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Control of nuclear organization by F-actin binding proteins
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ABSTRACT
The regulation of nuclear shape and deformability is a key factor in controlling diverse events from
embryonic development to cancer cell metastasis, but the mechanisms governing this process are
still unclear. Our recent study demonstrated an unexpected role for the F-actin bundling protein
fascin in controlling nuclear plasticity through a direct interaction with Nesprin-2. Nesprin-2 is a
component of the LINC complex that is known to couple the F-actin cytoskeleton to the nuclear
envelope. We demonstrated that fascin, which is predominantly associated with peripheral F-actin
rich filopodia, binds directly to Nesprin-2 at the nuclear envelope in a range of cell types. Depleting
fascin or specifically blocking the fascin-Nesprin-2 complex leads to defects in nuclear polarization,
movement and cell invasion. These studies reveal a novel role for an F-actin bundling protein in
control of nuclear plasticity and underline the importance of defining nuclear-associated roles for
F-actin binding proteins in future.
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Introduction

Cells have to dynamically adapt their cell shape to
respond to changes in the extracellular environment.
This is a key feature of cells in many physiologic and
pathological situations, ranging from embryonic
development and differentiation to wound healing
and metastatic cancer cell migration. This require-
ment for shape adaptation is particularly challenging
with respect to the manipulation of the nucleus, a
rather rigid, large, enveloped intracellular compart-
ment containing a densely packed network of
chromosomes and associated proteins. The ability of
cells to regulate the shape and position of the nucleus
represents a key rate-limiting step in their movement
through confined or complex environments.

LINC-ing the nucleus

The nuclear envelope (NE) consists of a double lipid
bilayer with an outer and inner membrane and allows
both spatial separation and integrity of its content and
exchange of proteins and genetic transcripts though

nuclear pores with the cytoplasm. Mechanoresponses
can be delivered to the nucleus by physically connect-
ing the nucleoskeleton and the cytoskeleton via the
well-conserved Linker of the Nucleoskeleton and
Cytoskeleton (LINC) complex,1 which anchors the
inner and outer NE to components of the cytoskele-
ton. A LINC-bound perinuclear ‘actin cap’ consist of
ordered contractile actin filament bundles and also
contribute to the nuclear shape in response to cellular
shape changes.2 Actin cap fibers terminate at basal
focal adhesions and act to transduce mechanical forces
from the extracellular environment to the nucleus via
LINC complex proteins.3 KASH (Klarsicht, ANC-1,
and Syne homology) domain proteins, such as
Nesprins, bind the outer nuclear membrane and inter-
act with SUN (Sad1p, UNC-84) domain proteins in
the inner nuclear membrane, such as SUN 1–5 and
SPAG4 in vertebrates.4 Nesprins 1–4 are KASH
domain proteins and recent studies have identified
numerous isoforms of Nesprins-1 and ¡2 in mam-
mals.5 Depending on size and isoform Nesprins have
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a varying amount of spectrin repeats (SR) forming a
rod domain followed by the transmembrane and
KASH domains.5,6 The so-called giant isoforms of
Nesprins-1 and ¡2 have molecular weights exceeding
800 kDa, multiple SRs and have been shown to bind
directly to F-actin via the N-terminal calponin homol-
ogy (CH) domain.5 This interaction controls nuclear
positioning and is vital for the polarization of migrat-
ing cells.7 We found recently that the F-actin-bundling
protein fascin specifically interacts with the C-

terminal region of Nesprin-2 at the NE allowing for
increased connectivity between the nucleus and
F-actin and facilitating nuclear deformability in
response to environmental changes in migrating cells8

(Fig. 1D). This mechanism might be particularly vital
for understanding cancer cell tissue invasion and
extravasation from the primary tumor where cells
have to squeeze through tight interstitial spaces. The
regulation of nuclear plasticity to prevent DNA break-
age has recently been an area of active interest. The

Figure 1. Fascin function at the cell periphery and NE/nucleus. (A) Migrating cells use finger-like protrusions called filopodia to explore
the microenvironment. (B) Schematic view of a simplified filopodium where fascin, which is highly upregulated in tumor cells and can-
cer metastasis, is critical for F-actin bundling and filopodia stability. Fascin bundles F-actin by binding 2 adjacent filaments and thereby
stabilizes filopodia. (C) Interaction of filopodia with the ECM can induce twisting and bending that exerts forces on actin filaments,
potentially altering fascin phosphorylation status and thus F-actin bundling. (D) Forces and/or secreted factors can induce translocation
of fascin to the nuclear periphery where it interacts with Nes2G, which is anchored at the outer NE via the KASH domain and interacts
with SUN at the inner NE. Nes2G can directly interact with F-actin via its CH domain. Fascin stabilizes this interaction and thereby can
efficiently regulate nuclear positioning and deformation during cell migration. Only the giant isoform of Nesprin-2 is shown in this sim-
plified diagram. Fascin can also be shuttled into the nucleus and contributes to intra-nuclear actin filament bundling. CH, calponin
homology; ECM, extracellular matrix; F-actin, filamentous actin; G-actin, globular actin; KASH, Klarsicht, ANC-1 and Syne homology; NE,
nuclear envelope; Nes2G, Nesprin-2 Giant; P, phosphorylation; S39, Serine 39; SUN, Sad1p, UNC-84.
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formin FMN2 is essential in creating perinuclear
adhesion actin fibers that protect the nucleus from
rupture and DNA breakage during 3D cell migration.
Interestingly, FMN2 acts independently of KASH
family proteins. We observed that fascin perinuclear
localization is dependent on KASH-domain proteins
in Drosophila, which have also been shown to be cru-
cial for TAN line formation.9 Transient NE rupture is
induced through contractile actin fibers that increase
pressure on the nucleus via LINC complex proteins10

and restoring the NE integrity requires components of
the endosomal sorting complexes required for
ESCRT-III machinery.11

The LINC complex consists of various members dif-
ferentially expressed depending on cell type and tissue-
specific heterogeneity has been shown to occur for the
Nesprin 50 UTR.5 As fascin is known to be highly upregu-
lated in various tumor cell types, this suggests that tumor
cells might specifically utilize elevated fascin levels to
guarantee efficient cell migration. This would act to regu-
late both stability of cell protrusions such as filopodia to
explore the environment (Fig. 1B) and also nuclearmove-
ment and deformation to promote invasion.

Breaking the LINC

Proteins of the LINC complex are essential players in
the control of rearward nuclear movement and reori-
entation during cell polarization.9 Nesprins are vital
for the maintenance of the NE integrity and architec-
ture. Mutations in genes encoding Nesprins have been
linked to several diseases. Dysfunctional Nesprin-1/2
can result in general myopathies and cardiomyopa-
thies, and in combination with mutations in SUN1
causes Emery Dreifuss muscular dystrophy.12 Interest-
ingly, mutations in Nesprins could be connected to
high-frequency hearing loss (Nesprin-4), visual
impairment (Nesprin-2), bipolar disorder, depression
and autism.7 Screening for DNA variations in Emery
Dreifuss patients showed that Nesprin-1 and ¡2 were
often mutated and nuclei were deformed in patient
fibroblasts.13 In vivo experiments using Nesprin-2
knockout mice revealed that skin fibroblasts and kera-
tinocytes developed giant nuclei14 providing further
evidence for Nesprins as critical regulators of nuclear
shape and function.

Mutations in Nesprin-1 and ¡2 have also been
associated with several types of cancers, like ovarian,
breast, lung and colorectal cancer and gastrointestinal

stromal tumor.12 However, mechanisms linking
nuclear deformation or movement during invasion
have not yet been clearly defined. Interestingly, fascin
is highly upregulated in all types of cancer studied to
date. We found that specifically uncoupling
fascin-Nesprin interactions without altering filopodia-
associated fascin reduced the migration and invasive-
ness of cancer cells,8 suggesting an important role for
NE-associated fascin in control of cancer cell motility.
Fascin is also well-known as to promote cancer cell
migration through its well characterized F-actin bun-
dling role within filopodia.15-17 Further studies will be
important to define whether fascin overexpression in
the absence of Nesprin or the presence of fully func-
tional, mutated and/or truncated forms might predict
cancer invasiveness and metastasis formation. How-
ever, given the enormous biologic heterogeneity across
cancer types, this also highlights the potential for new
personalized therapy strategies according to the pres-
ence or absence of these cancer biomarker combina-
tions. Ideally, optimized therapeutic targeting of fascin
could attack cancer cells from 2 different angles:
through elimination of filopodia as well as disrupting
the cells ability to navigate through changing extracel-
lular environments.

Links to the LINC: Emerging additional
cytoskeletal adaptors

Nesprin-1 and ¡2 isoforms that contain CH domains
can make direct links to the actin cytoskeleton to pro-
vide scaffolding between the NE and the cytoskeleton.
We have shown that fascin physically engages in this
interaction by further cross-linking F-actin and the
LINC complex protein Nesprin-2, which may act to
stabilize the connection of the nucleus to the cytoskel-
eton, as well as act as a sensor for changes in external
forces to provide more rapid means to respond to
extracellular environments (Fig. 1D). Interestingly,
FHOD1, a diaphanous related formin, has also been
recently shown to directly bind to Nesprin-2 (Nes2G),
but in contrast to fascin, which binds at the
C-terminus, FHOD1 binds the SR 10–13 closer to the
N-terminus.18 Knockdown of FHOD1 did not disrupt
F-actin retrograde flow, but instead loosened the
connection of the nucleus to the actin cytoskeleton
suggesting distinct roles for these actin-associated pro-
teins in this context. Nesprin-2 and SUN2 build trans-
membrane actin-associated nuclear (TAN) lines19
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along the nuclear membrane that allow tight coupling
to F-actin. Whether TAN lines are distinct from actin
caps in this context remains unclear. However,
FHOD1 knock-down diminishes TAN line formation
and results in aberrant nuclear movement.18 Although
FHOD seems to provide an additional anchor for
Nes2G to the actin cytoskeleton to enable TAN line
assembly, FHOD1 expression does not impact on
nuclear localization of fascin, nor its binding to
Nesprin-2, suggesting these 2 Nesprin-2 binding part-
ners are independently regulated. It therefore remains
unclear whether these 2 F-actin linker proteins associ-
ate with Nesprin simultaneously or are required indi-
vidually in different contexts. Elucidation of the
upstream signals controlling the kinetics of these asso-
ciations in a wider variety of cell types will provide sig-
nificant insight into the environmental triggers or
conditions that dictate Nesprin binding to fascin or
FHOD1.

The C-terminus proximal spectrin-rich region of
Nesprin-1/2 not only contains a binding site for fascin,
but also distinct binding sites for further actin-associ-
ated proteins.7 Recently, BIN1 (also known as amphi-
physin-2) has been reported to bind Nesprin-2 and
the microtubule plus-end-binding protein CLIP170,
which connects the nucleus to both the actin cytoskel-
eton and microtubules and promotes optimal nuclear
positioning and shape.20 The inner nuclear membrane
anchored protein emerin has been shown to interact
with the last 2 spectrin-rich regions of Nesprin-1/2,21

although the purpose of this interaction has not yet
been clarified. This does however suggest that emerin
also localizes to the outer NE, which possibly allows it
to act as a mechanosensor. Application of mechanical
forces to isolated nuclei across Nesprin-1 resulted in
tyrosine phosphorylation of emerin and subsequent
nuclear stiffening.22 Recent reports indicate a possible
role of mechanical forces in gene expression and in
regulating signal transduction cascades in a range of
cell types. Stress induced through compression, ten-
sion and shear forces can activate the Wnt/ß-catenin
pathway.23 Interestingly, ß-catenin, an integral E-cad-
herin cell-cell adhesion adaptor protein and transcrip-
tional co-factor, is increased in the nucleus upon shear
force application.23 Emerin has been shown to shuttle
a-catenin, which can interact with ß-catenin and
Nesprin-2, to the nucleus. Conversely, nuclear accu-
mulation of ß-catenin is restricted by emerin,24,25 sug-
gesting a potential role for LINC complex proteins in

acting as gatekeepers of transcriptional signaling.
Cytoplasmic ß-catenin levels are increased upon Wnt
pathway activation, which allows the formation of a
quaternary complex of Nesprin-2, emerin, a- and
ß-catenin at the NE and subsequent nuclear transloca-
tion of ß-catenin. Loss of Nesprin-2 reduces ß-catenin
levels in the nucleus, possibly due to inefficient com-
plex formation at the NE.26 Interestingly, fascin pro-
moter activity and protein expression can be induced
by Wnt/ß-catenin signaling and high fascin levels can
be found at the invasive front of colon cancer tissue.27

As NE localized fascin is crucial to maintain the
nuclear morphology and allow nuclear deformability,8

this step could be a molecular switch in solid tumors
to increase cell invasion and metastasis formation
through regulating nuclear plasticity.

Nuclear envelope anchoring and nuclear actin:
Potential co-regulation?

The suggestion that proteins at the NE may impact on
nuclear shuttling through association with cyto-
plasmic cytoskeletal elements also raises the possibility
of roles in organizing nucleoskeleton architecture. Of
note in this context, fascin has recently been shown
not only to localize to the nuclear periphery, but is
also present within the nucleus itself (Fig. 1D). Fascin
localizes to the nucleus both in mammalian cells, and
during late-stages of Drosophila follicle development,
and this nuclear translocation depends on prostaglan-
dins signaling.28 The role and regulation of fascin
within the nucleus is not yet clear, but the nucleus
contains high levels of actin, both monomeric and fila-
mentous forms,29 with actin filaments being shorter in
length than those found in the cytoplasm. Fascin is
required for endogenous nuclear actin bundles to
form and depletion of fascin from Drosophila nurse
cells increases the size and number of nucleoli suggest-
ing a role in maintaining nuclear actin organization
and compartments.28 Several other actin-binding pro-
teins, whose function has been extensively investigated
in the cytoplasm, are also present in the nucleus.
These include cofilin (suggested to be important for
actin monomer import and accumulation in the
nucleus) and profilin (partly responsible for actin
nuclear export).30 The nucleolus is not only a site of
rRNA processing and synthesis. Recent studies indi-
cate a role for nucleoli beyond ribosome biogenesis,
such as cell cycle progression, stress response,
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senescence, apoptosis and cancer.31 High levels of fas-
cin are only present in certain stages of Drosophila fol-
licle development and active nuclear export lowers
nuclear fascin levels and increases perinuclear fascin.28

It is therefore plausible that fascin import and export
into and out of the nucleus is also tightly regulated in
mammalian cells depending on cell cycle, stress or
environmental influences. An active exclusion of fas-
cin from the nucleus in cancer cells could be one
mechanism to promote abundant fascin levels at the
NE and in filopodia to enable efficient invasion.
Mechanical forces exerted on cells from the extracellu-
lar matrix are rapidly transmitted via adhesion recep-
tors to the cytoskeleton and subsequently to the
nucleus. The shuttling of fascin between the NE and
nucleus in response to changes in local tension may
represent one strategy for cells to rapidly adapt to
extracellular cues and re-position key actin-binding
proteins to appropriate subcellular compartments.
Further investigation of the regulatory signals that
control such dynamic movements will be important to
shed light on this important and conserved
phenomenon.

Intracellular shuttling: Regulating fascin
localization and function

Fascin is made up of 4 b-trefoil repeats separated by
short flexible linker regions32 and has 2 major binding
sites for actin, one within the ßt1-ßt2 domains and the
second within ßt3-ßt4, that combine to allow efficient
F-actin bundling in filopodia.32,33 Serine 39 (S39) on
ßt1 is an important regulatory site for the actin-bun-
dling activity of fascin as its phosphorylation by
PKCa inhibits actin bundling via the N-terminal
domain34 and also promotes fascin binding to
Nesprin-2 at the NE.8 This suggests that dynamic
translocation of fascin occurs within the cell (Fig. 1),
but the time scales and regulation of this are currently
unknown.34 Filopodia contain bundles of F-actin sta-
bilized by fascin, and act to explore the environment.
Integrin binding to specific extracellular matrix cues
results in increased PKC activation, fascin phosphory-
lation at S39 and subsequent loss of F-actin bundling
resulting in more diffuse cytoplasmic distribution of
fascin.34 It is possible that this may promote transloca-
tion of fascin to the perinuclear area and promote
Nesprin-2 binding for the regulation of nuclear move-
ment, plasticity and deformation during cell

movement through 3D environments. Fascin binds to
Nesprin-2 (SR51–53) in a highly conserved region,
adjacent to the emerin binding site, suggesting a com-
parable functional role as mechanosensor. Crystal
structures of fascin suggest a globular conformation
with 2 binding sites for F-actin, one on either side.33

Lateral forces applied across the molecule upon F-
actin-binding at one side and Nesprin-binding at the
other might feasibly result in a conformational change
in fascin and allow the accessibility of kinases or phos-
phatases. Whether fascin phosphorylation at serine 39
is altered upon nuclear force induction leading to
enhanced binding to Nesprin-2 remains to be clarified.

Very little is known about how fascin is relocated
throughout the cell, or if this is active transport or pas-
sive diffusion. The recycling endosomal protein
Rab35, a member of the Rab family of GTPases, has
been proposed as one potential regulatory protein
involved in transporting fascin to the cell periphery in
Drosophila and mammalian cells.35 In fibroblasts
Rab35 is enriched near the plasma membrane and
colocalises with fascin in filopodia, microspikes and
lamellipodia. Overexpression of dominant-negative
Rab35 limits the presence of fascin at the plasma
membrane and increases cytoplasmic accumulation.35

However, overexpression of fascin can overcome this
phenotype, suggesting a disruption of this spatial reg-
ulatory mechanism may occur in cancer cells. It also
seems likely that other post-translational modifica-
tions may occur on fascin that lead to associations
with as yet unidentified binding partners to control
traffic and localization. Advances in more sensitive
proteomics analysis methods may provide means to
begin to test this possibility in future.

As fascin is highly upregulated in many tumor types,
it is also possible that molecules that are secreted by the
tumor microenvironment and favor tumor develop-
ment and progression may play a role in regulating fas-
cin association with F-actin at different subcellular
sites. One example is Transforming Growth Factor ß
(TGF-ß), a cytokine that is secreted by the tumor
microenvironment, increases fascin promoter activity
and expression levels via phosphorylation of the
Smad3 linker region.36 Prostaglandins are transient
bioactive lipids that are also often misregulated in can-
cer and can influence the adhesive, migratory and inva-
sive potential of cancer cells.37,38 Prostaglandins have
the potential to regulate the translocation of fascin into
and out of the nucleus,28 which might represent
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another important mechanism to control fascin-
dependent behavior in tumors. While we have much
still to learn about the precise regulatory mechanisms
in different contexts, what is clear is that fascin can per-
form multiple roles as an F-actin binding protein
(highlighted in Fig. 1) to control different phenotypic
endpoints. This opens up the possibility of alternative
roles for other actin-regulatory proteins either at the
NE or within the nucleus. Recent improvements in
super-resolution, single molecule and correlative-light
electron microscopy methods should provide ideal
platforms to begin to dissect the precise subcellular
dynamics and fate of these molecules in live cells in
response to defined extracellular cues.

Conclusion and future perspectives

Increasing evidence suggests that F-actin binding pro-
teins that are classically associated with the assembly
of peripheral, dynamic or architectural regulating
cytoskeletal structures are able to associate with the
NE and in the nucleus itself. This potential for molec-
ular multi-tasking opens up new questions about how
these F-actin binding proteins are spatio-temporally
controlled to perform the correct function at the
required location at the right time. Given the large
number of Nesprin-1/2 isoforms being uncovered in
specific tissues, it would also be interesting to deter-
mine whether other actin-binding proteins can co-
associate with Nesprins in an isoform-specific man-
ner. This may be particularly important in those iso-
forms where the Nesprin CH domains are absent as
these proteins may provide essential links to the cyto-
skeleton. As many of these actin-associated molecules,
including fascin, are implicated in the progression of
several diseases, understanding these regulatory mech-
anisms in more detail will likely inform on future ther-
apeutic strategies.
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