functions are important mediators of severe
sepsis (11, 12).

However, sepsis is not limited to the interaction of immune
cells with pathogens but is also driven by endogenous mediators
collectively termed “damage associated molecular patterns”
(DAMPs), danger signals, or “alarmins.” Sepsis-like disease can
even develop in sterile conditions leading to a process collectively
also termed “systemic inflammatory response syndrome” (SIRS).
The receptor for advanced glycation end products (RAGE) is
a multiligand pattern recognition receptor (PRR) recognizing
a wide range of DAMPs upon inflammation and injury
(13). Ligands include advanced glycation endproducts (AGEs),
high mobility group box 1 (HMGB1), amyloid-β peptide, β2-
integrins and S100/calgranulins, especially the S100A8/S100A9
heterocomplex (14). It is well-established that engagement of
RAGE leads to release of pro-inflammatory cytokines via nuclear
factor-kappa B (NF-κB) mediated pathways (15). Except for
the lung, RAGE is expressed at relatively low basal levels in
healthy tissues (16, 17). Under pathophysiological conditions like
in diabetes, inflammation or neurodegeneration, RAGE can be
dramatically upregulated (14, 18). This receptor is also expressed
on hepatic stellate cells, epithelial hepatocytes and Kupffer cells

(19, 20). However, its contribution to inflammatory liver disease
is still an unresolved issue (21).

RAGE mediates function and migration of monocytes and
neutrophils in a DAMP-dependent manner (22–24). RAGE is
also known to protect against bacterial pneumonia (25). In
addition, a role in the progression of gut and joint inflammation
has been shown (26, 27). It thus appears likely that this receptor
plays a role in DAMP-mediated hyperinflammation following
tissue injury. Initial results have shown that RAGE is particularly
involved in innate immune responses during sepsis not only at
the initiating steps but also in the phase of perpetuation (28).
While initially adaptive immune functions have been described
unaffected, later a role of RAGE also in inflammatory activation
of antigen-primed T cells has been proposed (29). However, the
role of RAGE during infection and sepsis remains complex, as it
may contribute to the protection against bacterial dissemination
on the one hand and to the progression of inflammatory organ
damage on the other hand (30–32).

To better understand the RAGE axis during hepatic
inflammation and sepsis, we used the murine LPS/D-galN
induced liver injury model in RAGE gene deficient (Rage–
/–) and C57BL/6 wildtype (wt) mice (4). We found that
deletion of RAGE attenuated the hepatic expression of pro-
inflammatory cytokines, while the activation of immune cells
was unaffected. More importantly, Rage–/– mice also displayed
improved survival after challenge with LPS/D-galN doses lethal
for wt littermates. Our findings in this highly liver-specific
inflammatory injury model highlight the importance of RAGE
in pathologic conditions where both DAMP- and PAMP-related
signaling triggers potentially fatal MODS.

MATERIALS AND METHODS

Animals
Rage–/– mice were generated as described in detail in the
Supplementary Methods. All animals were housed together with
C57BL6/J wildtype mice in the animal facility of the University
Hospital Münster under standard pathogen-free conditions. All
animal procedures were conducted in accordance with the
German Animal Welfare Act and approved by the responsible
State Agency (LANUVNRW reference No. 84-02.04.2014.A223).

D-galN/LPS Induced Inflammatory Liver
Injury
Animals were co-injected with 300 mg/kg D-galN and 10
µg/kg LPS from E. coli 055:B5 (both from Sigma-Aldrich,
Taufkirchen, Germany), diluted in sterile pyrogen-free saline
(B. Braun Melsungen AG, Melsungen, Germany). Animals were
monitored for survival until times indicated or until appropriate
endpoints were reached and then sacrificed by CO2 inhalation
and cervical dislocation.

Preparation of Murine Liver Specimens
Immediately after death, the abdomen was opened and blood
was collected from the heart. Infusion of phosphate buffered
saline (PBS) containing EDTA and HEPES was initiated into
the right ventricle to blanch the liver. After bleaching, the liver
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was perfused with Dulbecco’s modified eagle medium (DMEM,
low glucose) containing penicillin/streptomycin, HEPES and
type 4 collagenase. The portal vein was cut and also perfused
with digestion medium. After removal of the gallbladder, the
liver was carefully excised from the abdomen. The organ was
minced into small pieces with sterile surgical scissors. The
minced pieces were further digested in a thermostatic bath
at 37◦C, stirring (100 rpm) for 10min. The preparation was
homogenized and forced through a 70µm cell strainer. The
cells were resuspended, centrifuged gently at 50 x g without
brake for 2min at room temperature. The cells were transferred,
followed by further washing steps and lysis of remaining
erythrocytes. Finally, the complete liver cells were counted
and resuspended in supplemented DMEM containing FCS.
Hepatocytes were cultured in type 1 collagen-coated plates, while
immune cells were further processed as described below. In
further experiments, the liver was directly excised, transferred to
formalin-alcohol fixatives and embedded into paraffin for later
immunohistochemistry (see below).

Isolation of Intrahepatic Immune Cells
(IHICs)
Single cell suspensions of IHICs were prepared by mechanical
dissociation as outlined above and further processed as
previously described (33). For intracellular cytokine staining
experiments, cells were further enriched using MojoSort Mouse
CD45 Nanobeads (BioLegend, San Diego, CA, USA). IHICs were
plated to isolate Kupffer cells by adhesion at 37◦C for 30min. The
cells were stimulated as indicated and subsequently analyzed by
flow cytometry.

Processing of Blood and Isolation of
Bone-Marrow-Derived Cells
Blood was collected from retro-orbital sinus vein into
heparinized 1.5ml microcentrifuge tubes for the measurement
of disease markers in monitoring experiments lasting up to
4 h. Neutrophils were isolated using the EasySepTM Mouse
Neutrophil Enrichment Kit (Stemcell Technologies, Cologne,
Germany). Bone marrow-derived cells were handled as described
previously (34). Cells were centrifuged (350 × g, 5min, RT) and
remaining red blood cells were lysed. For neutrophil isolation,
the cell suspension was transferred into sterile 5ml FACS
tubes and neutrophils were isolated using the EasySep Mouse
Neutrophil Enrichment Kit according to the manufacturer’s
protocol. For bone marrow derived macrophage (BMDM)
isolation, cells were initially incubated at 37◦C and 5% CO2

to allow for attachment. Attached cells were cultured in 20%
L929 cell supernatant conditioned DMEM containing 2mM
L-glutamine, 0.1mM non-essential amino acids (all Invitrogen,
Karlsruhe, Germany), penicillin (100 U/mL), streptomycin (100
mg/mL), and 10% FCS (all Biochrom). Cells were plated on
petri-culture dishes in DMEM containing 10% FCS. After 30min
incubation at 37◦C, non-adhering cells were washed away. The
remaining cells were detached using ice-cold 5mM EDTA PBS
buffer. BMDMs were fully differentiated and ready for use after 7
days of culture.

Analysis of Serum and Culture
Supernatants
Determination of cytokine concentrations in culture
supernatants and serum was performed using a multiplex
assay (LEGENDplexTM Mouse Inflammation Panel; BioLegend).
ALT and AST levels were measured using AmpliteTM fluorimetric
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) assays (AAT Bioquest, Sunnyvale, CA, USA). S100A9
concentrations in serum were determined using the mouse
S100A9 DuoSet ELISA (R&D Systems, Wiesbaden, Germany).
HMGB1 levels were assessed by a HMGB1 ELISA Detection Kit
(Chondrex Inc., Redmond, WA, USA).

Flow Cytometry
Cells were stained with 1µg/ml fluorochrome-conjugated
antibodies as described previously (34). The used
monoclonal antibodies are given in Supplementary Table 1.
Intracellular staining of cytokines was performed using
fixation/permeabilization buffer (eBioscience, San Diego, CA,
USA). Prior to intracellular staining with anti-TNF antibody,
cells were stimulated with 1X cell stimulation cocktail (plus
protein transport inhibitors) (eBioscience) for 3 h and incubated
with rat anti-mouse CD16/CD32 antibodies to block non-specific
binding of immunoglobulin to Fc receptors (eBioscience).
Samples were analyzed on FACSCanto (BD Immunocytometry
Systems, Heidelberg, Germany) or CyFlow R© Space (Sysmex
Partec GmbH, Görlitz, Germany) flow cytometers.

Functional Characterization of Phagocytes
Phagocytic capacity and reactive oxygen species (ROS)
generation of monocytes and neutrophils were analyzed as
described previously (34). Briefly, phagocytosis of BMDM
was determined by incubation with fluorescein labeled E. coli
particles for 1 h. Neutrophils were incubated with pHrodo R©

Green E. coli BioParticles R© (Thermo Fisher Scientific, Waltham,
MA, USA) for 1 h at 37◦C. To induce ROS production,
BMDM or neutrophils were stimulated with LPS (10 ng/mL;
Sigma-Aldrich) for 4 or 1 h at 37◦C in the presence of 15µM
dihydrorhodamine 123 (Merck, Darmstadt, Germany) for the
final 15min, respectively. For flow cytometry-based direct
quantification of neutrophil extracellular traps (NETs) release
from neutrophils, 1 × 105 freshly isolated murine bone marrow
derived neutrophils in RPMI 1640 (without Phenol Red) were
transferred into a sterile 5ml FACS tube and stimulated with
4µM ionomycin. After fixation and blocking of unspecific
binding sites, the cells were stained for citrullinated histone
H3 (citH3) and myeloperoxidase (MPO) to identify NETs. As
secondary antibody for citH3, polyclonal AF647-conjugated
donkey anti-rabbit IgG antibody was used (Biolegend). Samples
were analyzed on a CytoFLEX flow cytometer (Beckman Coulter,
Krefeld, Germany).

Real-Time Quantitative PCR
Gene expression analysis was performed as previously described
(35). Real-time quantitative PCR was performed on a CFX384
Touch real-time PCR detection system (Bio-Rad Laboratories,
Munich, Germany). Relative mRNA levels were determined by
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normalization to the housekeeping gene(s) RPS9, HPRT, and
GAPDH. Primers are listed in Supplementary Table 2.

Immunohistochemistry and
Immunofluorescence Microscopy
Livers were excised and transferred to formalin-alcohol fixatives
immediately. Paraffin embedded tissues were cut at 3–5µm,
de-paraffinized, treated with proteinase K and blocked with
10% BSA in PBS containing 0.05% Tween and then incubated
overnight at 4◦C with primary antibodies diluted in PBS
containing 2% BSA. S100A8, S100A9 (rabbit-anti-S100A8 or
-S100A9, Thermo Fisher Scientific) and HMGB-1 (rabbit-
anti-HMGB1, Abcam) were stained to localize DAMPs in
liver sections, using goat-anti-rabbit biotinylated secondary
antibodies and peroxidase. Slides were counterstained with
haematoxylin eosin (HE) and analyzed using a cumulative
damage scoring system (Supplementary Table 3) by an observer
blind to the treatment groups. For immunofluorescence analyses,
sections were stained with primary antibodies followed by
incubation with fluorochrome-conjugated secondary antibodies.
DAPI was used for staining of nuclei. All stainings were
visualized using an AxioObserver.Z1 microscope (Carl Zeiss,
Oberkochen, Germany).

Statistical Analysis
Data are expressed as mean ± SEM unless stated otherwise.
For non-normally distributed variables Mann-Whitney tests
were used. Otherwise data was analyzed by one-way ANOVA
or repeated measures ANOVA with Fisher’s LSD test, as
appropriate. Survival was analyzed using Log-rank (Mantel-Cox)
tests. Statistical differences were considered significant when p
was < 0.05.

RESULTS

RAGE Deficiency Attenuates LPS/D-galN
Induced Mortality
Rage–/– and C57 wildtype mice were intraperitoneally (i.p.)
injected with D-galN (300 mg/kg) and LPS (10 µg/kg). All
animals showed clinical signs of disease such as decreased
locomotion and reduced grooming as early as 4–6 h after
challenge. However, there was a significant reduction of mortality
in Rage–/–mice. The experiments had to be terminated after 12 h.
Whereas, only 7/20 (35%) of the wildtype animals were still alive
at this time point, 16/20 (80%) of Rage–/– mice still survived up
to 720min (Figure 1A).

Disease Markers Are Decreased in Rage–/–
Mice at the End of the Experiment
As a means to examine the overall disease burden in the
challenged mice, the concentrations of inflammatory biomarkers
and liver enzymes were determined in blood obtained from LPS/
D-galN-challenged surviving mice which had to be sacrificed
after 12 h (at the end of the experimental observation period).
All analyzed biomarkers of disease were significantly lower
in Rage–/– mice compared to wildtype mice (Figure 1B). To
measure hepatocyte damage, we examined serum ALT and AST

activity. ALT/AST levels were massively increased compared to
untreated control animals in wildtype but not in RAGE-/- mice.
Administration of LPS or D-galN alone produced a moderate or
no increase in serum ALT and AST levels (data not shown). As
the LPS/D-galN liver injury model is known to depend on TNF-
α, levels of this cytokine were analyzed. Furthermore, S100A9
is an important DAMP molecule and a RAGE ligand that is
also known to promote lethal endotoxin-induced shock (36).
Consistently, S100A9 serum levels were increased after LPS/D-
galN injection and, more importantly, significantly reduced in
Rage–/–mice compared to wildtype mice.

Monitoring of Inflammatory
Cytokines/Chemokines Early After
Challenge
As not all animals survived up to the final time point and it
seemed conceivable that markers even peak before the end of
the observation period, we consecutively monitored the levels
of inflammatory cytokines/chemokines in serum of Rage–/– and
wildtype mice to account for the sequence of events preceding
massive liver injury and death (Figure 1C). At early time points
after challenge, TNF-α levels rose very rapidly in the circulation,
reaching a peak at 1 h. Bursts of IL-6, IL-1β, HMGB-1 and
the chemokine MCP-1 at 2 h followed the very early rise in
TNF-α. Other cytokines also showed a rise after challenge.
The response seen with most serum factors was attenuated in
Rage–/–mice (Figure 1C). Administration of LPS alone induced
similar responses of cytokines and chemokines, but D-galN
alone did not generate a significant increase in vivo (data not
shown), confirming LPS to be required as an inflammatory
cytokine/chemokine inducer. However, more importantly, the
rise of pro-inflammatory molecules was significantly reduced in
Rage–/–animals, affirming the impact of RAGE signaling on their
in vivo production.

Reduced LPS/D-galN-Induced Hepatic
Injury in Rage–/– Animals
Next, we aimed to analyse whether the more prominent
clinical and laboratory-proven deterioration of wildtype animals
after LPS/D-galN administration was actually due to liver
injury. For this purpose, the liver was explanted from mice
that had been challenged with LPS/D-galN for up to 4 h.
Already macroscopically, the challenged mice showed hepatic
enlargement and hemorrhage, which appeared more severe
in wildtype animals. Microscopic evaluation of the hepatic
histology revealed characteristic changes of organ architecture
and confirmed massive apoptosis and hemorrhagic liver necrosis
of all wildtype mice. Affected animals exhibited a massive
neutrophil infiltration (Figure 2A). In contrast, Rage–/– mice
showed a minimal infiltration of neutrophils. There was only
little injury and minor hemorrhagic necrosis in livers from Rage–
/– mice, resulting in a significantly reduced cumulative damage
score (Figure 2B).

Activation of RAGE can perpetuate inflammation by NF-κB
dependent sustained RAGE expression, which creates a positive-
feedback loop amplifying its own expression (14, 37). To account
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FIGURE 1 | Outcome of Rage–/– and wildtype (wt) mice after LPS/D-galN challenge. Mice were injected i.p. with 300 mg/kg D-galN and 10 µg/kg LPS. (A) Mouse

survival post-injection is shown (n = 20, respectively, for each genotype in 3 independent experiments). (B) Serum levels of proinflammatory cytokines TNF-α, S100A9

as well as liver enzymes ALT and AST were measured immediately after mice succumbed to LPS/D-galN induced inflammatory liver injury (n = 3–4). (C) Wildtype (wt,

light gray circles) and Rage–/– mice (dark gray circles, n = 4 each time point) were sacrificed after LPS/D-galN challenge at the time points indicated. Serum levels of

TNF-α, IL-1β, MCP1, Interleukin-6, HMGB-1, IFN-γ, IL-1α, IL-12p70, IL-10, GM-CSF, IFN-β, IL-27, and IL-17A. The latter was not detectable. Data are expressed as

the mean (± SEM). Statistical analysis was performed using Log rank (Mantel-Cox) (A) or Mann-Whitney test (B,C) comparing wt to Rage–/– mice. *p < 0.05, **p <

0.01, ***p < 0.001.
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FIGURE 2 | Hepatic pathology after LPS/D-galN challenge. (A) Histopathology in LPS-induced liver damage of D-galN sensitized Rage–/– and wildtype (wt) mice.

H&E staining of wt and Rage–/– livers at 50x (upper panel, scale bar = 500 µm) and 400x (lower panel, scale bar = 50 µm) original magnifications. Massive necrosis,

(Continued)
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FIGURE 2 | associated with intralobular hemorrhage (arrows), destruction of hepatic architecture as well as hepatocellular apoptosis (open arrows) and infiltration of

neutrophils (red arrowheads) was visible in WT animals. Slight hepatic necrosis with minor inflammatory cell infiltration was observed in Rage–/– mice. (B)

Quantification of LPS/D-galN induced inflammatory liver injury using a damage score that combines grading of hepatocellular necrosis, small vacuolisation and/or cell

lysis, accumulation of erythrocytes in the sinusoids and neutrophilic infiltration at the time points indicated (n = 4 each time point). (C) Rage mRNA expression in wt

liver tissue at 2 and 4 h after LPS/D-galN injection (n = 3). (D) Liver mRNA expression of pro-inflammatory cytokines Tnf-α, Interleukin-1 beta, and Interleukin-6 in mice

after 4 h of LPS/D-galN induced inflammatory liver injury (n = 4–5). Data represent the mean + SEM of the results obtained from two independent experiments.

Statistical analysis was performed using Mann-Whitney test comparing wildtype to Rage–/– mice (B,D) or untreated to challenged wildtype mice (C), *p < 0.05, **p <

0.01. LPS, lipopolysaccharide; D-Gal, D-galN (D-galactosamine).

for this possibility also in inflammatory liver injury, we measured
mRNA expression of RAGE in liver extracts 2 and 4 h after
injection of LPS and/or D-galN (Figure 2C). Interestingly, sole
D-galN injection induced a rise in RAGE transcripts that was
further amplified by simultaneous LPS treatment rapidly after
challenge, whichmay further propagate liver injury in this model.
We were not able to analyse RAGE protein expression in different
cells, such as hepatocytes and Kupffer cells. However, we found
that in specimens from the liver after 4 h, organ cytokine mRNA
(TNF-α, IL-1β, IL-6) production was significantly lower in Rage–
/– liver specimens compared to wildtype mice (Figure 2D). In
addition, we found that the expression of DAMPs S100A8 and
HMGB-1 correlated with the cell infiltration and tissue damage
after challenge (Figure 3), which was less extensive in Rage–
/– mice. HMGB-1 was expressed in all parenchymal and non-
parenchymal cells with a predominant nuclear staining pattern,
while S100A8 was restricted to the cytoplasm of infiltrating
immune cells and not present in hepatocytes.

Rage–/– Bone Marrow-Derived Monocytes
and Neutrophils Are Not Functionally
Impaired
A striking feature of the aggravated hepatic disease in wildtype
mice was the prominent neutrophil infiltration. Since neutrophils
are major producers of ROS and involved in destructive
tissue damage when over-activated, we evaluated the functional
properties of isolated CD11b+Ly6G+ granulocytes from blood
and bonemarrow of Rage–/– and wildtype mice. ROS production
or phagocytosis by granulocytes did not seem to depend
on the presence of RAGE (Figures 4A,B). In addition, NET
formation is a mode of neutrophils to react to stimuli, expose
pro-inflammatory signals and counteract infectious invasion.
In our experiments, there was a strong induction of NET
formation with around 60% of netting cells after treatment with
ionomycin. LPS stimulation had little effect on NETosis (data not
shown). However, NETosis appeared equally effective in Rage–
/– neutrophils (Figure 4C). RAGE has been implicated in the
activation of mononuclear phagocytes. We found that adherence
(not shown) and ROS production of BMDM from Rage–/– mice
were unaltered (Figure 4D). Furthermore, the phagocytic activity
toward Gram-negative bacteria was comparable (Figure 4E).
Importantly, also in vitro TNF-α secretion of BMDM andmature
peritoneal macrophages (not shown) were induced by incubation
with LPS, but did not differ in Rage–/– cells, rendering it
unlikely that peripheral monocyte and macrophage functionality
is responsible for the observed phenotype in Rage–/– mice
(Figure 4F).

Liver Injury Is Associated With Cytokine
Responses of Hepatocytes
We have observed a strong production of cytokines, chemokines
and DAMPs both systemically and locally in the liver,
which was attenuated by RAGE-deficiency (Figures 1, 2).
Monocytes/macrophages are supposed to be potent producers
of cytokines such as TNF-α in response to innate immune
activation as in sepsis. In this regard, it appeared rather surprising
that innate immune functions were not different in the Rage–
/– animals (Figure 4). In particular, TNF-α production was
comparable between Rage–/– and wildtype animals. TNF-α
is the crucial disease driver in the LPS/D-galN model (5).
When cultured hepatocytes were stimulated with LPS/D-galN,
an upregulation of cytokines and TNF-α as well as HMGB1
release was provoked, which was significantly lower in Rage–
/– cells (Figures 5A–D). To further account for the exclusive
liver environment, we isolated CD45+ IHICs (Figure 5E)
and analyzed the intracellular TNF-α production after 4 h of
stimulation with LPS. Neither intrahepatic phagocytes including
Kupffer cells (Figure 5F) nor intrahepatic T lymphocytes
(Figures 5G,H) revealed a strong reactivity independent of the
genotype. In lymphocytes, a strong induction of TNF-α was seen
when cells were stimulated with PMA/ionomycin, which was
used as a positive control (Supplementary Figure 2). However,
we conclude that a tissue- and cell specific mechanism involving
RAGE signaling enhances TNF-αmediated damage and lethality.

DISCUSSION

Our data indicate that RAGE contributes directly to LPS/D-galN
induced inflammatory liver damage by influencing hepatocyte
activation and injury and not just as a secondary effect
by regulating immune cell activation. RAGE serves as a
receptor for non-enzymatically glycosylated molecules, leading
to perpetuated inflammation and diabetic complications. It
also binds endogenous danger signaling molecules mediating
inflammation in non-infectious settings, thereby often priming
cells for insults of pathogenic origin (38). RAGE is thus proposed
to be involved in the pathogenesis of sepsis, mostly due to
its ability of hyperactivation and perpetuation of inflammation.
DAMPs such as S100 proteins, amyloid, or HMGB-1 are elevated
in septic patients (28, 39, 40). These RAGE ligands have been
shown to be important pro-inflammatory mediators promoting
sepsis-related shock (36, 40–42). However, the release of RAGE
ligands may target multiple cell types or receptors and thus the
exact role of RAGE remains puzzling. The liver is an important
site for immune surveillance and clearance of bacteria and
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FIGURE 3 | Localization of DAMPs in hepatic tissue. (A) Analyses in non-challenged wildtype (wt) or Rage–/– mice. Immunohistochemical staining at 200x (upper

panels, scale bars 50 µM) confirmed the expression of HMGB-1 in parenchymal and non-parenchymal hepatic cells, which was restricted to the nucleus. S100A8

was only found in the cytoplasm of few Kupffer cells (white open arrows). Immunofluorescence analyses at 400x (lower panel, scale bars 50 µM) confirmed the

distinct staining patterns of HMGB-1 (FITC, green) and S100A8 (Alexa fluor 488, red). DAPI (blue) was used to counterstain nuclei. (B) In the liver of mice 4 h after

LPS/D-galN injection, there was a stronger staining of HMGB-1, but without significant translocation from the nucleus into the cytoplasm within the short timeframe. In

addition, more infiltrating S100A8-positive myeloid cells were present (white open arrows). When compared to Rage–/– animals, the expression of DAMPs was more

pronounced in damaged liver sections from wt mice.
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FIGURE 4 | Functional characterization of neutrophils and bone marrow derived monocytes/macrophages (BMDM). (A) ROS production of neutrophils from wildtype

(wt) or Rage–/– mice after 1 h. (B) Phagocytosis of FITC-labeled E. coli by neutrophils after 1 h. (C) NETosis of neutrophils after treatment with ionomycin (4µM) for

60–180min. (D) ROS production of BMDM after 1 h. (E) Phagocytosis of FITC-labeled E. coli by BMDM after 1 h. (F) Release TNF-α by BMDM into the cell culture

supernatant after 6 h without (w/o) or with LPS (100 ng) stimulation. Data are expressed as the mean + SEM. MFI, mean fluorescence intensity; ROS, reactive oxygen

species.

their products. As such, liver cells express receptors for PAMPs
and DAMPs, including members of the TLR system (43) but
also RAGE.

Here, we demonstrate that genetic deletion of RAGE has a
strong effect on morbidity and mortality and prevents full blown
liver failure in a model of LPS-induced inflammatory liver injury
after D-galN sensitization in mice. In line with our results, Rage–
/– mice have been reported to be protected in a cecal ligation
and puncture (CLP) polymicrobial sepsis model as well as in a
model of systemic listeriosis (28, 44). Furthermore, in murine
pneumococcal sepsis, it has been shown that RAGE deletion
and administration of humanized anti-RAGEmAb could protect
from lung inflammation (30, 45). LPS has also been proposed
to bind directly to RAGE (46). In the same report, using an
endotoxin dose of 50 mg/kg LPS, Rage–/– mice were reported to
be spared significantly from LPS induced mortality, in concert
with decreased TNF-α and HMGB-1 levels. Consistently, we
also found a protective effect of genetic RAGE deletion in
conjunction with diminished cytokine and DAMP production
in Rage–/– animals. Importantly, we used a 1,000-fold lower
LPS dose, rendering it unlikely that direct LPS-RAGE interaction
explains the phenotype observed. Against this background, low-
dose LPS on its own does not induce specific liver injury (6).With
respect to HMGB-1 release and TNF-α production, Rage–/–mice

have also been reported to respond less to lethal, however not
liver-specific (high dose) endotoxin challenge (46). As we have
demonstrated, the LPS/D-galN treatment results in a very acute
and liver-specific inflammatory response that is characterized
by a fast and massive increase of TNF-α, HMGB-1 and other
pro-inflammatory cytokines and DAMP molecules.

Previous data showed that RAGE serves a complex role in
bacterial sepsis. It can have a protective role by facilitating
anti-infective immune reactions on the one hand, while on the
other hand it can have a sepsis-promoting role by its pro-
inflammatory function. As a consequence, increased bacterial
dissemination was observed in Rage–/– mice in an E. coli
peritonitis model accompanied by more hepatocellular injury
and exaggerated systemic cytokine release. However, a much
longer time course of 20 h was required until hepatic injury
appeared (31). Other studies demonstrated that inhibition of
RAGE during sepsis attenuates the systemic inflammatory
response and organ damage. In line with these observations, our
data provide further evidence of RAGE contributing to acute liver
injury during inflammation.

Monocytes and macrophages are important mediators of
inflammation but also contribute to tissue damage (47) and TNF-
α production in the LPS/D-galNmodel (4, 5). In particular, in the
LPS/D-galN model, Kupffer cells as resident liver macrophages
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FIGURE 5 | Characterization of hepatocytes and intrahepatic immune cells (IHICs). Primary liver cells were generated by established protocols. Cells were further

isolated to separate hepatocytes and IHICs. (A–D) After culture for 4 days, hepatocytes were treated for 4 h with LPS (1µg/ml) and D-galN (10mM) or left untreated.

(Continued)
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FIGURE 5 | Relative mRNA expression of Il-1β (A) and Tnf-α (B) in hepatocytes quantified by qRT-PCR. Gene expression levels were normalized to two housekeeper

genes (Hprt and Rps9). (C) HMGB1 and (D) TNF-α concentrations released from hepatocytes into the supernatants after in vitro stimulation of hepatocytes with LPS

and D-galN for 4 h. The stimulation with D-galN alone had no effect (not shown). Data are expressed as the mean ± SEM of two experiments (n = 4 per group). IHICs

were isolated and subsequently stimulated with LPS for 4 h. Relative mRNA expression of Il-1β (E) and Tnf-α (F) in hepatocytes was quantified by qRT-PCR. Gene

expression levels were normalized to two housekeeper genes (Hprt and Rps9). (G,H) IHICs were isolated and subsequently stimulated with LPS for 4 h in the

presence of a protein transport inhibitor, followed by intracellular staining and FACS analyses to quantify intracellular TNF-α production. (G) Quantification of

intracellular TNF-α production in IHIC isolated from Rage–/– and wildtype (wt) mice. (H) Quantification of intracellular TNF-α production in F4/80+/CD11b+ cells

(resident macrophages/Kupffer cells). (I,J) Quantification of intracellular TNF-α production in CD4+ or CD8+ T lymphocytes. Data are depicted as mean ±SEM of two

experiments (n = 4 per group). Data are expressed as the median ± SEM of two experiments (n = 4 per group). Statistical analysis was performed using one-way

ANOVA; *p ≤ 0.05, **p ≤ 0.01. LPS, lipopolysaccharide; D-Gal, D-galN, D-galactosamine.

may be involved in the pathogenicity (5). However, we found
bone marrow derived monocytes/macrophages and primary
myeloid cells isolated from the liver of Rage–/–mice functionally
indistinguishable from wildtype controls. Besides the “cytokine
storm” that we have observed as early as 1 h after LPS/D-galN
challenge, we have also found elevated levels of the surrogate
markers of hepatocellular damage ALT and AST, which were
less prominent in Rage–/– mice compared to wildtype mice.
In addition, the RAGE-ligands HMGB-1 and S100A9 were
significantly lower expressed in Rage–/– mice. Interestingly,
S100A9 has been reported to act as a necessary factor for the
recruitment of neutrophils in acute and chronic liver injury (48).
Undoubtedly, infiltration of neutrophils into the liver and their
activation is crucial for host-defense and removal of cell debris.
However, excessive neutrophil migration and over-activation can
also cause tissue damage or even liver failure (49). In support of
this concept, we histologically observed infiltration of neutrophils
that was less pronounced in Rage–/– mice, consistent with
the known HMGB-1/RAGE dependent, neutrophil-mediated
injury amplification after acetaminophen induced liver damage
(50). Engagement of neutrophils by surface Mac-1 receptors
and through HMGB-1/RAGE interaction is known to stimulate
NADPH dependent ROS production (51) that can also be a
possible cause for cytotoxic necrosis when excessively generated
(52). A role of murine RAGE for the phagocytosis of Klebsiella
pneumoniae has been demonstrated (25). Importantly, we did not
find intrinsic differences in ROS production and phagocytosis of
E. coli between wildtype and Rage–/– neutrophils.

The model of D-galN sensitization is highly specific for
the liver, as it targets biochemical carbohydrate metabolism
pathways only present in hepatocytes (53). D-galN can deplete
uridine phosphate pool from hepatic cells, resulting in a
reduction of nucleic acid production and protein synthesis.
However, in published studies, there was not a complete block
of transcription when looking at rapidly inducible factors such
as cytokines in liver tissue. Our results showed that LPS/D-
galN significantly induced pro-inflammatory cytokines mRNA
and protein expression in hepatocytes. We can extrapolate from
published data, most of it using rat hepatocytes rather than
murine cells, that RNA synthesis at D-galN doses as used by
us is reduced starting after around 2 h, but not completely
abolished (54–57). Our data have been generated in ex vivo
cultures after stimulation lasting only 4 h. As is evident from
our results, adding D-galN to LPS leads to some reduction of
mRNA instead of a further increase (Figure 5). This does not

exclude that in vivo, over time, D-galN blocks transcription by
hepatocytes. To this end it remains to be shown whether liver
metabolism of Rage–/– mice is comparable to wildtype animals.
Nevertheless, we provide evidence that hepatocytes of Rage–
/– mice specifically respond with reduced TNF-α production
compared to control mice, suggesting a liver specific response
that is dependent on RAGE signaling and that most likely also
affects the pathology in the LPS/D-galN model. Hepatocytes are
strong producers of a variety of soluble acute phase reactants and
cytokines including TNF-α (58, 59). The cells express TLR4 and
can react to LPS stimulation, but a RAGE-dependency is a new
finding. Nevertheless, it has been demonstrated that parenchymal
liver cell activation drives LPS-induced SIRS. Furthermore,
LPS-induced murine systemic inflammation involves MCP-1
overexpression in activated parenchymal cells (60, 61). We
also found early elevation of MCP-1 in mice after LPS/D-galN
challenge, which was less pronounced on Rage–/– background.

There are some limitations to our studies. First, it is known
that both epithelial hepatocytes and stellate cells express RAGE
(19, 20). We were not able to further differentiate the exact cell
types responsible for the significant reduction of inflammatory
liver injury in Rage–/– mice. Our cultures of isolated liver
cells could also still contain some remaining Kupffer cells,
hence multiple hepatic cell components may have contributed
to the overall liver-specific effects. Second, the exact mechanism
whereby RAGE modulates signaling on the molecular level and
the various targets of RAGE interactions remain unresolved.
Third, we focus on TNF-α as the cytokine that is known
to be responsible for lethality in the LPS/D-galN model. We
cannot exclude that hepatocytes facilitate the disease processes
by additional factors (e.g., chemokines) that can also support
neutrophil infiltration as demonstrated in our experiments.

In summary, the present study demonstrates that genetic
deletion of RAGE has a hepatoprotective effect against LPS/D-
galN-induced TNF-α dependent acute liver damage in mice.
We advance current knowledge regarding the mechanisms of
how RAGE affects liver injury in the context of an acute
inflammatory challenge. Although the etiology of MODS and
sepsis is definitely multi-factorial, the liver may be amenable
to therapeutic intervention by agents that target RAGE-
dependent signaling pathways and interrupt the underlying
disease mechanisms. In this way, our findings might prove to
be useful in the development of future strategies that limit
RAGE-related tissue damage in acute inflammatory liver injury
and sepsis.
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