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The overconsumption of sugar-sweetened food and beverages underpins the current
rise in obesity rates. Sugar overconsumption induces maladaptive neuroplasticity to
decrease dietary control. Although serotonin and glutamate co-localisation has been
implicated in reward processing, it is still unknown how chronic sucrose consumption
changes this transmission in regions associated with executive control over feeding—
such as the prefrontal cortex (PFC) and dentate gyrus (DG) of the hippocampus. To
address this, a total of 16 C57Bl6 mice received either 5% w/v sucrose or water as a
control for 12 weeks using the Drinking-In-The-Dark paradigm (n = 8 mice per group).
We then examined the effects of chronic sucrose consumption on the immunological
distribution of serotonin (5-HT), vesicular glutamate transporter 3 (VGLUT3) and 5-
HT+/VGLUT3+ co-localised axonal varicosities. Sucrose consumption over 12 weeks
decreased the number of 5-HT−/VGLUT3+ and 5-HT+/VGLUT3+ varicosities within the
PFC and DG. The number of 5-HT+/VGLUT3− varicosities remained unchanged within
the PFC but decreased in the DG following sucrose consumption. Given that serotonin
mediates DG neurogenesis through microglial migration, the number of microglia
within the DG was also assessed in both experimental groups. Sucrose consumption
decreased the number of DG microglia. Although the DG and PFC are associated
with executive control over rewarding activities and emotional memory formation, we
did not detect a subsequent change in DG neurogenesis or anxiety-like behaviour or
depressive-like behaviour. Overall, these findings suggest that the chronic consumption
of sugar alters serotonergic neuroplasticity within neural circuits responsible for feeding
control. Although these alterations alone were not sufficient to induce changes in
neurogenesis or behaviour, it is proposed that the sucrose consumption may predispose
individuals to these cognitive deficits which ultimately promote further sugar intake.

Keywords: VGLUT3, 5-HT, pMAPK, serotonergic neuroplasticity, sucrose consumption, neurogenesis, microglia,
addiction
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INTRODUCTION

Obesity is an expanding global health issue driven by
the overconsumption of high sugar foods (Jacques et al.,
2019a). Sugar is an addictive substrate, as demonstrated by a
plethora of historical neurobehavioral studies. For sugar to be
deemed an addictive substance, the four criteria need to be
validated: bingeing, withdrawal, craving and cross-sensitisation.
Sugar has been shown to elicit all hallmark signs of addicted
behaviours: bingeing, cross-sensitisation (Avena and Hoebel,
2003), tolerance and cravings (Avena et al., 2005). In order to
decrease the prevalence of diet-induced obesity in society, it is
crucial to understand how sugar elicits an addictive response.

We have previously reported that varenicline, an FDA-
approved nicotinic acetylcholine receptor (nAChR) partial
agonist significantly reduced long-term 5% binge-like sucrose
consumption (Shariff et al., 2016). For the first time, chronic
long-term 25% sucrose consumption has been recently shown
to augment weigh gain, elicit abnormal hyperlocomotion, impair
cognitive function and alter neurogenesis (Beecher et al., 2021).
Only continuous access to 25% sucrose has been investigated
in mice, therefore, considering the effect of varenicline on 5%
sucrose on reducing sugar intake, we had to examine chronic
restricted (DID) 5% sucrose consumption.

The addictive nature of sugar may be due to sugar-induced
cognitive neuroplasticity in both the hippocampus (Kanoski
and Davidson, 2011) and prefrontal cortex (PFC) (Reichelt,
2016). These areas are focally responsible for memory and
executive function, respectively. Many studies have investigated
the effects of cognition and sugar, however, there is variability
in the literature in terms of interspecies used, concentration of
sugar, the type of sugar used and the method of administration.
Most of the high sucrose diet impairing spatial and recognition
memory have been conducted using a rat model (Jurdak et al.,
2008; Jurdak and Kanarek, 2009). There remains relatively little
data available on sugar-induced cognitive deficits in mice yet
alone lower concentrations of sucrose.

The 5-HT-producing neurons are located in the dorsal (DR)
or median (MR) raphe nuclei in the brainstem and project
to brain regions including the dentate gyrus (DG) of the
hippocampus (Gras et al., 2002; Amilhon et al., 2010) and
PFC (Herzog et al., 2004; Amilhon et al., 2010; Sakae et al.,
2019). Serotonin signalling has been broadly implicated in the
central regulation of diet-induced obesity. Activation of central
serotonin receptors excites anorexigenic neurons (Sohn et al.,
2011; Roepke et al., 2012), inhibits orexigenic neurons (Heisler
et al., 2006). A variety of serotonin receptor subtypes such as 5-
HT1B, 5HT2B, 5HT2C, 5-HT4, and 5-HT6 mediate weight loss
and satiety (Walsh et al., 1994; Cowen et al., 1995; Sargent et al.,
1997; Heisler et al., 2002, 2006; Conductier et al., 2005; Jean
et al., 2007; Nonogaki et al., 2007; Smith et al., 2009; Banas
et al., 2011). On the other hand, knockout models of central
serotonin receptors increases feeding and weight gain (Tecott
et al., 1995; Bouwknecht et al., 2001; Xu et al., 2008, 2010). There
is also evidence to suggest that serotonin selectively modulates
the hedonic aspect of feeding. A selective serotonin reuptake
inhibitor blunts the standard appetite-related responses to highly

palatable or aversive tastants (Mathes et al., 2013). Additionally,
the 5-HT system has been implicated in emotional eating in
humans, polymorphisms within serotonin transporter linked
polymorphic region (5-HTTLPR) are associated with stress-
induced eating susceptibility (Chen et al., 2015) and obesity in
childhood (Miranda et al., 2017), adolescence (Sookoian et al.,
2007) and adulthood (Fuemmeler et al., 2008). Together these
data demonstrate a relationship between serotonin signalling
within the brain, and diet-induced obesity. However, the specific
serotonergic projections that influence this behaviour remain
unknown. It is therefore likely that serotonin innervation within
regions of the brain associated with sugar consumption, such
as the PFC and DG, are at least partially responsible for
sugar consumption. Hence, we predicted that chronic sugar
consumption may induce a change in the serotonin innervation
at the PFC and DG, which may influence the likelihood of
further consumption.

Reward seeking behaviour is proposed to be modulated
through the co-transmission of 5-HT neurons and glutamate
through the action of vesicular glutamate transporter 3
(VGLUT3) (Liu et al., 2014; Qi et al., 2014; Wang et al.,
2019). Given the essential role of the PFC in dietary restraint
(Jurdak and Kanarek, 2009; Higgs et al., 2012) and the DG
in memory storage, we hypothesise that sucrose consumption
may alter 5-HT/VGLUT3 innervation in these regions leading
to less cognitive control over reward related behaviours, such as
further sucrose consumption. Therefore, in the present study,
we examined the impact of chronic sucrose consumption on
serotonin innervation within the PFC and DG. We found that
mice that have chronically consumed sucrose have a decreased
number of 5-HT and 5-HT/VGLUT3 varicosities within the PFC
and DG. The DG was also found to have a decreased number
of VGLUT3 varicosities within the DG, but not in the PFC. We
also found that sucrose consumption decreased the number of
microglia within the DG, and increased the number of pMAPK
neurons in the PFC.

MATERIALS AND METHODS

Animals
Sixteen C57BL/6 male mice (4 weeks old) were trained for
the 16 weeks using the Drinking-In-The-Dark (DID) model
of binge-like consumption, adapted to sugar (Rhodes et al.,
2005; Crabbe et al., 2009, 2011; Thiele et al., 2014; Belmer
et al., 2018a; Patkar et al., 2019; Beecher et al., 2021). Mice
were given access to one bottle of 5% (w/v) sucrose for a
2 h period Monday to Thursday and a 4 h period on Friday
with acidified-filtered water available at all other times. The
sugar solution was presented in 50 ml plastic falcon tubes
fitted with rubber stoppers and a 6.35 cm stainless-steel sipper
tube with double ball bearings. Sugar containing tubes were
weighed prior to and 2 h (Monday to Thursday) or 4 h
(Friday) after presentation. Sucrose intake and weights across the
study can be seen in Supplementary Figure 1. Mouse weights
were measured daily to calculate the adjusted g/kg intake. All
procedures were approved by The University of Queensland
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FIGURE 1 | Experimental design of the study. Experimental design of the anxiety-related and depression-related marble burying (MB), elevated-plus-maze (EPM),
open-field (OF), and forced swimming test (FST). Animals consumed 5% sucrose in the DID paradigm for 9 weeks prior to each behavioural testing and continued to
be exposed to sucrose for a total of 16 weeks. Behavioural tests were conducted 1 week apart (across 4 weeks) after 24 h of sucrose withdrawal. After 14 weeks of
sucrose consumption (1 week after behavioural tests concluded), three EdU injections were administered over 2 weeks (days 0, 7, 14). Animals were assigned into
two groups: sucrose-withdrawn animals and water control.

and The Queensland University of Technology Animal Ethics
Committees under approval QUT/053/18 and complied with
the policies and regulations regarding animal experimentation
and other ethical matters, in accordance with the Queensland
Government Animal Research Act 2001, associated Animal Care
and Protection Regulations (2002 and 2008), as well as the
Australian Code for the Care and Use of Animals for Scientific
Purposes, 8th Edition (National Health and Medical Research
Council, 2014).

Behavioural Testing
Following 9 weeks of DID sucrose consumption, four behavioural
tests were conducted to assess if the sucrose consumption model
used produces emotional deficits. All behavioural tests have been
performed extensively in our laboratory (Belmer et al., 2018a;
Patkar et al., 2019; Beecher et al., 2021). Each test was conducted
1 week apart, over 4 weeks, see Figure 1.

For the testing of withdrawal-induced anxiety-like behaviour,
experiments were carried out 24 h after the last drinking session
of the week. Marble burying (MB) is used to test anxiety and
obsessive-compulsive disorder. When mice are placed in the cage
with marbles, they will bury marbles as a defence mechanism
under conditions of stress. MB is performed in novel individual
plastic cages (21 × 38 × 14 cm) containing 5 cm thick sawdust
bedding. Ten glass marbles (diameter 10–12 mm) were arranged
on the bedding evenly spaced in 2 rows of 5 marbles. After 20 min,
the number of unburied marbles is averaged from counting by
two experimenters blind to the treatments. A marble covered at
least two-thirds (2/3) of its size by saw dust was considered as
“buried” (Deacon, 2006; Belmer et al., 2018a; Patkar et al., 2019;
Beecher et al., 2021).

Elevated-plus-maze (EPM) is another measure of anxiety
based on the animal’s aversion to open spaces. EPM is conducted
in an apparatus consisting of four arms (35 cm × 5 cm),
elevated 50 cm above the floor. The closed arms are enclosed
with 40 cm high walls. The experiment went for 5 min, with
initial mouse placement in the centre, facing the open arm. The
number of entries and time spent in each arm was recorded
using ANY-maze tracking software (Stoelting, IL, United States)
(Walf and Frye, 2007; Belmer et al., 2018a; Patkar et al., 2019;
Beecher et al., 2021).

Open-field (OF) test is used to measure exploratory behaviour,
general activity and anxious behaviour. This test is based on
the animal’s aversion to bright light and open spaces. OF was
performed in an open arena of 30 × 30 cm. The floor is divided
into 16 equal squares (7 × 7 cm) and a central region of
10 × 10 cm is considered as the centre. Mice are initially placed
in one corner, and allowed to explore freely for 10 min. The
number of entries in the centre was recorded using the ANY-
maze software (Bailey and Crawley, 2009; Belmer et al., 2018a;
Beecher et al., 2021).

The forced swimming test (FST) is commonly used to access
depressive-like behaviour and is used to test the efficacy of
antidepressants. The test is based on the rodent’s response to the
threat of drowning. The FST is conducted in a cylindrical glass
container measuring 50 cm in height and a diameter of 20 cm.
The immobility time was recorded using ANY-maze tracking
software (Yankelevitch-Yahav et al., 2015; Belmer et al., 2018b;
Beecher et al., 2021).

Immunohistochemistry
Following all behavioural tests, a total of three injections of
5-ethynyl-2’-deoxyuridine (EdU; 50 mg/kg) were given over
2 weeks (days 0, 7, and 14) to all mice to label proliferative
cells (Beecher et al., 2021). This dose has been reported to
label all actively dividing precursors in the mouse subgranular
zone of the DG (Mandyam et al., 2007). Twenty-four hours
after the last EdU injection, mice were transcardially perfused
with 4% paraformaldehyde. Brains were harvested and postfixed
overnight at 4◦C in 4% paraformaldehyde and then kept in 0.1 M
phosphate buffer saline (PBS) containing 0.02% (w/v) sodium
azide (PBS-azide) until histology and immunohistochemistry
processing. Thirty micron-thick coronal vibratome sections were
collected and kept floating in ice-cold PBS-azide. The sections
were permeabilised in 1% Triton X100, 0.1% Tween-20 in PBS
for 1 h and then incubated in blocking solution for 1 h at room
temperature (2% normal goat serum-NGS, 0.3% Triton X100 and
0.05% Tween-20).

To assess if chronic sucrose consumption alters serotonin
innervation, sections containing the PFC (Bregma +2.26
to +2.66) and DG of the hippocampus (Bregma –1.5 to –
2.0 mm) were incubated with rat anti-5-HT (Millipore #MAB352,
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FIGURE 2 | Neuroplastic changes after sucrose consumption. (A) Schematic drawing showing the location of the acquired micrographs (prefrontal cortex).
(B) Low-magnification representative image of the prefrontal cortex showing the distribution of the pMAPK positive cells. Scale: 250 µm. (B’) Quantification of
pMAPK positive neurons showed no difference after sucrose consumption. (C) High-resolution representative image of pMAPK somatodendritic staining
reconstruction. Scale: 50 µm. (C’) The volume of pMAPK neurons/staining was reduced after sucrose consumption. Data are expressed as mean ± SEM (t-test).
*p < 0.05, compared with vehicle (n = 8 per treatment group).

1:100) for 48 h at room temperature followed by and guinea-
pig anti-VGLUT3 (Synaptic System #135204), at 1:500 dilution
(Belmer et al., 2019), and phosphor-p44/42 MAPK (Erk 1/2)
(Thr 202/Tyr 204) (Jacques et al., 2019b) at 1:150, overnight
at room temperature (#4370, Cell Signalling Technology, MA,
United States). After three washes in the blocking solution, the
slices were incubated for 4 h at room temperature with secondary
antibodies diluted in the blocking solution: goat anti-rabbit-Alexa
488, goat anti-guinea pig-Alexa 647 (Thermo Fisher Scientific,
#A11034 and #A21450, respectively, 1:500) and goat anti-rat
biotinylated (Jackson Laboratory # 112-065-003, 1:200). For the
biotinylated secondary antibody, sections were then incubated in
streptavidin-CY3 for 30 min at room temperature.

Given the importance of serotonin in modulating adult
hippocampal neurogenesis (Gould, 1999; Kolodziejczak et al.,
2015), we analysed if chronic sucrose consumption would also
alter neurogenesis. Sections for neurogenesis containing the
hippocampus were incubated overnight at 4◦C with primary
antibodies: rabbit anti-DCX (Abcam #18723, 1:500); rabbit anti-
GFAP (Dako, ZO334); mouse anti-Nestin (Millipore, MAB353);
mouse anti-Calretinin (Millipore, MAB1568); mouse anti-
Calbindin (Sigma-Aldrich, C9848); rabbit anti-NeuN (Millipore
Sigma, ABN78); goat anti-Iba1 (Abcam, AB5076); rabbit anti-
Olig 2 (Millipore, AB9610); and Edu Click-iTTM EdU Alexa
FluorTM 488 Imaging Kit (Thermo Fisher Scientific, C10637)
(Beecher et al., 2021) and with corresponding secondary
antibodies, for 2 h at room temperature: goat anti-mouse 594
(Thermo Fisher Scientific, A11032) and goat anti-rabbit 647
(Thermo Fisher Scientific, A27040). Sections were mounted in
Prolong gold antifade mountant with DAPI (Thermo Fisher
Scientific, P36934).

Imaging and Analysis
Whole PFC and DG of the hippocampus from three coronal
sections per animal group (n = 8) were imaged on the Olympus
FV3000 confocal microscope using a 40 × oil-objective, ×1.5
numerical zoom and 0.5 z-step. Images were deconvolved
using Huygens professional v16.10 (Scientific Volume Imaging,
The Netherlands) with iteration number set at 100, quality
threshold at 0.001, signal to noise ratio at 15 for the 4 channels

and converted in. OIF for subsequent quantification for 5-
HT, VGLUT3, 5-HT/VGLUT3, and pMAPK in Imaris 9.1.2
using Surface Reconstruction and Spot Detection functions
as previously described (Belmer et al., 2017, 2019). Using
surface rendering, fluorescence thresholding, and masking of
unwanted immunolabelling, we obtained 3D objects (structures)
of VGLUT3 labelling within 5-HT boutons. All images were batch
processed using the same surface thresholding parameters and
mean fluorescence intensities of VGLUT3 labelling within 5-
HT boutons and image volumes were obtained from the surface
statistics in Imaris.

Quantification of neurogenesis was counted on Neurolucida
360 (MBF Bioscience). Each neurogenesis stage (stage 1:
EdU+/GFAP+/Nestin−; stage 2: EdU+/Nestin+/GFAP-; stage
3: EdU+/DCX+; stage 4: EdU+/calretinin+/NeuN+, and stage
5: EdU+/calbindin+/NeuN+) as well as microglia (IBA-1+) was
counted by an experimenter blind to the treatment, averaged per
animal and plot as mean ± SEM for each group (Belmer et al.,
2018a; Patkar et al., 2019; Beecher et al., 2021). The density of
counted cells will be normalised to the volume of granular cell
layer sampled in each group.

Statistics
Comparisons between groups were statistically analysed using
t-tests through GraphPad Prism 9 (Graph Pad Software Co., CA,
United States). A p < 0.05 will be considered significant. All
values are expressed as the mean± SEM.

RESULTS

Sucrose Alters the Density of the
Neuronal Plasticity Marker pMAPK in the
PFC
The PFC is known to exert restraint over hedonic eating
behaviour (Hare et al., 2009) and a decrease in PFC activity has
been associated with the breakdown of healthy dieting (Demos
et al., 2011). Additionally, serotonin may also induce pMAPK-
associated neuroplasticity (Michael et al., 1998). Therefore, we
predicted that sucrose consumption will decrease plasticity
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FIGURE 3 | Sucrose alters serotonin innervation in the PFC and DG of the hippocampus. A high-resolution representative image of the PFC (A) and DG of the
hippocampus (E) showing the distribution of the reconstructed 5-HT, VGLUT3, and 5-HT/VGLUT3 co-localisation surfaces between water and sucrose consuming
animals (Scale: 50 µm). Sucrose drinking does not alter the density of 5-HT varicosities (B) however, decreases the density of VGLUT3 varicosities (C) and the
density of 5-HT/VGLUT3 co-localised varicosities (D) in the PFC. Sucrose drinking selectively decreases the density of varicosities of 5-HT (F), density of VGLUT3
varicosities (G) and density of 5-HT/VGLUT3 (H) co-localised varicosities in the DG of the hippocampus. Data are presented as mean ± S.E.M (t-test); n = 8
mice/group. *p < 0.05, ****p < 0.0001. PFC, prefrontal cortex; DG, dentate gyrus.

within the PFC, reducing its inhibitory control over hedonic food
consumption. To evaluate this, counted the number of pMAPK-
immunoreactive neurons and reconstructed pMAPK neurons
using Imaris to quantify the volume of pMAPK (neuroplasticity
marker) neurons/staining in the PFC (Figure 2A). No change
in the number of pMAPK neurons was observed in the PFC
(Figures 2B,B’; p = 0.9177, t-test). A significant reduction in
the volume of pMAPK neurons/staining in the PFC between
sucrose and water consuming mice was detected (Figures 2C,C’;
p = 0.0434, t-test). Although we have not seen a difference in the
number of pMAPK neurons we have observed a reduction in the
dendritic complexity of these neurons suggesting a decrease in
the plasticity of these neurons.

Sucrose Alters Serotonin Innervation in
the PFC and DG
Co-release of serotonin and glutamate in the limbic system
has been proposed to play a pivotal role in the development
of emotional deficits like anxiety, depression and addiction.
As the serotonin system is widely implicated in ethanol and
sucrose consumption, and VGLUT3 expression is modulated
by alcohol and sugar intake (Tukey et al., 2013; Vrettou et al.,
2019), we investigated the density of varicosities that would
be able to release and co-release 5-HT and glutamate in

the PFC (Figure 3A) and DG (Figure 3E). Sucrose drinking
selectively reduces the number of 5-HT varicosities in the DG
(Figure 3F; ∗∗∗∗p = 0.0001, t-test) not in the PFC (Figure 3B;
NS, p = 0.3394, t-test). Sucrose drinking also selectively reduces
the density varicosities that release VGLUT3 in PFC (Figure 3C;
∗∗∗∗p = 0.0001, t-test) and DG (Figure 3G; ∗∗∗∗p = 0.0001,
t-test). Sucrose drinking selectively decreased the number of
putative 5-HT/VGLUT3 co-release sites in both the PFC and
DG (Figures 3D,H; D: ∗p = 0.0201, H: ∗p = 0.0238, t-test).
Here for the first time, we have shown chronic restricted sucrose
consumption produces changes in the serotonergic innervation
of the PFC and DG of the hippocampus.

Sucrose Does Not Alter Adult
Hippocampal Neurogenesis but Reduces
DG Microglia Density
It has well been established that a reduction in serotonin
levels is correlated with anxiety and depression. This depression
and anxiety are then partially caused by the impairment of
neurogenesis which is known as the neurogenic theory of
depression and anxiety (Miller and Hen, 2015). Serotonin
may therefore also control sucrose intake through cognitive
changes resulting from neurogenesis within the DG. Fructose-
consuming rats (van der Borght et al., 2011) and mice
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FIGURE 4 | Sucrose consumption alters microglia in the dentate gyrus of the hippocampus. (A) Representative images at both 4× (left images; scale bar = 100 µm)
and 40× magnification (field indicated by white boxes on 4× magnification images; right images; scale bar = 10 µm). (B) Long-term sucrose consumption reduces
the number of microglia (magenta) in the DG of the hippocampus. All images are co-localised with DAPI (blue). Data are presented as mean ± S.E.M (t-test); n = 8
mice/group. *p < 0.05.

(Cisternas et al., 2015) show neurogenic deficits within the DG.
The importance of serotonin in neurogenesis has been shown
as the selective serotonin reuptake inhibitors mediate their anti-
depressive responses through binding 5-HT2B receptors in the
DG (Diaz et al., 2012) and subsequently altering hippocampal
neurogenesis (Alenina and Klempin, 2015). Upon 5-HT2B
receptor activation, DG microglia migrate toward neuroblast cells
(Kolodziejczak et al., 2015), a process essential for neurogenesis
(Kreisel et al., 2019). As we have observed a reduction in density
of 5-HT, VGLUT3 and 5-HT/VGLUT3 varicosities, we therefore
assessed sucrose effect on emotional behaviour after 9 weeks of
sucrose, and neurogenesis after 16 weeks of sucrose consumption.

We performed four behavioural tests assessing anxiety and
depression: MB, EPM, OF and FST. Surprisingly, we did not
observe any anxiety-like behaviour or depressive-like symptoms
after sucrose withdrawal (Supplementary Figure 2). Supporting
the neurogenic theory of depression, we also did not observe
any neurogenic deficits across any stage of neurogenesis in the
DG of the hippocampus (Supplementary Figure 3) which was
interesting after observing changes in serotonin and knowing
that serotonin mediates DG neurogenesis. Glial cells are key
mediators throughout neurogenesis, therefore we also assessed
glial cells after sucrose consumption. We did not see any changes
in number of oligodendrocyte progenitor cells; however, we did
observe a reduction in the number of microglia in the DG as a
result of sucrose consumption (Figures 4A,B; ∗p = 0.0243). The
dual impact of decreased 5-HT and decreased microglia was not
sufficient to elicit any negative impact on neurogenesis.

DISCUSSION

This study demonstrates that chronic consumption of low
concentration of sucrose leads to a decrease in the expression
of the plasticity marker pMAPK and reduction in serotonin
innervation within the PFC and DG, please see Figure 5 for
summary of key findings. Given that these structures modulate

emotions and behaviours associated with feeding (Kanoski and
Davidson, 2011; Reichelt, 2016), these findings demonstrate how
chronic sugar consumption can alter the central regulation of
feeding from a molecular perspective. It is interesting that we
do not observe any behavioural changes considering the effect
of varenicline on reducing 5% sucrose intake (Shariff et al.,
2016). However, small changes in serotonin co-localisation,
neuroplasticity and microglia were observed. These results
may predispose individuals to the delirious effects seen at
higher concentrations of sucrose which ultimately promote
further sugar intake.

Both high sugar and high-fat diets reduce the expression of
genes involved in neuroplasticity. High-fat diets have shown
to reduce hippocampal levels of brain-derived neurotrophic
factor (BDNF) as well as cyclic AMP-response element-binding
protein (CREB) mRNA and protein levels (Maniam et al., 2016).
BDNF controls CREB activation and is important in memory
formation with pMAPK being downstream of BDNF and
upstream of CREB. Greater activation of prefrontal pMAPK has
been observed following binge-ethanol consumption (Agoglia
et al., 2015). Additionally, serotonin (Michael et al., 1998)
and serotonin receptors (Yuen et al., 2008; Cui et al., 2016)
also modulate pMAPK-associated neuroplasticity. Therefore,
we wanted to determine the effect of sucrose consumption
on pMAPK expression. In contrast to ethanol exposure
(Agoglia et al., 2015), we observed a reduction in the
overall immunoreactivity of pMAPK in the PFC. Changes
in dendritic MAPK phosphorylation at the PFC, similar to
what we have reported, has been correlated with altered
apical dendritic structure (Papadeas et al., 2008). Therefore,
dendritic mapping of the PFC following chronic sucrose
consumption could be conducted to confirm if these structural
changes are also present. In summary, these results suggest
that sucrose negatively affects neuroplasticity in the PFC.
Future work can investigate these regions associated with
cognitive function by performing behavioural testing such as the
Morris Water Maze.
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FIGURE 5 | Summary of key findings. Serotonergic neurons in the RN (coloured red; dorsal, median and caudal raphe nuclei) project to the PFC and DG to
modulate behaviours associated with eating. Chronic, low-concentration sucrose consumption causes a decrease in the density of pMAPK, VGLUT3 and
5-HT/VGLUT3 co-localisation in the PFC (coloured blue). In the DG of the hippocampus (coloured grey), sucrose consumption decreases the density of 5-HT,
VGLUT3 and 5-HT/VGLUT3 co-localisation. RN, raphe nuclei; DG, dentate gyrus; PFC, prefrontal cortex.

The co-release of 5-HT and glutamate has been evidenced
by the presence of the vesicular glutamate transporter 3
(VGLUT3) in some 5-HT varicosities and the co-release
of the 2 neurotransmitters has been proposed to play
an important role in controlling the reward system (Liu
et al., 2014; Sengupta et al., 2017) and anxiety-related
behaviours (Amilhon et al., 2010; Sakae et al., 2019). We
therefore assessed the effect of sucrose consumption on
the distribution of co-localised serotonin/glutamate in the
PFC and DG. We observed a reduction in the density of
5-HT varicosities only in the DG, not the PFC. However,
we saw a reduction in the density of VGLUT3 boutons in
both DG and PFC and a reduction in the density of 5-
HT/VGLUT3 varicosities. Decreased VGLUT3 expression may
be associated with susceptibility to stress (Zou et al., 2020),
however, the role VGLUT3 plays in sucrose consumption
is unknown.

Cognitive and behavioural changes following VGLUT3
knockout/downregulation may not be regulated by serotonergic
neurons. Neuronal projections from the dorsal raphe that contain
VGLUT3, but not 5-HT have been previously documented
(Commons, 2009; Hioki et al., 2010). These non-serotonergic
neurons have also been implicated in reward (McDevitt et al.,
2014) and have even been shown to mimic addictive phenotypes
produced by VGLUT3 knockout. For example, the knockout of
specifically cholinergic, but not serotonergic VGLUT3 neurons,
is responsible for the aforementioned amphetamine-sensitisation
(Mansouri-Guilani et al., 2019). It is therefore important that
future studies be performed which immunologically dissect these
VGLUT3 projections, for example by additionally probing for
acetylcholine axons.

It is interesting that we did not see a reduction in 5-HT in
the PFC yet we saw reduction in VGLUT3 and 5-HT/VGLUT3
varicosities considering the proposed mechanism of VGLUT3 is
to synergise the filling of 5-HT and glutamate within synaptic
vesicles (Amilhon et al., 2010). In an assessment of multiple brain
regions, only the hippocampus displayed decreased serotonin
levels as a result of VGLUT3 knockout (Amilhon et al.,
2010). This suggests there is likely a unique mechanism within
the hippocampus in which VGLUT3 modulates 5-HT uptake.
Therefore, the decrease in DG 5-HT varicosities seen in sugar
consuming mice may be a downstream effect of reduced
VGLUT3 varicosities at the DG. As pharmacological agents that
specifically target VGLUT3 are still being developed (Poirel et al.,
2020), it is difficult to directly manipulate VGLUT3 activity
in vivo to test this hypothesis. Alterations of the serotonergic and
glutamatergic co-localisation within PFC and DG are supported
by immunohistochemistry data. The co-localised serotonergic
and glutamatergic alterations observed within PFC and DG
need to be confirmed using functional studies. Future studies
can measure the concentration of serotonin or glutamate
in vivo using microdialysis studies. Functional experiments such
as ex vivo electrophysiological studies will validate whether
serotonin and glutamate are released from the same axons.

We also report that the DG microglial population is decreased
following sucrose consumption. Microglia phagocytose apoptotic
neuronal precursors to promote hippocampal neurogenesis
under physiological conditions (Sierra et al., 2010) through the
secretion of a plethora of neurogenic factors (Battista et al., 2006;
Butovsky et al., 2006). Microglial signalling in the adult DG
has also been shown to alter addictive behaviour (Rivera et al.,
2019). Our results show that sucrose consumption influences
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neurogenesis through two possible mechanisms: a decrease in
the number of microglia, as well as a decrease in 5-HT. Given
that 5-HT promotes microglial migration in the DG during
neurogenesis (Kolodziejczak et al., 2015; Kreisel et al., 2019),
we expected to detect a resulting decrease in neurogenesis.
Similar rodent studies using a high-fat diet have recorded
decreased neurogenesis in mice (Yoo et al., 2014) and unaltered
neurogenesis in rats (Rivera et al., 2013).

Our results show that, despite decreases in 5-HT and
microglia in the DG, neurogenesis was unaltered in sucrose
consuming mice. Therefore, these mice may not have been
exposed to sucrose for a length of time where the decreased
serotonergic innervation in the DG to alter neurogenesis, given
that to higher concentrations of sucrose for 12 weeks elicits
neurogenic deficits (Beecher et al., 2021). For example, after
10 days of SSRI administration, the DG of Sprague-Dawley rats
did not display altered neurogenesis, but did show increased
neuroplasticity (Pawluski et al., 2020), suggesting the onset of
plasticity in this region precedes alterations in neurogenesis.
We therefore hypothesised that our mice were not consuming
sucrose long enough for the altered DG serotonergic input to
impact neurogenesis. This potential delay in neurogenesis also
suggests that higher sucrose concentrations may increase the
speed of neuroplastic events, given that similar studies with
similar timeframes of consumption have used higher sucrose
concentrations (Kim et al., 2018; Xu and Reichelt, 2018; Beecher
et al., 2021). However, sucrose consumption may not decrease
the overall amount of neurogenesis but may impact the quality of
the generated circuits. For example, transient microglial ablation
within the olfactory bulb (another site for adult neurogenesis),
results in the same number of adult neurons (granular cells)
being produced, however their synaptic connectivity and odour
detection is dampened (Wallace et al., 2020). This may explain
why no changes in neurogenesis were seen in this study despite
decreased microglial presence and 5-HT innervation within the
DG. A trend does exist suggesting that sucrose consumption
may increase microgliogenesis. This trend may represent a
compensatory mechanism to restore the depleted microglial
population seen after sucrose consumption and could potentially
contribute to the lack of behavioural change.

Surprisingly, no changes in behaviour were identified across
the four tests conducted. This indicates that the changes in
glutamate/serotonin co-release sites detected within the PFC, as
well as decreased microglial cell count and 5-HT varicosities in
the DG were not sufficient to produce emotional or cognitive
deficits. Once again, this may be due to inadequate exposure
to sucrose, given the delay needed to impact neurogenesis
(Pawluski et al., 2020), as well as the relatively low concentration
of sucrose used.

This study demonstrates the potency of chronic, low-
concentration sucrose consumption in producing intricate
alterations in serotonergic neuroplasticity within key brain
regions associated with feeding. Although the findings of
this study suggest that sucrose consumption does not alter
adult hippocampal neurogenesis, we have previously shown
that sucrose alters neurogenesis at higher concentrations of
sucrose (Beecher et al., 2021). Therefore, it is suggested that

higher sucrose concentrations, and increased exposure to the
sucrose solution is required to detect more specific changes
in neurogenesis. Additionally, while proliferation in the DG
was assessed in response to a high-sucrose diet, cell death
was not studied. High-fat diets in rodents cause increased
DG apoptosis in rats (Maniam et al., 2016) as well as
decreased DG neuroprogenitor cell survival in mice (Yoo et al.,
2014). Therefore, DG cell death should be assessed in sucrose
consuming mice through TUNEL assays in order to fully
understand sucrose’s effect on neurogenesis. Lastly, the current
study is limited to only male C57BL/6 mice. Differences in
diet-responsive neurogenic defects exist between species (Rivera
et al., 2013; Yoo et al., 2014) and sex-specific differences in
serotonergic function have been documented within the rat
PFC (Brivio et al., 2018). Strain-specific differences in VGLUT3
expression and knockout phenotype also exist (Sakae et al.,
2019). Care should therefore be taken when extrapolating these
results into contexts of female rodents, or other mouse strains.
Despite these limitations, this study provides novel insights into
the mechanisms of sugar-induced neuroplasticity, with potential
implications for obesity and eating disorder research.
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Supplementary Figure 1 | Five percentage sucrose consumption and weight. (A)
After 16 weeks of access to 25% sucrose, mice exhibited stable levels of sucrose

intake around 3–6 g/kg/2 h (mean 4.4 g/kg/2 h indicated by the red line). (B) No
weight change was observed across the 16 weeks. Data are presented as
mean ± S.E.M; n = 8 mice/group.

Supplementary Figure 2 | No change observed in anxious behaviour as seen by
the number of marbles buried in marble burying test (A), number of open arm
entries in the elevated-plus-maze (B), number of entries into the centre in the
open-field test (C), no change in depressive like behaviour as seen by immobility
time in the forced swimming test (D). Data are presented as mean ± S.E.M
(t-test); n = 8 mice/group.

Supplementary Figure 3 | (A) No change in the total number of EdU
+ cells, suggesting no change in overall proliferation. No change in
proportion of EdU + co-localised with any stage of neurogenesis: stage 1:
glial fibrillary acidic protein (GFAP, B); stage 2: Nestin (C); stage 3:
Doublecortin (DCX, D); stage 4: calretinin (CalR, E) and stage 5: calbindin
(CalB, F) suggesting no change in neurogenesis. No change in proportion of
EdU + co-localised with glial populations: oligodendrocyte (olig2, G) and
microglia (IBA, H). Data are presented as mean ± S.E.M (t-test);
n = 8 mice/group.
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