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Simultaneous representation of a spectrum of
dynamically changing value estimates during
decision making
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Decisions are based on value expectations derived from experience. We show that dorsal
anterior cingulate cortex and three other brain regions hold multiple representations of choice
value based on different timescales of experience organized in terms of systematic gradients
across the cortex. Some parts of each area represent value estimates based on recent reward
experience while others represent value estimates based on experience over the longer term.
The value estimates within these areas interact with one another according to their temporal
scaling. Some aspects of the representations change dynamically as the environment chan-
ges. The spectrum of value estimates may act as a flexible selection mechanism for com-
bining experience-derived value information with other aspects of value to allow flexible and
adaptive decisions in changing environments.
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hen an organism makes a decision, it is guided by

expectations about the values of potential choices.

Estimates of value are, in turn, often dependent on
past experience. How past experience should be used when
deriving value estimates to guide decisions is not, however, always
clear. While it might seem ideal to use the most experience
possible, from both the recent and more distant past, this is only
true if the environment is stable. In a changing environment it
may be better to rely only on most recent experience because
earlier experience is no longer informative!?2.

Previous studies have focused on value learning: how value
estimates are updated after the choice is made and the choice
outcome is witnessed 2. These studies have emphasized that each
outcome has a greater impact on value estimates when the
environment is changeable or volatile; the learning rate (LR) is
higher and so value estimates are updated more after each choice
outcome. Similarly, each outcome has a greater effect on activity
in brain areas, such as dorsal anterior cingulate cortex (dACC)
when the environment is volatile (Fig. 1).

However, while volatility affected dACC at the time of each
decision-outcome, there was no evidence that it affected average
dACC activity at the time of the next decision. It is therefore
unclear how dACC activity might change as a function of the
learning rate determining the choice value estimates that guide
decision making at the point in time when decisions are actually
made (Fig. 1). This is this question that we address here. Rather
than investigating dACC activity at the time of decision outcomes
and in relation to learning we focus instead on how dACC
represents value estimates employed at the time of decision
making.

When making decisions, the brain might first attempt to
determine the best suited LR for the given environment and then
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Fig. 1 Outcome, choice, and learning rate. When outcomes of decisions are
witnessed, the prediction for the next choice is updated based on a learning
rule where the prediction error (PE) is weighted by the learning rate

a. Behrens et al. have shown that average activity in dACC reflects the
environment's volatility and that under high volatility, the options’ values
are updated with a high learning rate a. However, at the time of the actual
decision on the next trial, volatility no longer exerts a significant effect on
average dACC activity. However, the representation of choice value
estimates necessary for decision making (the value estimate for option A
relative to that of option B) might be represented in some other way such
as an anatomically distributed pattern of activity where different value
estimates might be calculated with different parameterizations of «,
depending on the volatility. Copyright for brain image: Behrens et al.,
Learning the value of information in an uncertain world, 2007, Nature
Neuroscience, all rights reserved

2

18:1942

consider a single-value estimate previously updated based only on
this LR. If this is the case then there may be no overall change in
average dACC activity but variance in dACC might best be
explained by value estimates calculated at the best LR rather than
other inappropriate LRs. Alternatively dACC might hold simul-
taneous representations of value estimates based on a broad
spectrum of LRs. Although intuitively the former might seem
computationally simpler, there is evidence that neurons in
macaque dACC reflect recent reward experience with different
time constants as might be expected if they were each employing
a different LR*=. However, the role of such neurons in behavior
remains unclear. Here we sought evidence for the existence of
value estimates in dACC and elsewhere in the human brain,
based on experience over different timescales (and therefore
employing different LRs), and examined how such representa-
tions mediate decision making (Fig. 1).

We developed a new approach to analyze neural data going
beyond the typical use of computational models in investigation
of brain behavior relationships. Typically, the free parameters of a
computational model (e.g., LR) are fitted to the behavior of the
subject from which trial-wise estimates of the computed variables
can be extracted (e.g., value estimates). However, here we also test
whether neuronal populations exist with responses that are better
characterised by parts of parameter space that are not overtly
expressed in current behavior. Identification of such representa-
tions is precluded by focusing exclusively on the parameters
currently expressed in behavior. Previous investigations have
considered neural correlates of model parameters fit to models
that do not correspond to the current behavior e.g., refs 6,7 and
the issue of the similarity of neural correlates of models with
different parameterizations®. However, here we aim to reveal the
dynamic changes and topography of “hidden” information by
fitting LR values to each voxel independently, visualizing those
parameters over anatomical space and computing their interac-
tions. Instead of investigating where in the brain clusters of voxels
express similar neural activity related to value estimates, here we
examine the range of value estimates across voxels. We also
examine changes to this pattern as a function of volatility.

Results

Experimental strategy. We used fMRI data from 17 subjects
acquired during a probabilistic reversal learning task!. Subjects
repeatedly chose between two stimuli with visible reward mag-
nitudes and hidden reward probabilities that had to be learned
through feedback (Fig. 2a). Thus in this experiment subjects had
to use past experience to estimate reward probabilities for each
choice. Accordingly, reward magnitude estimates should be based
on the stimuli displayed on each trial but the reward probability
estimates should depend on recent experience over several trials.
The reward probability might be estimated with different LRs
depending on how quickly the environment is changing!. Each
choice’s value can then be derived by combining the explicit
reward magnitude with the estimated probability of receiving the
reward. Each session comprised two sub-sessions (order coun-
terbalanced across subjects): one where reward probabilities
remained stable and another sub-session where reward prob-
abilities were volatile (Fig. 2b). The transition between the two
sub-sessions was not announced to the subject.

In order to investigate whether the human brain represents
multiple reward probability estimates that are based on a
spectrum of LRs, we used a novel approach to analyze fMRI
data. In addition to other regressors modeling standard variables
of interest (such as the reward magnitudes displayed to subjects
on the screen, the reward received, and so on) and physiological
noise, we added two regressors, one modeling the estimated
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Fig. 2 Methods and analysis. a Probabilistic reversal learning task. Subjects chose between a green and a blue stimulus with different reward magnitudes
(displayed inside each stimulus). In addition to the random reward magnitude, stimulus value was determined by the probability of reward associated with
each stimulus which drifted during the course of the experiment and had to be learned from feedback. After the choice was made, the red bar moved from
left to right if the chosen option was rewarded. Reaching the silver bar was rewarded with £10, the gold bar with £20. In this example situation, the subject
had chosen the green stimulus (gray frame), but was not rewarded so the red bar did not move. b Example of reward probability schedule and estimated
volatility of the reward probability from a Bayesian learner when the stable phase came first'. Each session had a stable phase of 60 trials where one
stimulus was rewarded 75% of trials, the other 25%, and a volatile phase with reward probabilities of 80 vs. 20%, swapping every 20 trials. The order was
counterbalanced between subjects. Note, the reward rate and volatility estimates from the Bayesian learner are only shown to convey task structure and
the difference in volatility between sub-sessions. The Bayesian learner model was not used for analysis. ¢ Analysis. As in a conventional fMRI analysis, the
blood-oxygen-level-dependent (BOLD) signal time course in every voxel was analyzed in a GLM with a design matrix containing relevant regressors.
Additionally, one of the regressors modeled the estimated reward probability of the chosen option during the decision phase, another one the prediction
error during the outcome phase. The same LRs were used for deriving the reward probability estimates and the prediction error regressors (these two
regressors are referred to collectively as LR regressors). This analysis was repeated 30 times, deriving the beta-values for probability estimates and
prediction errors based on 30 different LRs, testing their ability to explain signal variance. d With equally spaced LRs across the LR spectrum (0.01-0.99)
the regressors would be more strongly correlated at higher LRs, therefore we derived 30 LRs with larger intervals between higher LRs, resulting in uniform
correlation across the spectrum. e In a highly volatile environment, the stimulus-reward history should be more steeply discounted (higher LR) because
information from many trials ago is likely to be outdated. The blue decay functions show the relative contribution of the previous trials’ outcomes to the
current reward probability estimation with different LRs. We derived the best-fitting LR for every voxel in every subject. For example, within dACC the
BOLD signal in some voxels is best explained by a low LR (red), in others by a high LR (yellow)

reward probability of the chosen option during the decision
phase, another one modeling the prediction error during the
outcome phase. We repeated this entire analysis 30 times for
probability estimates and prediction errors based on 30 different
LRs ranging from 0.01 to 0.99 (slow to fast LRs), deriving the
best-fitting LR for every voxel (Fig. 2c—e). In other words, the 30
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repetitions of the analysis make it possible to derive 30 different
estimates of the reward probability based on 30 different LRs. The
30 different LRs were chosen so as to sample the entire LR space
between 0.01 (almost no learning) and 0.99 (almost complete
revision of value estimates on each trial) and to be equally spaced
in terms of their correlation to the neighboring regressors
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Fig. 3 Regions of interest. a dACC and IPL regions defined by conjunction of
(1) anatomical masks for dACC and IPL from the connectivity-based
parcellation atlases (http://www.rbmars.dds.nI/CBPatIases.h’[m)w'20 and
(2) significantly decreasing activity (blue) associated with the magnitude of
the chosen option during decision. b The dACC and IPL regions showed
high evidence for coding LRs (posterior exceedance probability >0.95)

(Fig. 2d; Methods section). In their previous study Behrens et al.!
assumed one dynamic, but unitary LR generating value estimates
across the brain. However, in this study we instead compared
value estimates generated by 30 stable learning rates. Thus,
assigning a best-fitting LR to each voxel based on its own data
reveals a pattern of diverse value estimates based on different time
periods of experience (different LRs). The best-fitting LR of a
voxel corresponds to the value regressor calculated with an LR
that explained most of the variance in the voxel's time course,
compared to the other LR regressors, regardless of how much
variance it actually explains. While such an approach is unlikely
to capture the full range of factors affecting activity in a voxel it
has the potential to identify relationships between brain activity
and choice value estimates that cannot be captured with standard
analysis techniques.

We combined two approaches to define the brain areas that we
investigated in detail. First, a priori we anatomically defined two
regions of interest (ROIs) that are likely to be important for using
feedback to adapt and change decision making. First, we
considered the dACC because of its role both in monitoring
feedback and decision outcomes and in adaptive control of
subsequent behavior and because its outcome-related activity is
known to be related to the learning rate JACC?716, Tt is also the
area in which activity has been most consistently related to
adjustment in the speed of behavioral change™!”. In addition we
considered the inferior parietal lobule (IPL) because it is
frequently co-activated with the dACC during decision making
tasks'®. The anatomical masks for dACC and IPL were taken
from connectivity-based parcellation atlases'®?’. Subsequently,
we checked that these regions were task-relevant by looking for
activity that was associated significantly with the expected reward
magnitude of the choice taken. This provides an orthogonal
contrast to identify regions in which activity might also be related
to expected reward probability estimated over different time-
scales. Our ROIs were made from the conjunction of the
anatomical and reward magnitude task-relevant activity (Fig. 3a).

4
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We also used a second independent approach to identify ROIs.
This approach identified very similar areas in dACC and IPL
(Fig. 3b) and in two other brain regions (Supplementary Fig. 1).
The analysis approach that we have described so far (Fig. 2)
assigns a best-fitting LR in comparison to all other LR regressors,
but it does not quantify whether this best-fitting regressor
explains any significant amount of evidence. In order to confirm
that the voxels in our ROIs reflected activity that was related to
probability estimates in a manner that could not be due to the
overfitting of any particular LR in a given voxel, we ran a singular
value decomposition (SVD) over the LR regressors (before HRF-
convolution, normalization and high-pass filtering) to derive
singular values capturing most of the variance associated with the
LR regressors. The first three singular values explained on average
99.63% of variance in the LR regressors and can thus be
interpreted as capturing almost all LR-related variance. A
standard t-test over the parameters of these three regressors in
a GLM explaining the measured BOLD signal in each voxel is not
an appropriate test because it assumes a coherent positive or
negative correlation between the regressor and the measured
BOLD signal in a given voxel across all subjects. An F-test over
the parameters might therefore be appropriate but there is
currently no widely agreed standard approach for combining
individual subject F-test results into a group-level analysis in
neuroimaging. We therefore used a different approach to test
whether a voxel's time course reflected LR-related information.
For every voxel, we derived the Akaike Information Criterion
(AIC) scores from our main GLM (the seven regressors of no
interest and their temporal derivatives (Methods section) plus six
motion confound regressors, but in the absence of any LR
regressors). This reveals how well a model lacking multiple LRs
accounts for activity variation in every voxel in the brain. We also
ran an identical GLM that contained the same regressors but also
the first three principle components from the SVD (HREF-
convolved, demeaned and high-pass filtered), and again com-
puted the AIC score. This reveals how well a model containing
LR-based reward probability estimates accounts for activity
variation in every voxel in the brain. We then compared the
AIC scores of the two models of brain activity at every voxel usin,
random-effects Bayesian model comparison for group studies?’.
This procedure returned protected exceedance probabilities for
every voxel, revealing the degree to which the model containing
the singular values, reflecting value estimates based on one or
multiple LRs, was the more likely model of the neural data
(Fig. 3b). The protected exceedance probability can be considered
a quantitative measure of the evidence for the model with LR-
related information. The random-effects Bayesian model com-
parison tests for the amount of evidence in favor of a model
across all subjects, regardless of sign. Since exceedance prob-
abilities of all compared models sum to 1, they can be easil
interpreted in a way that is similar to classical p-values®’?2. In
voxels with a protected exceedance probability of >95%, this
corresponds to a 95% confidence that the model with singular
value regressors is the most likely model to explain the activity.
Thus, we can state that in these voxels LRs have an impact on
activity. Having established initial candidate areas of interest in
an unbiased way we then went on in subsequent analyses to
establish more specifically how reward probability estimates
based on different LRs were represented.

The relevance of the dACC and IPL regions that we had
defined a priori based on anatomy was confirmed: these ROIs
showed high evidence of coding reward probability estimates
based on LRs. Accordingly, for subsequent analyses, we
constrained the ROI masks to those voxels that fulfilled both
the anatomical and task-relevant exceedance probability criteria.
We found two further clusters with high evidence in the right

| DOI: 10.1038/541467-017-02169-w | www.nature.com/naturecommunications
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Fig. 4 Topographic maps of LRs. a A topography of diverse estimates of the
reward probability based on different LRs exists in the ROIs. Bright yellow
and white colors indicate voxels with high LRs while darker, redder voxels
indicate voxels with lower LRs. The color bar on the left indicates the set of
LRs (high LRs at top, low LRs at bottom) chosen in 30 steps to minimize
correlation between regressors in LR space (see also Fig. 2d). b. Spatial
gradient along the rostrocaudal axis in dACC in two example subjects. Each
voxel's best-fitting LR is plotted against its position on the y-coordinate.
Note that the color of the dots reflects the number of voxels having a given
combination of values (see color bars beneath graph). Red lines: regression
of all voxels' best-fitting LR against their y-coordinate

frontal operculum (rFO) and bilateral lateral frontopolar cortex
(FPI) (Supplementary Fig. 1A). We focus on reporting results for
our primary regions of interest, JACC and IPL, but in the
Supplementary Information, we show related results for rFO and
FPl. Using a different model, with an additional regressor coding
the outcome of the trial (win or loss), the evidence in favor of an
LR-based model in these regions was even stronger (Supplemen-
tary Note 1, Supplementary Fig. 1B). Furthermore, we have run
two complementary analyses comparing the model with singular
values first against a model with choice values derived from the
optimal (gain-maximizing) LR, and second against a model with
the choice values derived from the LR fit to subject behavior, with
a similar result (Supplementary Note 1, Supplementary Fig. 2).
Both these analyses support the finding that the ACC and IPL
show evidence for coding multiple LRs. This finding is consistent
with several other demonstrations that value representations in
dACC often in tandem with IPL and FPl, guide stay/switch or
engage/explore decisions of the sort that might be used to
perform the current task in humans'>>*=?7 and other pri-
mates?®2%, In a later section below, we describe how such activity
is not found in other brain regions also known to carry value
representations.

Diversity and topography of value representation. The high
exceedance probabilities in dACC and IPL reveal that LRs in a
very general sense have an impact on activity in these regions;
activity in these regions is better explained when learning rates
are considered. However, what the analysis does not address is
whether different voxels represent probability estimates based on
different LRs and whether there is any topographic structure in
such a representation. We turn to this question next. Using our
multivariate mapping approach, we found that in our ROIs,

18:1942

voxels did not homogeneously integrate the reward history with
the same LR, but that there was some degree of spatial topo-
graphic organization of the diverse probability estimates (Fig. 4).
First, we asked whether the spatial distribution of the best-fitting
LRs was entirely random or whether it was organized in three-
dimensional space, we tested whether the voxels’ x, y, and z-
coordinates (Montreal Neurological Institute (MNI) space) could
predict the best-fitting LR. While these axes do not correspond
exactly to anatomical features such as gyri or sulci in these
regions, this analysis is a first indication of spatial organization. In
both IPL and dACC, a significant amount of variability in the
best-fitting LRs in voxels was explained by the x, y, and z-coor-
dinates of the voxel when regression models were fitted to each
subject’s data (t-test over the variance explained by every subject’s
regression model (%) against the mean 7> of 10,000 regression
models with randomly permuted coordinates. dACC: Mean r?
true data=0.101, mean 1B permuted data=0.002, t;6=5.071, p <
0.001, IPL right hemisphere: mean 7? true data=0.124, mean r?
permuted data=0.003, t;5=5.566, p < 0.001, IPL left hemisphere:
Mean #? true data=0.182, mean rg permuted data=0.006, t;s=
5.040, p < 0.001). The principle axis of anatomical organization in
dACC in humans and other primates is approximately ros-
trocaudally oriented?*3?. Although this axis does not fully cor-
respond to the cardinal axes in the standard space for illustrating
neuroimaging data (Montreal Neurological Institute (MNI)
space) we nevertheless examined whether LRs were also orga-
nized along the MNI y-axis. Consistently, across subjects, in the
dACC, LRs showed a gradient along the MNI y-axis with
increasing LRs in the rostral direction (¢-test of subjects’ regres-
sion coefficients of the y-coordinate regressor against 0, t;s=
2.175, p=0.045, Supplementary Fig. 3). No major direction of
anatomical organization has previously been reported for the IPL.

Previous studies have suggested that some brain regions may
reflect a particular timescale of experience or LR that is
appropriate to its function®! but our analysis suggests dACC
and IPL are, in addition, representing a spectrum of different LRs.
Other relatively abstract features, such as numerosity are known
to be represented topographically even though such representa-
tions do not map onto sensory receptors or motor effectors in any
simple manner®?, The distribution of LRs in dACC might
approximately be related to the rostral-to-caudal gradient in its
connectivity with limbic vs. motor areas®>.

Mechanisms of adaption to changes in the environment. As
already explained, in a volatile environment, ideally decisions
should be based on probability estimates derived from voxels with
higher LRs, while in a stable environment, voxels with lower LRs
might inform the decision. This suggests that one of two changes
to the representation might occur as volatility of the reward
environment changed. First, voxels might have dynamically
changing LRs, depending on the environment (Fig. 5a). Alter-
natively, each voxel might retain its best-fitting LR regardless of
volatility but the degree to which variance in each voxel's activity
was explained by reward probability estimates with the best-
fitting LR might get stronger in high LR voxels in volatile
environment (or stronger in low LR voxels in stable environ-
ments). In other words, the regressor effect size (beta-weight) in
high LR and low LR voxels might increase and decrease in volatile
and stable environments, respectively (Fig. 5b). To probe these
hypotheses, we split the BOLD signal time course into stable and
volatile sub-sessions and again identified the best-fitting LR for
every voxel in each of the two sub-sessions. We then compared
the best-fitting LR in each sub-session in every voxel.

In the dACC and IPL, the LRs of the voxels’ probability
estimates were approximately normally distributed (Lilliefors test:
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Fig. 5 Schematic figure depicting possible ways in which multiple value
estimates, based on different periods of experience determined by different
LRs, might be represented in the brain as indexed by fMRI. We consider
how such representations might change as the environment's volatility
changes. Each row shows the representation of value estimates in nine
example voxels in a stable and in a volatile environment. a According to the
LR shift hypothesis, in a stable environment neurons in more voxels would
compute value estimates based on lower LRs while they would shift toward
higher LRs in a volatile environment. b The signal strength shift hypothesis
predicts that the value estimates computed by the neurons of each voxel
remain constant in all environments, but that those voxels with value
estimates that are currently most relevant for the environment (high LR
voxels in volatile environments and low LR voxels in stable environments)
increase their signal strength. ¢ The combination hypothesis suggests a
combination of the two mechanisms in a, b

dACC p=0.363; IPL p=0.950) but they had significantly higher
LRs in the volatile compared to the stable sub-session (average LR
difference in dACC: 5.36 (details of LR scaling are shown in
Fig. 2d), t-test of each subject’s mean change in LR’s against 0: t;4
=3.68, p=0.002, average LR difference in IPL: 4.34, t;4=2.58, p=
0.020) (Fig. 6). This finding suggests an adaptation mechanism
resembling the one outlined in the shift-hypothesis (Fig. 5a).
However, there might also be a change in how much of the neural
activity in a voxel can be explained by the best-fitting LR. This
would constitute a change in the effect size or beta-weight of the
best-fitting regressor (Fig. 5b, c).

We therefore tested whether there was a dynamic change in the
effect sizes of the best-fitting LRs depending on which LRs were
currently behaviorally relevant. If such a boosting of relevant LR

6
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signals exists, then we would expect voxels with lower best-fitting
LRs to have higher beta-weights in the stable sub-session (a
negative correlation between best-fitting LR and beta-weight) and
voxels with higher best-fitting LRs to have the higher beta-values
in the volatile session (positive correlation between best-fitting LR
and beta-weight). We calculated the correlation between best-
fitting LR and beta-weights for every subject in the two sub-
sessions and transformed the correlation coefficients to z-scores
(Fisher transformation). In the dACC, there was indeed such a
dynamic change in effect size (mean difference in z-scores stable
minus volatile sub-session —0.230, t;4=-3.802, p=0.002), while
this was not the case for the IPL (mean difference —0.056, t;s=
—0.818, p=0.425.) (Fig. 7). This shows that in the dACC, there is
a combined adaptation of both the best-fitting LRs in voxels and a
change in the effect size of the best-fitting LR, depending on the
behavioral relevance of the best-fitting LR in a given environment
(Fig. 5¢). Thus, voxels change so as to code LRs appropriate for
the current environment and they change so as to encode
appropriate LRs more strongly than inappropriate LRs. In the
IPL, however, only the former adaptation to the environment
seems to take place (Fig. 5a).

LRs as an organizational principle of interregional interaction.
So far we have seen that four brain regions carry multiple esti-
mates of the value of choices that are based on different time
constants of experience corresponding to different LRs. Thus,
multiple LRs constitute an organizing principle determining
distribution of activity patterns within these areas. We therefore
next asked whether multiple LRs exerted a similar influence over
the manner in which the areas interacted with one another. In
other words, do voxels that code recent reward probability
experience with a small time constant (high LR) in one brain
region (e.g., dACC) interact preferentially with voxels with high
LRs elsewhere? Similarly, are low LR voxels in different brain
areas preferentially interacting with one another?

For every subject, we extracted the mean residual BOLD time
course for all voxels after regressing out all the information
contained in our original design matrix (coding, for example, for
the various task events) and additionally all 30 LR regressors
indexing the estimated reward probability in the decision phase
and all 30 LR regressors indexing prediction error in the outcome
phase. Thus, the residual time course no longer contained any LR
related information. We then created a mean residual time course
for all voxels originally identified as being of the same LR within
each ROI and correlated these 30 mean residual time courses with
the 30 mean residual time courses of another region. We found
that the more similar the best-fitting LRs, the higher was the
correlation of these voxels’ residual time courses between the
dACC and the IPL, as reflected in higher average correlation
values along the diagonal (Fig. 8). For example, voxels with high
LRs in the dACC were more correlated with high-LR voxels
compared to low-LR voxels in the IPL (Fig. 8; bright yellow
diagonal line running from top left to bottom right).

The statistical test for demonstrating the significance of the
effect is best understood with reference to Fig. 8. It is to examine
whether the subjects’ z-transformed correlation coefficients are
correlated positively with their closeness to the diagonal; this was
indeed the case (negative Euclidian distance, one-tailed t-test of z-
transformed correlation values t5=-2.944, p=0.005); the
correlation between the brain areas’ signals became greater the
more that the signals were drawn from voxels with similar LRs.

In summary, even after removing all linear task-related
information (activity linearly related to task variables and value
estimates), voxels with the same best-fitting LR shared a more
similar pattern of activity in dACC and IPL. Thus, LRs are not
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Fig. 6 Dynamic changes in LR between stable and volatile sub-session. a Change in LR in every voxel between stable and volatile sub-session. Values on the
color bars show the change in LR rank. b Distribution of number of voxels with best-fitting LRs in the two regions of interest
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Fig. 7 Change in the correlation between beta-weights of the best-fitting LR
regressors and the best-fitting LR between sub-sessions. a In the dACC, the
correlation was significantly positive for the volatile sub-session and
significantly different from the negative correlation seen in the stable phase.
b Average beta-weights across the whole spectrum of LRs in stable and
volatile sub-session in the dACC. Error bars: Standard error of the mean

just an organizational feature of individual brain regions but also
an organizing principle determining how these regions interact
with one another. This feature of interactions between areas was
also apparent in all combinations of interactions between all the
four regions that showed high evidence for the coding of reward
probabilities based on multiple LRs (ACC, IPL, FPl and rFO;
Suppelementary Fig. 7, Supplementary Table 1).

Ubiquity of dynamic topographic value representations. We
have presented evidence for topographic organization of value
estimates as a function of different LRs and shown LRs are an
organizational principle of connectivity between regions, such as
dACC and IPL. We next asked whether such representations and
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interaction patterns are ubiquitous in all brain areas signaling
value. We therefore performed the same analyses in another brain
region that has repeatedly been linked to value and decision
making, the ventromedial prefrontal cortex (vmPFC)1234-41 [
most studies, the strongest value-related activation was found in
the anterior part of the vmPFC. We examined two vmPFC
regions: anterior vmPFC and posterior vmPFC (Supplementary
Note 2). We found some, albeit weak, evidence for LR related
activity in anterior vmPFC (Supplementary Fig. 1C). Unlike in
dACC and IPL, in vmPFC the amount of BOLD variance
explained by SVD-derived singular values reflecting the LR
regressors was not significantly greater than the amount of var-
iance explained by a model lacking LR information (mean pro-
tected exceedance probability in anterior vmPFC=0.478, t-test
against 0.5: f1997=—-5.19, p <0.001. Mean protected exceedance
probability in posterior vmPFC=0.340, t154;=-33.274, p<
0.001). In fact, when the same statistical approaches were used as
in our investigation of dACC and IPL we found that activity in
many voxels in vmPFC was better explained by a model lacking
the LR regressors. Value estimates with different LRs could be fit
to voxels in vmPFC (Supplementary Note 3, Supplementary
Fig. 4) but there was no shift in the distribution of LRs depending
on the volatility of the environment (Supplementary Fig. 5,
compare to Fig. 6) and there was no change in the correlation
between the best-fitting LR and its beta-weight as seen in the
dACC (Supplementary Fig. 6, compare to Fig. 7) in either vmPFC
region. Additionally, unlike dACC, IPL, rFO, and FP, there was
no evidence that voxels in either vmPFC region preferentially
interacted with voxels with similar LRs in other brain regions (i.e.,
no diagonal with high correlation values; Supplementary Note 4;
Supplementary Fig. 7, Supplementary Table 1, compared to
Fig. 8). In general, the average correlation over all voxels between
two regions was significantly higher for dACC, IPL, rFO, and FPI
than between any of these areas and either vmPFC subdivision
(Supplementary Table 2).
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0.75

IPL

Fig. 8 LR topography as an organizing principle for interaction between regions. a We investigated whether voxels that represent choice values with similar
LRs also show stronger connectivity between regions. b Correlation plot depicting the correlation of the residual BOLD time course averaged over all voxels
with the same best-fitting LR within dACC with the residual BOLD time course over all voxels with the same best-fitting LR within IPL, averaged over all
subjects. The subjects’ z-transformed correlation coefficients were correlated positively with their closeness to the diagonal

In summary, there is only comparatively weak evidence for the
vmPFC holding value related information that reflects recent
experience of reward probability and the value estimates it held
were not as sensitive to environmental volatility. Thus, the
neuroanatomical gradients of probability estimates calculated
with different LRs in dACC and IPL, their sensitivity to
environmental volatility, and their interregional LR-specific
connectivity are not ubiquitous features of all value encoding
brain regions. This supports the notion that the spectrum of value
estimates based on multiple LRs that we find in some brain
regions cannot be attributed to noise over subjects, time, or
voxels.

LR-based representation at decision outcome. Finally, while the
current investigation is focussed on the decision-making process,
rather than the outcome monitoring phase of the task, we wanted
to know whether we could observe comparable dynamic adap-
tations to environmental volatility during the outcome phase. We
therefore investigated whether prediction error coding in ventral
striatum (VS) would also reflect adaptations of which LRs should
be expressed as a function of volatility. A model containing the
first three singular values from an SVD over the prediction error
regressors provided a good model of right VS activity during the
outcome phase of the trials (Supplementary Fig. 8A). However,
using a bilateral anatomical mask of the VS (Automated Anato-
mical Labeling (AAL) atlas*?), the distributions of the LRs gen-
erating the prediction error were stable and did not change
between the stable and volatile sub-sessions (Supplementary
Note 5; Supplementary Fig. 8B). As in the study by Behrens
et al.l, in the current study there was an overall change in dACC
activity during outcome but no evidence for a prediction error
signal in dACC, using either standard analysis procedure similar
to those used before! nor based on Bayesian group model com-
parisons such as those employed here.

Discussion

A number of cortical regions have been implicated in reward-
guided decision making and it is possible that they operate partly
in parallel'>3>*3, For example, some aspects of decision making
behavior are predicted by activity in vmPFC while others, even in
the same task and at the same time, are better predicted by
activity in the intraparietal sulcus’”.
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DACC may be particularly important when deciding whether
to switch and change between choices and behavioral strate-
gies! 213152329 " A flexible behavioral repertoire would be pro-
moted by having multiple experience dependent value estimates,
estimated over different timescales: representations of how well
things have been recently and, simultaneously, how well they
have been over the longer term. By contrasting the strength of
such representations a decision-maker would be able to know
whether the value of their environment is stable or improving or
whether it is declining and that it might be time to explore
elsewhere?’.

In the present study, we have found evidence that indeed
multiple value representations, with different time constants, are
especially prominent in dACC and IPL. A diversity of value
estimates based on a spectrum of LRs could either reflect features
of the neural representation guiding decision making, or it might
simply be a reflection of natural variability over samples, trials,
and voxels. Several aspects of our findings suggest that they reflect
features of neural activity rather than noise. First, multiple LR-
based representations were not ubiquitous; they were prominent
in only a subset of regions implicated in value representation and
decision making (Supplementary Notes 2-3, Supplementary
Figs. 1-7). Second, the multiple LR representations were struc-
tured; they were topographically organized within areas (Fig. 4)
and they were an organizing feature of interaction patterns
between areas (Fig. 8). The conclusion that there are multiple LR-
based value estimates is derived from averaging data over trials; in
the future it might be interesting to examine the nature of these
representations on a trial-by-trial basis.

While the parallel information processing entailed by such a
representation might appear an unnecessary waste of computa-
tional resources, it may be advantageous when the volatility of the
environment is changing and other LRs generate better value
estimates than the one currently employed to guide behavior.
Imagine a decision-maker that has estimated that the current
environment is volatile and estimates choice values only on the
basis of recent experience (high LR). If the decision-maker rea-
lizes that actually the environment is more stable than suspected,
then it needs to retrieve the outcomes of earlier decisions and
reweigh each of them according to the LR that is now optimal for
estimating choice values. Our evidence suggests that the brain
may compute many values estimates in parallel over different
timescales and that such longer term timescale estimates (lower
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LR estimates) are immediately available for the decision-maker to
switch to on realizing the true level of environmental volatility.
Since these value estimates are derived in a Markov decision
process, only the most recent value estimate has to be remem-
bered and updated so that it is not necessary to remember pre-
ceding outcomes. We are aware of one other study showing the
representation of multiple estimates for latent decision-variables,
in that case of reward prediction errors based on different dis-
count factors’. However, here we tried to fully exploit the
potential of topographic representations by showing their
dynamic adaptations, as well as interregional connectivity
patterns.

The co-existence of multiple experience dependent value esti-
mates guiding decisions is also consistent with the results of single
unit recordings made in macaques® in a dACC region homo-
logous with the one we investigated here?’. Neurons that varied
in the degree to which their activity reflected just recent outcomes
or also outcomes in the more distant past were also reported in
the intraparietal sulcus and dorsolateral prefrontal cortex’. In the
present study we also found evidence for such response patterns
in fMRI activity in an adjacent part of the parietal cortex (IPL), a
very rostral part of prefrontal cortex (FPl), and in FO. By
recording activity in individual neurons it is possible to demon-
strate precisely how different neurons, even closely situated ones,
can code both recent and more distant rewards with different
weights. In our study, however, by manipulating the reward
environment that subjects experienced in volatile and stable
sub-sessions, it was possible to show how such experience
dependent reward representations changed with environment
and behavior.

The evidence for value learning using multiple LRs in several
cortical areas fits well with the idea that there exists a hierarchy of
information accumulation from short timescales in sensory areas
to long timescales in prefrontal, dACC, and parietal association
areas*™°. In reinforcement learning, information obtained many
trials ago in the past can still influence probability estimates when
LRs are low. In our task, with an average trial duration of 20 s,
information from several minutes ago has to be remembered.
However, we can also show that even within a single area, there
are gradients of timescale representation and that these repre-
sentations are not fixed, but dynamically responding to the
environment.

In situations in which dACC value representations guide
behavior there are often also value-related activations in FPl and
IPLI314345051 Typically, these areas differ from others such as
vmPFC in that they encode the value of behavioral change and
exploration. In addition, in the present experiment we were able
to show that there are links between the value representations in
dACC and other brain regions. This suggests that multiple value
representations of recent experience constitute an organizing
feature of inter-areal interaction. It is not just that average activity
throughout one region is related to the average activity of
another. Instead parts of dACC employing the fastest and slowest
LRs are interacting with corresponding subdivisions of FPl, IPL,
and rOP. The pattern of results is suggestive of a distributed
representation across multiple brain regions in which the value of
initiating and changing behavior is evaluated over multiple
timescales simultaneously>2.

In a longer behavioral testing session (without fMRI acquisi-
tion) it was shown that subjects do adapt their LR in response to
changes in the volatility of the environment!. The change in best-
fitting LRs that we observe between the stable and the volatile
sub-session is in accordance with just such a shift in behavior.
The exact mechanism by which the broad spectrum of LR
parameters present in dACC, concerning many possible choice
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values estimated at different timescales, is integrated into one
eventual decision needs further elucidation.

In conclusion, there are multiple experience dependent value
estimates with coarse but systematic topographies in dACC and
three other regions. Interactions between these regions occur in
relation to this pattern of specific timescales. The distributions of
value estimates are dynamically adjusted when there are changes
in the environment’s volatility. The dynamic increase in signal
strength (or signal-to-noise ratio) in voxels representing beha-
viorally relevant LRs in the ACC might be due to more neurons
reflecting the information (possibly due to reverberant local circuit
activity) or due the same number of neurons reflecting the
information but with less noise (i.e., change in firing rates), or a
combination of both mechanisms. These changes would align with
recurrent neural network accounts of information processing with
mutual inhibition*® that argue that such local networks can
maintain information about previous states and serve as substrates
for decision making. Dynamic adjustment based on environ-
mental statistics might be critical for adjusting behavior to a
particular LR and for selecting a particular choice on a given trial.

Methods

Behavioral task and fMRI. The behavioral task and scanning procedures have
been described in detail before!. In the task, subjects were presented with two
choice options, a green and a blue rectangle (Fig. 2a). The potential reward mag-
nitudes were presented in the centre of each stimulus while the reward probabilities
had to be learned by the subjects. Reward probabilities were changing throughout
the experiment. There was a stable sub-session of 60 trials where one of the stimuli
was rewarded 75% of trials and the other one 25% and a volatile sub-session where
reward probabilities for the stimuli were 80 and 20%, changing every 20 trials. The
order of the sub-sessions was counterbalanced between subjects. Reward infor-
mation was coupled between the stimuli, i.e., the feedback that the chosen stimulus
was rewarded also implied that the choice of the other stimulus would not have led
to a reward, and vice versa. If the chosen stimulus was rewarded, the presented
reward magnitude was added to the subjects accumulating points and a red bar at
the bottom of the screen increased in proportion to the points acquired. When the
red bar reached a vertical silver bar, subjects received £10, if it reached a golden bar,
they received £20 at the end of the experiment. Subjects were presented with the
two options for 4-8 s (jittered). When a question-mark appeared, they could signal
their choice with a button press. As soon as the button press was registered,
subjects had to wait for 4-8 s (jittered) until the rewarded stimulus was presented
in the middle. After a jittered inter-trial-interval of 3—7 s, the next trial began. EPI
images were acquired at 3 mm? voxel resolution with a repetition time (TR) of 3.0s
and an echo time (TE) of 30 ms, a flip angle of 87°. The slice angle was set to 15°
and a local z-shim was applied around the orbitofrontal cortex in order to reduce
signal drop-out!. Since the response was self-timed, the experiment’s duration was
variable. On average, 830 volumes (41.5 min) were acquired. A T1 structural image
was acquired with an MPRAGE sequence with 1 mm? voxel resolution, a TE of
4.53 ms, an inversion time(TI) of 900 ms and a TR of 2.2 s..

We used FMRIB'’s Software Library (FSL)>® for image pre-processing and the
first level data analysis (Supplementary Method 1). Subsequent analysis steps
relating to the LR regressors were performed with MATLAB (R2015a
8.5.0.197613).

The preprocessing was performed on the functional images of the entire session
(for the initial analysis), and of the stable and the volatile sub-sessions (for
subsequent analyses). In order to analyze the sub-sessions, we split the time series
of BOLD data into those portions that were collected when the reward
environment was in a stable or volatile sub-session. The data assigned to the first
sub-session encompassed all MRI volumes collected up to and including the onset
of the last outcome of that sub-session of the experiment plus two additional
volumes to account for the delay of the hemodynamic response function.

The data were pre-whitened before analysis to account for temporal
autocorrelation®*. For the subsequent mapping of LRs, we ran three GLM’s for the
whole session, and separately for the stable and the volatile sub-sessions, at the first
level for each participant with the following regressors:

(1)  Decision phase main effect (duration: stimuli onset until response)

(2)  Predict phase main effect (duration: response until outcome)

(3)  Outcome monitor phase main effect (duration: 3 s)

(4)  Parametric modulation of decision phase with reward magnitude of chosen
stimulus

(5)  Parametric modulation of decision phase with log of reaction time

(6)  Parametric modulation of decision phase with stay (0) or switch (1) decision

(7)  Parametric modulation of outcome monitor phase with the reward
magnitude of the chosen stimulus
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We also added the temporal derivative of each regressor to the design matrix in
order to explain variance related to possible differences in the timing between the
assumed and the actual hemodynamic response function (HRF).

Since reward magnitudes are changing unpredictably, participants estimate
reward probabilities and not action values. Thus, for each subject, we then
calculated the probability estimates for each stimulus from a simple reinforcement
learning model®®, based on all 99 LRs (&) between 0.01 and 0.99. The model
estimates the probability of one of the stimuli leading to a reward by updating the
stimulus-reward probability p(a) with LR o, where R=1 when the stimulus was
rewarded and R=0 if not:

plai) = p(ait) + a[R — plai)]-

The probability estimate of the other stimulus p(B) is 1 — p(A). From these
values, we also calculated the prediction error (PE) corresponding to the outcome
of that trial by subtracting the probability estimate of the chosen stimulus from the
outcome (1 for rewarded trials, 0 for non-rewarded trials). Thus, the PE is a
“probability PE” that is not weighted with the magnitude of the (foregone) reward.
After normalizing the probability estimates for all LRs for both stimuli, we derived
the probability estimate of the chosen stimulus p(chosen). These p(chosen)-
regressors (hereafter “LR regressors”) and the PE regressors were convolved with
the HRF, normalized and high-pass filtered in the same way (in the same manner
as in FSL). We calculated a correlation matrix for the 99 resulting LR regressors for
every subject and for the whole session as well as the two sub-sessions. Since the
correlation between regressors is not the same for all levels of LR, we chose 30
regressors that were equally spaced in terms of their correlation to the neighboring
regressors. We did so by averaging the 30 LR regressors with equal correlation for
every subject in all three sessions and subsequently rounding them to two decimals.
This procedure resulted in 30 LR regressors corresponding to the following LRs
(see also Fig. 2):

[0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.11 0.12 0.14 0.15 0.17 0.20 0.22
0.25 0.28 0.32 0.36 0.40 0.46 0.51 0.57 0.64 0.71 0.78 0.85 0.93 0.99].

We used the BET procedure®® on the high-pass filtered and motion corrected
functional MRI data to separate brain matter from non-brain matter. For each of
the (sub-)sessions in every subject, we explained activity in the filtered fMRI data
with 30 separate GLM'’s, each with the design matrix described above together with
one of the 30 LR regressors (onset during the decision phase) and the
corresponding PE regressor (onset during outcome monitoring phase).

In each GLM, we retrieved the parameter estimate for the LR regressor and we
mapped the following three measures to every voxel in the brain:

(1)  Best-fitting LR: the regressor with the highest beta-value (regression weights
indicative of the relationship between the regressor and the BOLD signal) in
the GLM. For example, if regressor 20 had the highest beta-value amongst
the 30 LR regressors, that voxel would be assigned a LR of 20

(2)  The change in the best-fitting LR between the stable and the volatile sub-
sessions (measured as best-fitting LR in the stable sub-session minus the
best-fitting LR in the volatile sub-session)

(3)  The beta-weight of the best-fitting LR regressor in the entire session and in
the stable and the volatile sub-sessions

The resulting images were registered to MNI-space using the nonlinear warping
field using nearest-neighbor interpolation. Subsequently, the single-subject images
were averaged across all subjects to create group-average images.

We also used a standard FSL analysis with a GLM similar to the one above but
with two additional regressors corresponding to the probability of the chosen
stimulus during the decision phase and during the outcome monitoring phase as
derived from a Bayesian learner model!, as well as a regressor coding the outcome
of the trial (won or lost). This analysis was used for generating regions of interest
(ROIs; Fig. 3) with the regressor of the magnitude of the chosen option’s potential
reward. Note that this is the only GLM where the Bayesian learning model was
used, and it was only used in order to include value estimates while not having to
arbitrarily choose one of the 30 LR-regressors from the reinforcement learning
model.

We defined our ROIs by the overlap of the contrast over this regressor (cluster-
corrected results with the standard threshold of z= 2.3, corrected significance level
p=0.05) and anatomical masks derived from the connectivity-based parcellation
atlases!%20 (http://www.rbmars.dds.nl/CBPatlases.htm) (Fig. 3). For dACC, this
included bilateral areas 24a/b, d32 as well as the bilateral anterior rostral zones of
the cingulate motor areas. For posterior vmPFC, this included bilateral area 14 m
and for anterior vmPFC it included 11 m?°. For IPL, this included inferior parietal
lobule areas ¢ and d as defined by Mars et al.'®. The atlas only contains IPL regions
for the right hemisphere, we therefore mirrored the regions along the midline to
create masks for the left hemisphere. Since the anatomical masks are defined by
white matter connectivity, they do not cover the entire cortical area. Therefore, the
dACC and vimPFC masks were extended with 2 voxels medially, while the IPL
masks were extended laterally and caudally to ensure that all gray matter voxels
were covered by the masks.

Voxel activity reflecting reinforcement learning. In order to confirm that the
voxels in our ROIs actually reflected activity that was related to probability
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estimates, we ran a singular value decomposition (SVD) over the 99 LR regressors
(before HRF-convolution, normalization and high-pass filtering) to derive singular
values capturing most of the variance associated with the variability in the 99 LR
regressors. For every voxel, we then derived the Akaike Information Criterion
(AIC) scores from our main GLM (not containing any LR regressors) as well as
from a GLM that contained the first three singular values from the SVD (HRF-
convolved, demeaned and high-pass filtered). We then used random-effects
Bayesian model comparison for group studies?! by passing each subject’s AIC
scores for the two models to the spm_bms matlab function from SPM12 (http://
www.filion.ucl.ac.uk/spm/software/spm12/). This procedure returned protected
exceedance probabilities for every voxel, showing the probability that the model
containing the singular values was a more likely model of the data than the model
without those components.

Data availability. The data that support the findings from this study are available
from the corresponding author upon request.
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