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Abstract: A hyperspectral imaging system was for the first time exploited to estimate the core colour
of sausages stuffed in natural hog casings or in two hog casings treated with solutions containing
surfactants and lactic acid in slush salt. Yellowness of sausages stuffed in natural hog casings (control
group, 20.26 ± 4.81) was significantly higher than that of sausages stuffed in casings modified by
submersion for 90 min in a solution containing 1:30 (w/w) soy lecithin:distilled water, 2.5% wt. soy oil,
and 21 mL lactic acid per kg NaCl (17.66 ± 2.89) (p < 0.05). When predicting the lightness and redness
of the sausage core, a partial least squares regression model developed from spectra pre-treated
with a second derivative showed calibration coefficients of determination (Rc

2) of 0.73 and 0.76,
respectively. Ten, ten, and seven wavelengths were selected as the important optimal wavelengths for
lightness, redness, and yellowness, respectively. Those wavelengths provide meaningful information
for developing a simple, cost-effective multispectral system to rapidly differentiate sausages based on
their core colour. According to the canonical discriminant analysis, lightness possessed the highest
discriminant power with which to differentiate sausages stuffed in different casings.
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1. Introduction

Hyperspectral imaging (HSI), which can provide the spectral information along with the spatial
distribution from a subject, is superior to the traditional spectroscopic methods [1]. The prediction map,
as the most attractive part of HSI, enables the different attributes to be displayed from spot to spot in
samples [2–8]. It has been intensively applied for meat adulteration detection [9–12]; monounsaturated
and polyunsaturated fatty acid prediction in processed pork meats [13]; textural feature assessments
of normal and white striping broiler breast meat [14]; and monitoring bacterial contaminations in
chicken meat [15], the shelf-life of packaged bratwurst [16], and the pH [4], colour, [5] and triphosphate
content [6] in ready-to-eat sausages. Hitherto, no study on the interior colour change due to sausages
being stuffed in different modified casings has been done.

Natural casings are favoured by various sausage manufacturers due to their special cracking
bite and tenderness [17,18]: the consumption of natural casings is double that of artificial casings and
still dominates in the global casing market [19]. In addition to effective package [20–24] and cooling
methods [17,25–30] to extend the shelf-lives of foodstuffs, as an efficient method for food preservation,
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drying is also widely employed in the food industry [31,32]. In this case, casings should be not only
strong enough to hold the sausage batter, but also permeable to render water evaporation during
drying [29]. Nevertheless, the high-speed and efficient sausage manufacturing is hampered by the
occurrence of casing bursts, and so the properties of natural casings are requested to be improved [27].
By combining the methods used by Santos et al. [33] and Bakker et al. [34], the effects of solutions of
soy oil and soy lecithin together with lactic acid in slush salt were initially investigated by Feng et
al. [27]. According to the light microscopy, natural hog casings with the aforementioned treatment were
observed to be more porous [27]. Previous studies addressed the microbial attributes [35,36], volatile
composition [37], and physicochemical properties of sausages stuffed in modified casings [29,35,37].
HSI has showed its potential to monitor the evolution of surface sausage colour over time [2] and
to determine pH, colour, and adenosine triphosphate in big Japanese sausage slices [4–6]. However,
visualisation of the interior colour change related to hog casings with different modifications remains
unexploited. Colour is an important parameter that affects the acceptance of foodstuffs by consumers to
a great extent [5,38]. Conventionally, the colour is measured at a small random spot by an instrumental
colourimeter. As a result, obtaining the complete colour prediction map pixel by pixel is impractical
with this equipment. The distribution map generated by HSI can meet this requirement. Understanding
the interior colour changes of sausages with modified casings may provide useful information on how
quality changes in response to the unique modified casings.

Discriminant analysis (DA) is a method that can transform high-dimensional data into vectors
as a prerequisite procedure before completing the algorithmic model [39]. It can estimate whether
one of the samples belongs to defined groups according to the categories of selected variables [35,40].
According to the physicochemical and microbial attributes, sausages with different storage times and
different levels of phenolic extracts from olive vegetation water were classified by DA [41]. Varrà et al.
utilised the orthogonal partial last square-discriminant analysis to classify dry fermented sausages
treated with ionizing radiation and non-irradiated ones, with a 100% classification rate [42]. It is thus
interesting and of practical application to assess the effects of different casing modifications on the
colour attribute of dried sausages using DA.

Differently from the previous research in which sausages were monitored by HSI over storage,
the current study focuses on the feasibility of detecting the changes of core colour of sausages caused by
different treatments (i.e., the use of different casings) using HSI. Furthermore, the relationship between
colour attributes and different casing modifications is for the first time explained by discriminant
analysis. The aim of current study was to establish a quantitative model relating the spectral data
to the reference colour of the dried sausage core by means of partial least squares regression (PLSR).
Subsequently, wavelengths with high predictive power were selected and resulting prediction maps of
core colour were developed using algorithms of image processing.

2. Materials and Methods

2.1. Preparation of Samples and Measurement of Colour

Natural hog casings were purchased from a local casing company (Pakumogu.com, Niigata
Prefecture, Japan) and desalted before being put into the surfactant solution composed of soy lecithin
and soy oil. According to previous results on rupture force and burst pressure resistance [27], two
different casing modifications were conducted. For treatment 1, the concentrations of soy lecithin
(soy lecithin: distilled water) and soy oil were 1:27.5 (w/w) and 1.25% (w/w), respectively. The lactic
acid concentration in solid salt was 19.5 mL/kg and the residence time was 75 min. As for treatment
2, the concentrations of soy lecithin, soy oil, and lactic acid were 1:30 (w/w), 2.50%, and 21 mL/kg
NaCl, respectively. The residence time was 90 min. Distilled water was used to dissolve the surfactant
solutions by stirring with a magnetic agitation of 325 rpm and heating at 60 ◦C. The hog casings
were placed into the surfactant solution after it cooled to 25 ◦C for the corresponding reference time.
Subsequently, the casings were extracted without rinsing and stored in the slush salt with lactic acid
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for the residence time. Before sausage production, the modified casings were rinsed for 10 min to
eliminate modified solution and slush salt using distilled water.

The sausages were made with the following procedure: (1) the lean pork and back fat (Chinese
supermarket, Tokyo, Japan) were cut into small pieces sterilely and mixed with seasoning extracts,
Chinese white wine (55% ethanol), salt, sugar, and spice. Table 1 shows the detailed concentrations of
the sausage ingredients. (2) The mixture was cured for 1 h. Afterwards, the mixture was minced once
to sausage batter by using a plate (diameter: 5 mm). (3) The batter was stuffed using modified and
natural desalted hog casings (as control samples) via a stuffing machine (STX-4000-TB2-PD-BL, Electric
Meat Grinder and Sausage Stuffer, STX international, Tokyo, Japan). After being sectioned by twisting,
the sausages were hung in an oven at 45 ◦C for 24 h and ageing at 20 ◦C in a sterilised incubator for
another 24 h. The sausage sections were sterilely cut, vacuum packaged, and stored at 4 ◦C for 1 d.

Table 1. Sausage ingredients.

Concentration (% w/w)

Lean pork 43.44
Back fat 20.49

Chinese white wine 26.73
Spice and seasoning 4.90

Sugars 2.50

The reference colour of the sausage core was measured by a Minolta CR-700D colourimeter
(Konica Minolta Corp., Osaka, Japan) using CIE L* (lightness), a* (redness/greenness), and b*
(yellowness/blueness) colour space after hyperspectral images acquirement. Before measurement,
the colourimeter was calibrated by a standard white calibration plate and a standard D65 illuminate
and 2o observer. The colour measurement was conducted in triplicate.

2.2. Hyperspectral Imaging System

A visible near-infrared hyperspectral imaging equipment (JFE, Techno-Research Corporation,
Tokyo, Japan) working in the range 380–1000 nm was utilised to line scan (push-broom) the core of
the sausage. The specific system description can be found elsewhere [4–6]. As the white reference, a
uniform, stable, and high reflectance white ceramic tile (about 99% reflectance) was used for calibrating
the HSI system. As for the dark reference, calibration was performed by completely covering the
camera lens with an opaque cap. A reflectance mode was used for image acquisition, with the dark
room temperature controlled at 20 ◦C and relative humidity of 30%. The corrected reflectance (Rcorrected)
was obtained according to Equation (1):

Rcorrected =
Rraw −Rdark
Rwhite −Rdark

(1)

where Rraw, Rdark, and Rwhite were the reflectance images of raw, dark, and white, respectively. The
sliced sausage core (diameter: 2.48 ± 0.11 cm; height: 2.10 ± 0.20 cm) was placed onto a sterilised black
plastic background on a moving stage that had the speed of 2.08 mm/s. The stage was controlled by
Spectrum Analyzer software (version 1.8.5, JFE, Techno-Research Corporation, Tokyo, Japan) and the
spatial resolution of the acquired images was 0.75 mm per pixel. A hyperspectral image cube was
produced by scanning in the direction perpendicular to the spatial plane of ImSpector spectrograph,
and the hyperspectral images were processed and analysed via Spectrum Analyzer software. The
illumination system, composed of a 150 W Xe lamp (Super Bright 152S, SAN-EI Electric, Osaka, Japan)
and a 150 W tungsten halogen lamp (ColdSpot PCS-UHX, NPI, Tokyo, Japan), was fixed at 45◦ angles
from the imaging area. The total spectral bands were 125 with intervals of 5 nm.

As for the region of interest (ROI), the sausage cores with different modified casings were manually
selected to separate them from the background or other undesired sections. According to the ROI



Foods 2020, 9, 1089 4 of 14

selection procedure described by Siripatrawan and Makino [43], the centre of each sample with a size
of 50 × 50 pixels was selected, and the average spectra were used for a model development. After
the multivariate statistical models were established, the images were segmented automatically: all
pixels which had reflectance at 690, 685, and 685 nm for greater than 0.05 units were considered for
lightness, redness, and yellowness, respectively; 75% ethanol was used for sterilising all equipment
that contacted samples.

2.3. Model Development and Evaluation of Model Performance

One linear (partial least square regression (PLSR)) multivariate method was utilised for developing
calibration models in the full spectral range of 380–1000 nm. Several spectral data pre-treatments were
conducted prior to multivariate analysis (MVA) to improve the performance of the model. Those
pre-treatments were standard normal variate (SNV), normalisation, multiplicative scatter correction
(MSC), and first and second derivative. Two thirds of the total samples (n = 89) were selected for the
calibration set and the remaining one third was used as the validation set.

Model performance evaluation is an important task in MVA to confirm the predictive ability
and model robustness. The statistical values, namely, the mean square error of calibration
(RMSEC), prediction (RMSEP), and cross validation (RMSECV), and the determination coefficients
of calibration (Rc

2), prediction (Rp
2), and cross validation (Rcv

2) were used to estimate the predictive
capabilities [9,44,45]. A model with high R2, low RMSE, and a small absolute difference between
RMSEC and RMSECV is regarded as a good model [2]. The multivariate analyses of PLSR and all
computations were completed by The Unscrambler software (X 10.4, CAMO Software Inc., Trondheim,
Norway).

2.4. Selection of Important Optimum Wavelengths (IOW)

The weighted regression coefficients (BW) that yielded the best PLSR model were selected as
the important optimum wavelengths for colour. The new calibration models were created using the
selected important optimum wavelengths (those that contained large BW values irrespective of sign).
The predictive ability of the model using these wavelengths was compared to the predictive ability
obtained using the full spectrum. The purpose of doing this was to simplify the model and to improve
its accuracy [4–6,45]. If the model accuracy established by important optimum wavelengths performs
comparably to the accuracy obtained when using the full spectrum, then the simplified model using
the IOW could be proposed for an efficient online multispectral imaging system.

2.5. Sausage Properties Visualisation

As aforementioned, hyperspectral imaging generates three-dimensional matrices that contain a
large amount of spatial and spectral information. It is a vital approach to understand the heterogeneity
of the sausage via visual appraisal in each pixel in the image. In this study, the calibration model
built with the selected IOW was used to produce the distribution maps for core colour of sausages
stuffed using modified and control casings. A 2D matrix was generated by unfolding the 3D HSI
at the IOW. Consequently, the columns represented the selected IOW and each row stood for the
spectrum of a pixel. Afterwards, the spectrum of each pixel in the HSI was multiplied with regression
coefficients obtained from PLSR model. In this way, the visualisation map was constructed and can
schematically display the colour heterogeneity of the sausages; it is illustrated with a linear colour
scale with different colours, standing for corresponding values of predicted colour of the sausage cores.
All of these visualisation procedures were computed with the MATLAB software (R2017b; MathWorks
Inc., Natick, MA, USA).

2.6. Statistical Analysis

Sausages with different modified casings were discriminated by canonical discriminant analysis
according to the colour parameters (Statistics 26, IBM, Armonk, NY, USA). One-way ANOVA was used
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for analysing the effects of different casing treatments on the core colour of the sausages (Statistics 26,
IBM, Armonk, NY, USA).

3. Results and Discussion

3.1. Calibration Models at Full Wavelengths

As a powerful tool for multivariate data analysis, partial least square regression (PLSR) has
been extensively applied in the analysis of data with collinear variables in the independent and
dependent variables [4–6]. The correlations between spectra of the sausage samples and relevant
colour parameters were established by the PLSR models. As an important parameter with which to
evaluate the model performance, the range of R2 value between 0.66 to 0.81 has been proven to be
acceptable for approximate quantitative prediction, whereas an R2 value between 0.82 and 0.90 is
required for a good prediction. An R2 value over 0.91 is reported to provide excellent prediction [46].
For the lightness of core sausages, Table 2 shows that the model built with the spectra pre-treated with
second derivative obtained comparably satisfactory outcomes, with Rc

2 of 0.73 and Rp
2 of 0.74, and a

small absolute difference between RMSEC and RMSECV (0.05).

Table 2. Calibration and prediction statistics for predicting core colour parameters based on full and
important optimal wavelengths using PLSR with different pre-treatments.

Full
wavelengths

Calibration Group Prediction Group Cross Validation

Parameters Pre-Treatment Rc
2 RMSEC 1 Rp

2 RMSEP 2 Rcv
2 RMSECV 3

L*6

Raw 0.71 4.26 0.71 4.57 0.74 4.17
Normalisation 0.72 4.21 0.73 4.38 0.75 4.04
1st derivative 0.73 4.15 0.74 4.27 0.76 4.01
2nd derivative 0.73 4.15 0.74 4.27 0.75 4.10

MSC 4 0.71 4.26 0.71 4.57 0.72 4.31
SNV 5 0.75 3.97 0.68 4.79 0.75 4.09

a*7

Raw 0.59 1.46 0.55 1.51 0.59 1.44
Normalisation 0.64 1.37 0.61 1.39 0.64 1.35
1st derivative 0.76 1.11 0.57 1.47 0.66 1.31
2nd derivative 0.76 1.11 0.57 1.47 0.64 1.34

MSC 0.59 1.46 0.54 1.51 0.59 1.44
SNV 0.73 1.19 0.58 1.45 0.69 1.26

b*8

Raw 0.76 2.06 0.45 2.91 0.71 2.24
Normalisation 0.82 1.81 0.49 2.8 0.72 2.17
1st derivative 0.65 2.52 0.44 2.92 0.68 2.35

2nd derivative 0.65 2.52 0.44 2.92 0.72 2.19
MSC 0.76 2.06 0.45 2.91 0.71 2.21
SNV 0.63 2.57 0.56 2.62 0.71 2.22

Important
optimal

wavelengths

L* Raw 0.66 4.63 0.70 4.62 0.69 4.50
(385,400,415, Normalisation 0.69 4.42 0.68 4.81 0.72 4.31

570,690,855,880, 1st derivative 0.65 4.7 0.69 4.74 0.72 4.34
2nd derivative 0.70 4.36 0.64 5.06 0.71 4.35

990,995,1000) MSC 0.65 4.73 0.66 4.95 0.71 4.38
SNV 0.65 4.73 0.66 4.95 0.69 4.52

a* Raw 0.57 1.47 0.56 1.49 0.57 1.48
(390,400,410, Normalisation 0.61 1.42 0.62 1.38 0.61 1.40

415,435,515, 1st derivative 0.61 1.4 0.54 1.52 0.6 1.42
2nd derivative 0.61 1.42 0.56 1.49 0.59 1.45

610,630,685,795) MSC 0.58 1.47 0.63 1.36 0.59 1.44
SNV 0.62 1.39 0.62 1.38 0.64 1.35

b* Raw 0.60 2.68 0.38 3.09 0.65 2.45
(390, 400, 415,

Normalisation 0.76 2.08 0.31 3.25 0.65 2.44420, 435,

515,685)

1st derivative 0.73 2.22 0.37 3.11 0.67 2.39
2nd derivative 0.53 2.92 0.37 3.10 0.64 2.48

MSC 0.66 2.49 0.42 2.98 0.67 2.36
SNV 0.66 2.49 0.42 2.98 0.67 2.36

1 RMSEC: the root mean square error of calibration; 2 RMSEP: the root mean square error of prediction; 3 RMSECV:
the root mean square error of cross validation; 4 SNV: standard normal variate; 5 MSC: multiplicative scatter
correction; 6 L*: lightness; 7 a*: redness/greenness; 8 b*: yellowness/blueness
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It was reported that the Rp
2 and RMSEP of the PLSR model developed to determine the lightness

of cooked bratwurst pork sausages were 0.84 and 0.27, respectively [16]. The lower value of R2 achieved
in this work may be partially attributed to the smaller image dataset (89 vs. 144) used for model training
and validation. Regarding a* value, PLSR model devised by the second derivative could achieve a
comparably higher Rc

2 result (Rc
2 = 0.76) with a comparably lower RMSEC (RMSEC = 1.37), whereas

PLSR model developed by normalisation could reach comparably satisfactory Rc
2 (Rc

2 = 0.82) and
RMSEC results (RMSEC = 1.81) for b* value. This can be due to the removal of the background noise or
scattering effect reduction. Compared to a similar study, a higher Rc

2 value (Rc
2 = 0.93; RMSEC = 0.64)

was also obtained when the PLSR was developed with the second derivative for predicting redness of
the pre-cooked Japanese sausage [5]. Normally, pre-treatments improve the model’s performance in
comparison with the model built with the raw spectra, probably because the scattering effect decreases
and background noise is removed during pre-treatment procedures. For instance, the first (1st) and
second (2nd) derivatives were reported to separate overlapping absorption bands [6,47], remove
baseline drift and background noise [2], and eventually improve apparent spectral features [4,48]. With
regard to normalisation, it is used to improve the spectral features and ensure the spectra to have an
equal area under the curve, which renders the features of the spectra easy to compare in the same
plot [49]. The functions of MSC and SNV are scatter correction [50]. Nolasco-Perez et al. classified
ground chicken meat adulterated with pork. When using a portable NIR spectrometer, Rp

2 ranged
between 0.01 and 0.28, and it increased to 0.77–0.84 when the classification was performed by means of
NIR-HSI [51].

3.2. Calibration Models with IOW

The selection of representative important wavelengths is a meaningful task for simplifying the
model and potentially eliminating data redundancy. The data analysis is greatly improved via this
method, which facilitates the development of a simple cost-effective HSI system (such as multispectral
system) or an online industrial application [9]. The reduction of the wavelengths enables one to
accelerate the algorithms’ efficacies and enhance their rapid classification of the sausages according to
the core colour for the industry. The statistical parameters of PLSR developed from selected IOW are
shown in Table 2. Ten (385, 400, 415, 570, 690, 855, 880, 990, 995, and 1000 nm), ten (390, 400, 410, 415,
435, 515, 610, 630, 685, and 795 nm), and seven wavelengths (390, 400, 415, 420, 435, 515, and 685 nm)
were selected for L*, a*, and b*, respectively.

As depicted in Table 2, the models derived from IOW had moderate performance decreases, but
in some cases, possessed similar performances, which implies that the IOW were efficient enough
to replace the full range of spectra for predicting of core colour of sausages with different casings.
A backward feature selection was used for choosing the IOW. To be specific, if the removal of one
wavelength did not significantly affect the accuracy of the developed model, then that wavelength
was discarded for the development of the optimal model. In this way, the wavelengths that contained
redundant information were removed and so the model was simplified: around 92%, 92%, and 94%
of wavelengths were removed from the full wavelengths set for L*, a*, and b*, respectively. For the
parameter of the redness, 435 and 610 nm were selected as the representative wavelengths, which is
consistent with the observation of Kamruzzaman et al. [9]. The absorption band at 430 nm was reported
to be related to the Soret absorption that is associated with respiratory pigment haemoglobin [52].
With regard to the absorption band at 595 nm, it related to the respiratory pigments, principally
deoxymyoglobin or oxymyoglobin [53]. In comparison with a similar study on Japanese cooked
sausage slices, ten wavelengths were selected for predicting redness [5]. Eight and six wavelengths
were reported to predict L* and a* of pork [54], whereas a set of six wavelengths was used to predict all
colour (i. e. L*, a*, and b* values) in beef, lamb, and pork [9].
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3.3. Overview of the Spectra and Discriminant Analysis

Figure 1 illustrates the mean spectra of sausages with different casings between 380 and 1000 nm.
The reflectance of the sausages with treatment 1 presented the lowest reflectance, compared to that
of sausages stuffed with control casing. This is consistent with the observation wherein a higher
lightness for sausages with control casing (56.83 ± 5.48) was achieved. The higher water content of
sausages stuffed in control casing may be attributed to this phenomenon. Due to the porous structure
of modified casings, the water may evaporate via this porous structure and so concentrate the pigment,
leading to less reflection. It is evident that there was a dip at 680 nm (Figure 1), which may be
related to oxymyoglobin formation [2,5]. Peng and Wang stated there was a third overtone of N-H
stretching between 775 and 850 nm, and there was a slope shape from 600 to 700 [55], which is related
to oxymyoglobin generation [56].

Figure 1. Mean spectra of the sausages with different casings in the spectral range of 380–1000 nm.

As aforementioned, discriminant analysis can be utilised for evaluating whether the colour (L*, a*,
and b* values) is able to discriminate the sausages with different modified casings. The relationship
between colour and sausages with different casings was for the first time established. Two discriminant
functions were established to separate sausages with different casings, with the correct classification of
62.90%. The two functions (Equations (2) and (3)) were as follows:

Function 1 = 0.47 [L*] + 0.14 [a*] + 0.40 [b*] (2)

Function 2 = −0.62 [L*] + 0.80 [a*] + 0.32 [b*] (3)

Function 1 explained 82.40% of total variance and had a higher canonical correlation (0.55) than
function 2 (0.29) at a 1% significant level (Table 3), which indicates that Function 1 had a higher
reliability with its higher canonical correlation. Lorenzo et al. stated that a Wilks’ lambda value
was used to evaluate how well each function discriminated individuals (e.g., sausages with different
casings) into groups [57]. As depicted in Table 3, function 1 possessed a low Wilks’ Lambda value
(0.64) that demonstrated a pronounced discriminatory ability.
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Table 3. Colour parameters of sausages with different types of casings and main statistics of the canonical discriminant functions from colour variables.

Colour Parameters Lightness Redness Yellowness Separation Canonical Function Eigenvalue Variance (%) Canonical Correction Wilks’ Lambda p Value
Control 56.83 ±5.48 a 1 6.23 ± 2.42 ab 20.26 ± 4.81 a

Treatment 1 50.86 ± 8.90 b 7.09 ± 2.41 a 19.75 ± 4.17 ab
Treatments

Function 1 0.43 82.4 0.55 0.64 <0.01
Treatment 2 51.09 ± 8.56 b 5.72 ± 1.74 b 17.66 ± 2.89 b Function 2 0.09 17.6 0.29 0.92 <0.05

1 Averages with different superscript letters (a, b) in the same column were significantly different (p < 0.05).
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Equations (2) and (3) also illustrate that the variable with the highest discriminant power in
Equations (1) and (2) was lightness, which was followed by yellowness (p < 0.05). The sausages stuffed
in different casings can be thus classified by lightness. This agreed with the observation wherein the
lightness of treatment 1 (50.86 ± 8.90) was significantly lower than that of control (56.83 ± 5.48) (p <

0.05). Sausages using casings modified by treatment 2 illustrated a separation by function 2 (Equation
(3)): sausages with casings modified by treatment 2 were located in the negative part of function 2,
whilst modified casing (using treatment 1) sausages were in the positive part (Figure 2).

Figure 2. Distribution of the sausages in the coordinate system defined by the two discriminant
functions used to differentiate among sausages stuffed in control (green circles), treatment 1 (pink
squares), and treatment 2 (black triangles) casings.

3.4. Visualisation of the Core Colour of Sausages

The main advantage of hyperspectral imaging is its prediction map in which a pixel with a similar
spectral characteristic can be displayed [58]. Combined with MVA, the distribution and concentrations
of L*, a*, and b* values within the sausages stuffed in different modified casings were mapped (Figure 3).
Generally, the colour of the sausages is obtained as the mean value obtained from three (or more)
random spots using the conventional colourimeter for colour measurement. Due to the uneven
mixture for the sausage production, the measured value may not show the entire colour of the sausage.
In contrast, it is predictable that each spot is clearly displayed via prediction map [9]. According to
Figure 3, the control samples presented a higher lightness value than those of sausages stuffed in
treatments 1 and 2. This is consistent with the observation wherein measured lightness for control
(56.83 ± 5.48) was significantly higher than that for treatment 1 (50.86 ± 8.90) and treatment 2 (51.09 ±
8.56) (p < 0.05). It is clear that the lightness of surrounding parts of the sausages was higher than that
in the middle parts, which may have been due to the high reflection of casing. With regard to redness
and yellowness, the core colour of sausages were evenly distributed.
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Figure 3. Original sausage images and a corresponding distribution map of lightness (L*), redness (a*),
and yellowness (b*) changes of control casing sausages (up), and sausages stuffed in modified casings
using treatment 1 (central) and treatment 2 (down) kept at 4 ◦C after one day storage.

The current study possesses potential utility for applications:

I. The core colour of sausages with different modified casings were elaborated by HSI combined
with MVA. The core colour changes on each pixel of casings modified by surfactant solutions
were clearly displayed via distribution map. The results obtained from this technique can be
used for automating the inspection and quality grading based on the core colour of the sausages
by the integration of efficient image-processing algorithms in industrial machine-vision systems.

II. The relationships between colour parameters and different modified casings were clearly
elucidated by the canonical discriminant analysis. Although the current classification accuracy
could probably be outperformed by incorporating additional features from the acquired image
data or applying different data treatments, the current study provides useful information for the
sausage industry. For instance, lightness possessed the highest discriminant power, followed
by yellowness (p < 0.05). It is thus feasible to apply discriminant analysis for separating the
sausages stuffed in different casings.

4. Conclusions

The core colour of sausages with different modified casings were characterised by hyperspectral
imaging coupled with a machine learning algorithm. The canonical discriminant analysis showed
lightness can separate sausages with different modified casings. The coefficient of regression of a
prediction model for lightness devised by spectra pre-treated with second derivative was 0.74 with the
RMSEP of 4.27. With regard to redness, the PLSR model developed by second derivative reached a
higher Rc

2 value (Rc
2 = 0.76), whilst the model developed by normalisation achieved a satisfactory Rc

2

result (Rc
2 = 0.82) along with the lowest RMSEC for yellowness (RMSEC = 1.81). Ten (385, 400, 415,

570, 690, 855, 880, 990, 995, and 1000 nm), ten (390, 400, 410, 415, 435, 515, 610, 630, 685, and 795 nm),
and seven (390, 400, 415, 420, 435, 515, and 685 nm) wavelengths were selected as the important
optimal wavelengths for L*, a* and b*, respectively. Those representative wavelengths were used
for constructing the distribution map for elaborating the core colour of the sausages with different
modified casings. The lightness of sausages with control casing was significantly higher than that
of sausages with modified casings (p < 0.05). As an emerging tool to non-destructively evaluate the
core colour of the sausages with different casings, hyperspectral imaging demonstrated its powerful
prediction ability and fast analysis in online and off-line inspections.
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